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More	is	different		

“The	ability	to	reduce	everything	to	simple	fundamental	laws	
does	not	imply	the	ability	to	start	from	those	laws	and	
reconstruct	the	universe.”	

“The	behavior	of	large	and	complex	aggregates	of	elementary	
particles,	it	turns	out,	is	not	to	be	understood	in	terms	of	a	
simple	extrapolation	of	the	properties	of	a	few	particles.	
Instead,	at	each	level	of	complexity	entirely	new	properties	
appear.”	

1972,	Anderson	

Emergence	
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Emergence		

The	arising	of	novel	and	coherent	structures,	patterns	and	
properties	during	the	process	of	self-organization	in	
complex	systems	

Goldstein,	Economist		(1999)	
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Emergence	in	condensed	matter	physics		

©Itub	©askiitians	 ©kebes	

Solids:	broken	translational	symmetry	 Nematic	liquid	crystal:		
Broken	rotational	symmetry		

Temperature	
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Emergence	in	condensed	matter		

Electrons	interact	with	each	other	and	with	the	environment	

Collective	many-body	behavior	
(strongly	correlated	materials	&	mesoscopic	systems)	

To	understand	the	complex	behavior	
Isolate	the	fundamental	processes	

More	than	35	years	of	intensive	research	effort	and	
continuously	new	surprises	appear	

leni.bascones@csic.es 
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Emergence	in	condensed	matter		

Electrons:		
itinerant	or	localized	

Dimension:	Influence	in	ordered	states	but	also	in	“normal	state”	

Origin	of	magnetism	

Scattering	processes	

Metallicity	

Quantum	states:			Magnetism:	Ferromagnetism,	Antiferromagnetism	
Charge	density	waves,	Superconductivity,	Nematicity,	and	other		

Topology:		A	new	way	to	classify	condensed	matter	systems	with	novel	effects		

Pauli	exclusion	principle	

Lattice:	Symmetries,	Frustrated,	Bipartite	…	

leni.bascones@csic.es 
And	many	other	issues:	interplay	with	disorder	…	
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Band	theory	&		DFT:	Our	basic	description	of	solids		

Bloch	states:	electronic	bands			

	
			-	Metals	and	insulators	
	
				-	Dependence	on	temperature	of	measurable	quantities	(Cv,	χ,	..)	
	

			-	Density	Functional	Theory:	Ability	to	calculate	the	bands		

The	electron	moves	in	the	average		
periodic	potential	of	the	solid	

Band	theory:				Basis	of	our	understanding	of	solids	

leni.bascones@csic.es 

		



E.	Bascones	

Emergence	in	condensed	matter		

Bands	generally	calculated	using	DFT	

Band	theory	is	basically	a	description	
based	on	single	particle	states	

Why	does	band	theory	work?	

Interactions	are	not	small	and	the	electrons		
should	react	to	the	presence	of	other	electrons	

leni.bascones@csic.es 
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Emergence	in	condensed	matter		

Perturbative	versus	non-perturbative	effect	of	interactions	

Bands	generally	calculated	using	DFT		

Fermi	liquid	theory	

Band	theory	is	basically	a	description	
based	on	single	particle	states	

	Metals	and	insulators	
	

Dependence	on	temperature	of			
measurable	quantities	(Cv,	χ,	..)	

Same	behavior	but	with		
renormalized	parameters	 {	

leni.bascones@csic.es 
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Emergence	in	condensed	matter		

Perturbative	versus	non-perturbative	effect	of	interactions	

Phase	transitions	&		
symmetry	breaking	

Bands	generally	calculated	using	DFT	

Fermi	liquid	theory	

Band	theory	is	basically	a	description	
based	on	single	particle	states	

leni.bascones@csic.es 
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Examples	of	electronic	ordered	phases	
Spin	order		 Charge	order	

The	symmetry	of		
the	atomic	lattice	is		
preserved	

Lattice	translational		
symmetry	broken	

Lattice	translational	
and	rotational	
symmetry	broken	

Latice	rotational		
symmetry	broken	

Wigner	crystal	

Charge	stripes	Stripe	antiferromagnet	

Neel	antiferromagnet	

Charge	nematic	

Charge	density	wave	

Spin	nematic	
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Emergence	in	condensed	matter		

Perturbative	versus	non-perturbative	effect	of	interactions	

Phase	transitions	&		
symmetry	breaking	

Bands	generally	calculated	using	DFT	

Fermi	liquid	theory	

Band	theory	is	basically	a	description	
based	on	single	particle	states	

{	 -	Fermi	surface	instabilities	(itinerant	electrons)	

-	Localization	(electronic	bands	are	lost)	

-	Itinerant	+	local	electrons		

leni.bascones@csic.es 
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Emergence	in	condensed	matter		

Perturbative	versus	non-perturbative	effect	of	interactions	

Bands	generally	calculated	using	DFT		

Fermi	liquid	theory	

Band	theory	is	basically	a	description	
based	on	single	particle	states	

Given	a	particular	system,		
should	we	expect	that	band	theory	works?	

	

What	kind	of	instabilities	may	the	system	show?	

leni.bascones@csic.es 
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Interactions:	localization	and	superconductivity	

Mott	transition:		
a	material	predicted	by	band	theory	to	be	metallic	becomes	an	insulator	

due	to	electronic	interactions	
even	without	symmetry	breaking	

Superconductivity:		
Below	a	critical	temperature	resistivity	goes	to	zero.	

(due	to	phonons	we	know,	but	probably	also		
due	to	magnetic	fluctuations	or	Mott	physics)	

leni.bascones@csic.es 
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Interactions:	localization	and	superconductivity	

Cuprates:		high	temperature	superconductors	
From	an	antiferromagnetic	Mott	insulator	to	a	superconductor	and	then	a	metal	

High-temperature	
superconductor	

Antiferromagnetic	
Mott	insulator	 Metal	
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Interactions:	localization	and	superconductivity	

Cuprates:		high	temperature	superconductors	
From	an	antiferromagnetic	Mott	insulator	to	a	superconductor	and	then	a	metal	

Pseudogap:	Is	it	a	
new	state	of	matter?	A	
remanent	of	the	Mott	
insulator	or	another	
broken	symmetry	
phase?	

leni.bascones@csic.es 



E.	Bascones	

Interactions:	localization	and	superconductivity	

Hole	doped	cuprates:	high	temperature	superconductors	

Nature	Comms	5,		
5875	(2014)	

Fig:	Inna	Vishik	

Huge	developments	in	ideas	and	in	theoretical	and	experimental	techniques	

Schmidt	et	al,	NJP	13,	
	065014	(2011)		
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Emergence	in	condensed	matter		

SCES	

Serious	
Challenge	of	
Established	
Standards	

Strongly	
correlated	
electron	
systems	
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Emergence	in	condensed	matter		

SCES	

Strongly	
correlated	
electron	
systems	

Difficulty	to	unveil	the	fundamental		
properties	both	theoretically	&		
experimentally	(away	from	controlled	
theoretical	limits,	competing	states,		
not	always	possible	to	do	many		
experiments…)	

leni.bascones@csic.es 
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Emergence	in	condensed	matter	from	electronic	interactions		

Strongly	correlated	electron	systems:		
very	sensitive	to	changes(Pressure,	Magnetic	Field,	doping…)		

Organic	material	

Fig:	www.physics.berkeley.edu	
leni.bascones@csic.es 
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Magnetism	and	superconductivity	often	appear	close	to	each	other		

Cuprates	

High	temperature	superconductors	

Iron	
superconductors	

Their	critical	temperatures	do	not	look	high	but	
…	

Heavy		
fermion	

Fig:www.supraconductivite.fr	

Organic		
salt	

Fig:	Faltelmeier,		
PRB	(2007)	

leni.bascones@csic.es 
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Do	other	phases	compete	or	cooperate	with	superconductivity?		
Description	in	terms	or	local	or	itinerant	spins?		

Sun et al, Nat. Comm.  
12146 (2016)	

	Iron	superconductor	FeSe	
(nematic	state)	

Fig:	Inna	Vishik	

Hole	doped	cuprates	
(charge	order)	

	Iron	superconductor	Ba-122	
(quantum	criticality)	

Parent	compound:	Metal	
Parent	compound:		

Insulator	

leni.bascones@csic.es 
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Emergence	in	condensed	matter		
Kondo	effect:		

A	minimum	in	the	resistivity	of	
metals	with	magnetic	impurities	
with	a	lot	of	physics	behind	

Fig:	Kasai	et	al,	(2001)	

One	dimension:		
Dramatic	effect	of	interactions:	

Luttinger	liquids	

Fig:	Jonpol	et	al,	Science	(2009)	

leni.bascones@csic.es 
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Fig:	www.gaia3d.co.uk	

Fig:iopscience.iop.org	

Fig:www.purdue.edu	

Emergence	in	mesoscopic	systems		

Kondo	effect	in		
Quantum	Dots	

	Different	phases	put	in	contact	
(superconducting	&	ferromagnetic	)	
	

Luttinger	liquid	behavior		
in	carbon	nanotubes	

leni.bascones@csic.es 
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Topological	and	2D	systems		

New	properties	in	atomic	layers.		
Even	at	the	single	particle	level!	

Fig:Nanophotonics	4,	128	(2015)		

Topological	insulators,		
Weyl	semimetals	

Fig:	Hoffman’s	lab	
leni.bascones@csic.es 
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Engineering	new	materials	and		heterostructures	

leni.bascones@csic.es 

Fig:	Geim	&	Grigorieva,		
Nature	499,	419	(2013)	

Possibility	to	engineer	band	structures	or	alternate		
materials	with	different	funcionalities	
(ferromagnetic,	superconductor	…)	

2D	LEGO	

Moiré	heterostructures	
(huge	unit	cells)	

Atomic	lattices	on	surfaces	

©Ponor	

Yan	&	Liljeroth,		
Advances	in	Physics	X,	4,	2019	
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Moiré	flat	bands:	a	new	platform	to	study	the	effects	of	correlations			

Cao	et	al,	Nature		
556,		43	(2018)	Correlated		

insulating	state	

Moiré	unit	cell	>	10.000	atoms	
Highly	tunable	system	(doping,	angle	…)	

Magic	angle	twisted	bilayer	graphene	(1.1º)	

leni.bascones@csic.es 
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
darker-shaded regions denote half-filling states at ±  ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Two	correlated	insulating	states	
(half-filling	electron	&	hole	bands)	

Cao	et	al,	Nature		556,	80	(2018),	Nature	556,		43	(2018)		
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Cao	et	al,	Nature		
556,		43	(2018)	Correlated		

insulating	state	

Moiré	unit	cell	>	10.000	atoms	
Highly	tunable	system	(doping,	angle	…)	

Magic	angle	twisted	bilayer	graphene	(1.1º)	
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
darker-shaded regions denote half-filling states at ±  ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Two	correlated	insulating	states	
(half-filling	electron	&	hole	bands)	Superconductivity	

Cao	et	al,	Nature		556,	80	(2018),	Nature	556,		43	(2018)		

Moiré	flat	bands:	a	new	platform	to	study	the	effects	of	correlations			
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
darker-shaded regions denote half-filling states at ±  ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.
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Two	correlated	insulating	states	
(half-filling	electron	&	hole	bands)	Superconductivity	

January	2019	

Correlated	states	at	all	integer	fillings	

July	2021	(compressibility	measurements)	
-  Correlated	insulators		
					(integer	filling)	
	

-  Charge	Density	Wave	

-  Chern	Insulators/IQH	

-  Symmetry	broken	Chern	
insulators	

-  Fractional	Chern	insulators	
Filling	
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Moiré	flat	bands	where	2D	materials,	correlations	and	topology	meet	



E.	Bascones	 leni.bascones@csic.es 

Moiré	flat	bands	where	2D	materials,	correlations	and	topology	meet	
Twisting	other	2D	materials	Other	graphene	based		

twisted	heterostructures	

Twisted	double	bilayer	graphene	

Twisted	graphene	trilayer	
(Moiré	3.0)	

Trilayer	ABC	graphene/hBN	

Play	with	the	substrate		
also	in	twisted	heterostructures	

(semiconductors,	magnetic	…)	

Twisted	bilayer	WSe2	

Twisted	bilayer	WSe2/WS2	

Liu	et	al,	Nature	583,	221	(2020),	Park	et	al,	Nature	590,	249	(2021),	Chen	et	al,	Nature	572,	215	(2019),	An	et	al,	Nanoscale	Horizons	9,(	2020),	Jin	et	al	
Nature	Materials		20,	940	(2021)			
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Quantum	Phases	in	Novel	Materials		

leni.bascones@csic.es 

Basic	ideas	&	generic	concepts	
	

Different	kinds	of	phenomena	&	why	
they	happen	

Theoretical	description	
	Many	different	analytical		

&	numerical	methods	and	
approaches	

Experimental	signatures	of		
the	quantum	states		

Materials	and	platforms		
where	these	quantum	phases		
appear	
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Emergence	of	Quantum	Phases	in	Novel	States:	Outline		
q 	Introduction:	Emergence	and	Basic	Concepts	(L.	Bascones)	

q 	Fermi	liquid	theory	(L.	Bascones)	

q 	Electronic	correlations:	Mott,	Hund	and	Luttinger	Physics	(L.	Bascones)	

q 	Magnetism	(M.J.	Calderón)	

q 	Superconductivity	(M.J.	Calderón)		

q 	Dirac	Materials	(A.	Cortijo)	
	
q Topological	Insulators	and	topological	semimetals	(A.	Cortijo)		

														
q 	Kondo	effect	in	metals	and	nanostructures		(R.	Aguado)	
	
q Topological	superconductivity	(R.	Aguado)	

leni.bascones@csic.es 
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Basic	concepts:	the	Fermi	gas	
• 	Focus	on	electrons.	Work	at	fixed	µ

• 	Electrons	are	fermions:	Fermi-Dirac	Statistics	

Zero	temperature	

f(ε)	∝	e-ε/KB
T	

High	temperatures	
(classical	gas)	
	
KBT	»µ

f(ε)	=	
1	

e(ε-µ)/KBT+1	

chemical	
potential	

Maxwell-
Boltzmann	
distribution	
function	

Step	function	
	
	

States	filled	up	to	

the	Fermi	Energy	εF	
which	defines	a		
Fermi	surface	
	

Fig:	Wikipedia		

energy	

leni.bascones@csic.es 
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Basic	concepts:	the	Fermi	gas	
• 	High	temperatures	
(classical	gas,	Maxwell-Boltzmann)	
	

KBT	>>µ

• 	Low	temperatures	
(quantum	gas,	Fermi-Dirac)	
	

KBT	<<	µ

o 	Specific	heat	

Cv=γ	T	 Linear	in		
temperature	

o 	Spin	susceptibility		

Cv=	 o 	Specific	heat	∂F	
∂T	 µ

Cv=	independent	of	T	

Free	energy	

χs=	
∂M	
∂H	

Magnetization	

Magnetic	field	

χs=	µB
2N(εF)		independent	of	T	 χs∝	

o 	Spin	susceptibility		

Pauli	susceptibility	

1	

T	
Curie	law	

Bohr		
magneton	 Density	of	states		

at	Fermi	level	

leni.bascones@csic.es 
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Basic	concepts:	the	Fermi	gas	

• 	High	temperatures	
(classical	gas)	
	

• 	Low	temperatures	
				(quantum	gas)	
	

o 	Specific	heat	 Cv=γ	T	 Linear	in		
temperature	

o 	Spin	susceptibility		

Cv=	independent	of	T	

χs=	µB
2N(εF)		

	

independent	of	T	

χs	∝	

Pauli	susceptibility	

1	

T	 Curie	law	

KBT	<<	µ KBT	>>	µ

Different	temperature	dependence	of	measurable	quantities		
	

in	the	degenerate	(quantum)	and	classical	limits	

Consequence	of	Pauli	exclusion	principle	

Non-interacting	fermions	are	correlated	due	to	Fermi	statistics	&	Pauli	principle	

leni.bascones@csic.es 
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Basic	concepts:	the	Fermi	gas	

Different	temperature	dependence		
of	measurable	quantities		

in	the	degenerate	(quantum)	
and	classical	limits	 • 	High	temperatures	

(classical	gas)	
	

• 	Low	temperatures	
				(quantum	gas)	
	 KBT	<<	µ

KBT	>>	µ

Fermi	temperature	TF=εF/KB	
	

Temperature	below	which	quantum	effects	are	important	

leni.bascones@csic.es 
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Basic	concepts:	the	Fermi	gas	

Different	temperature	dependence		
of	measurable	quantities		

in	the	degenerate	(quantum)	
and	classical	limits	 • 	High	temperatures	

(classical	gas)	
	

• 	Low	temperatures	
				(quantum	gas)	
	 KBT	<<	µ

KBT	>>	µ

Fermi	temperature	TF=εF/KB	
	

Temperature	below	which	quantum	effects	are	important	

Metals		generically	have	
to	be	treated		
as	degenerate	gases	
	

In	metals			
      εF	~	3	eV	
	

									TF	~	2400	K	
	

In	TBG	&	doped	
semiconductors			
      εF	~	few		meV	
	

									TF	~	50	K	

TBG	&	SMC		behave	as	
degenerate	gases	ONLY	
at	very	low	T	
	leni.bascones@csic.es 
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Basic	concepts:	lattice	and	energy	bands	vs	the	continuum	

In	a	solid:	
	

• 	periodic	potential	of	the	ionic	lattice	
	

• 	Length	scale:	the	lattice	constant	a			

• Momentum	conserved	modulus	2π/a		

• 	In	general,	anisotropic	potential	
	

• 	Energy	bands	filled	up	to	εF.	Fermi	surface	
	

• 	Effective	mass	
			(band	mass)		

In	free	space:	Parabolic	band	 Kinetic	energy	=		k
2	

2m	
• 	Isotropic	
	

• 	No	length	scale	
	

• 	Momentum	conserved	

Fig:  Calderón et al,   
PRB, 80, 094531 (2009) m-1=	|∂2ε/∂k2|	

leni.bascones@csic.es 
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Basic	concepts:	lattice	and	energy	bands	vs	the	continuum	

In	free	space:	Parabolic	band	 Kinetic	energy	=		k
2	

2m	

Fig:  Calderón et al,  PRB, 80, 094531 (2009) 

Some	phenomena	can	be	described	in		
terms	of	parabolic	bands	which	substitute		
the	energy	bands	close	to	the	Fermi	surface	
	

Careful!		
This	is	not	always	possible	

Some	effects	are	intrinsic	to	the	lattice		

leni.bascones@csic.es 
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Basic	concepts:	massless	fermions	in	graphene	
Parabolic	bands:	
	

	

Effective	mass	
			(band	mass)		 m-1=	|∂2ε/∂k2|	

Fig:  Calderón et al,  PRB, 80, 094531 (2009) 

Continuum		
approximation	

k2	
2m	

Graphene:	
	

Linear	bands	close		
to	Fermi	level	
	

	
	

Continuum		
approximation	

Effective	mass		
(band	mass)	is	zero!		

E	~vFk	

leni.bascones@csic.es 
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Basic	concepts:	metals	and	insulators	

Metallicity		
in	clean	systems		
Bands	crossing		
the	Fermi	level	
(finite	DOS)	

Fig:  Calderón et al,  PRB, 80, 094531 (2009) 

Insulating	behaviour		
in	clean	systems		
Bands	below		

Fermi	level	filled		
	

Fig:  Hess & Serene, PRB 59, 15167 (1999) 
leni.bascones@csic.es 
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Spin	degeneracy	(no	symmetry	breaking):		
Each	band	can	hold	2	electrons	per	unit	cell		

Even		number		
of	electrons		
per	unit	cell	

Insulating	

Metallic	(in	case		
of		band	overlap)	

Odd	number		
of	electrons		
per	unit	cell	

Metallic	(or	semimetal)	

Basic	concepts:	metals	and	insulators	

leni.bascones@csic.es 
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Spin	degeneracy:		
Each	band	can	hold	2	electrons	per	unit	cell		

Even		number		
of	electrons		
per	unit	cell	

Insulating	

Metallic	(in	case		
of		band	overlap)	

Odd	number		
of	electrons		
per	unit	cell	

Metallic	

Basic	concepts:	metals	and	insulators	

Stops	being	valid	in	a	Mott	insulator!	
leni.bascones@csic.es 
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Basic	concepts:	strength	of	interactions	

Kinetic	energy:	W	bandwidth	

Strength	of	interactions:	U	
U/W	

Interactions	are	not	small	compared	to	kinetic	energy	

• 	Focus	on	electrons	close	to	the	Fermi	surface.	
	

• 	Core	electrons	+	nucleus	form	the		ion			

Kinetic	energy:		tight	binding	model	using	atomic	orbitals	as	a	basis	
		

Larger	spread	of	wave	function	(less	localized	orbitals)	

Larger	overlap	between	orbitals		
in	neighbouring	sites		
(larger	kinetic	energy)	

Two	electrons	are		
less	likely	to	be	found		

very	close	
(smaller	effective	interaction)	

Narrow	bands		
more	sensitive	to	interactions	

leni.bascones@csic.es 
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Basic	concepts:	strength	of	interactions	

s	&	p		
electrons		
kinetic	energy	
more	important	

3d:	competition	between		
kinetic	energy	&	interaction	

Interaction	strength	decreases	in	4d	&	overall		
in	5d	due	to	larger	extension	of	the	orbital	

4f	overall	and	5f	orbitals	are	quite	localized	on	a	site.		
Very	small	kinetic	energy.	Interactions	win	

leni.bascones@csic.es 
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Basic	concepts:	strength	of	interactions	
p-orbitals,		
extended	wave	functions	
(interactions	in	graphene	
not	expected	to	be	very		
relevant)	

leni.bascones@csic.es 
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Basic	concepts:	strength	of	interactions	
p-orbitals,		
extended	wave	functions	
(interactions	in	graphene	
not	expected	to	be	very		
relevant)	

Flat	bands	close	to		
the	magic	angle	~1.1º	

Very	small	W	

leni.bascones@csic.es 
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Basic	concepts:	strength	of	interactions	

leni.bascones@csic.es 

Cuprates,	manganites,	
iron	superconductors		

U,	W	~	2-3	eV	

Twisted	bilayer	graphene	and	other	moiré	heterostructures	

U,	W	~	1-	50	meV	
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Basic	concepts:	strength	of	interactions	

Coulomb	interaction:	
e2	
r	

Assume	3D,	free	space		(continuum),	let		n=Ne	/V		(n	electronic	density)	

V:	Volume	
Ne:	Number	of	electrons	

Kinetic	energy			  ∫-∞
ε
F		ε g(ε) dε ∝	n2/3	

Interaction	energy			 ∝		<1/r>		≅	n1/3	

Kinetic	energy			

Interaction	energy			
n-1/3	∝	

Careful	in	metals	!	

Due	to	Pauli	principle	the	importance	of	interactions	decreases	with	increasing	density	

g(ε)	:	density	of	states	

Important	in	semiconductors	

leni.bascones@csic.es 

Valid	for	1/r	interaction	
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Basic	concepts:	Screening	and	Hubbard	model	

Coulomb	interaction:	

Long	range	character	

Interaction	is	larger	when	
electrons	are	closer		e2	

r	

leni.bascones@csic.es 

Kinetic	Energy	
	(Tight	binding)	

Σijσ	tij	c†
iσcjσ +	h.c.	+		U	Σjnj↑nj↓	+	Σi≠jσσ’	Uijniσnjσ’	

I,j	lattice	sites	
σ	spin	

Interaction	(repulsion	
between	electrons	in	
different	sites)	
	

Hamiltonian	on	the	lattice		(kinetic	energy	+	interactions)	

Interaction	(repulsion	
between	electrons	in	
the	same	site,	only	
different	spin)	
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Basic	concepts:	Screening	and	Hubbard	model	

Coulomb	interaction:	

Long	range	character	

Interaction	is	larger	when	
electrons	are	closer		e2	

εr	

Other		electrons	in	the	solid	(metal)	or	gate	screen	the	Coulomb	interaction.		
The	interaction	decays	faster	than	1/r	

leni.bascones@csic.es 

Screening	also	enters	
increases	ε
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Basic	concepts:	Screening	and	Hubbard	model	

Hubbard	model	:	lattice	model,	1	orbital	per	site	.	Approximation	

Interactions	restricted	to	
electrons	in	the	same	site		

Kinetic	Energy	
	(Tight	binding)	

Σijσ	tij	c†
iσcjσ +	h.c.	+		U	Σjnj↑nj↓	

I,j	lattice	sites	
σ	spin	 Interaction	Energy	

	

Works	better	for	
localized	electrons	

It	looks	simple	but	it	is	not	well	understood.	Basic	in	the	study	of	correlated	electrons	

leni.bascones@csic.es 
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Basic	concepts:	Summary	
q 		Electrons	in	a	solid	follow	Fermi-Dirac	statistics.	In	a	typical	metal	the	
degeneracy	temperature	is	much	higher	than	room	temperature	(in	MATBG	no).	

q 		

q 		Parabolic	bands	(continuum)	versus	lattice	models.	Linear	bands	(no	mass)	

q 		Band	theory:	metallic	or	insulating	character	on	the	basis	of	the		number	of	
electrons	per	unit	cell.		

q 	U/W	controls	strength	of	interactions	

q 	s	and	p	orbitals	less	sensitive	to	interactions,	f	orbitals	are	the	most	
correlated.	d-electrons	interplay	between	kinetic	energy	&		interactions.		
In	TBG	&	other	correlated	moirés	interactions	are	important	due	to	very	small	W	

q 	In	3	D	and	with	1/r	in	the	continuum	limit	the	importance	of	interactions	
decreases	with	increasing	density	

q 	Screening	and	Hubbard	model	

Cv=γ	T	 Linear	in		
temperature	 χs=	µB

2N(εF)			independent	of	T	

leni.bascones@csic.es 


