Emergence of quantum phases in novel materials

SUPERCONDUCTIVITY II

M.J. CALDERÓN

CALDERON@ICMM.CSIC.ES

BIBLIOGRAPHY (BOOKS)

Collection of reviews

- Conventional SPC "Superconductivity" Edited by Parks. 1968.
- Conventional and unconventional SPC "Superconductivity" 2008 (Fe SPC not included)

"Many-body physics" Piers Coleman

"Introduction to superconductivity" Tinkham

SPC history:

"Superconductivity: a very short introduction" S. Blundell

OUTLINE

- Superconductivity
 - Properties (zero resistivity, Meissner effect)
 - Understanding (pairing, BCS, Ginzburg-Landau)
 - Electron-phonon interaction (conventional superconductivity)
- Unconventional superconductivity (unsolved)
 - What are the new issues.
 - What are the proposals.

http://www.ccas-web.org/

Physics World, Jan 2002

M.J. Calderón calderon@icmm.csic.es

UNCONVENTIONAL conventional phonons. SUPERCONDUCTORS

Not driven by

icm

Physics World, Jan 2002

M.J. Calderón calderon@icmm.csic.es

6

UNCONVENTIONAL SUPERCONDUCTORS

The "normal" state is more complicated

- Proximity or coexistence with magnetism
- Strong correlations.
 - Competing orders (stripes).
 - Is there a Fermi surface? Doped Mott insulator. Non-Fermi liquid behaviour. Pseudogap phase in cuprates.
- Low dimensionality, anisotropies.

UNCONVENTIONAL SUPERCONDUCTORS

The superconducting state is different

The pairing function Δ_k may

- Be non-isotropic (including nodes, sign changes)
- Have a finite orbital momentum (p, d)
- Be spin-triplet
- High superconducting T_c
- $\lambda >> \xi$ (type II)
- Anisotropies

 $\frac{2\Delta}{----} >> 3.53$ $k_{R}T_{c}$

Many theories.

2 distinct approaches to the problem:

- Stay within BCS but a new pairing (glue) mechanism is needed (maybe spin fluctuations, some kind of electron-phonon interaction).
- Start from the Mott state (no boson exchange required) and see how to gain energy from pairing
 - Resonating valence bonds
 - Kinetic energy driven
 - Quantum criticality...

Many theories.

2 distinct approaches to the problem:

 Stay within BCS but a new pairing (glue) mechanism is needed (maybe spin fluctuations, some kind of electron-phonon interaction).

A: We know how to deal with it.

D: Usually there is no Fermi surface. Note: Fe superconductors are not Mott insulators; their AF state is a metal.

Many theories.

2 distinct approaches to the problem:

- Start from the Mott state
 - Resonating valence bonds
 - Kinetic energy driven
 - Quantum criticality...

A: It seems, in principle, more self-consistent. D: We need to properly treat the Mott state first!!

Is it possible to have a universal theory of superconductivity?

Assume BCS is valid for non-conventional superconductors. Then we need some attractive interaction but we don't have the help of phonons anymore! Moreover, we have a very strong electronelectron repulsive interaction. Is there a way around it??

PAIRING SYMMETRY

$$\psi(\vec{r}_{1}s_{1},\vec{r}_{2}s_{2}) = \varphi(\vec{r}_{1},\vec{r}_{2})\chi(s_{1},s_{2})$$

Spatial

Spin

p-wave Superfluidity in ³He

Pair wavefunction must be antisymmetric

Spin singlet \rightarrow even parity orbital wave function s, d Spin triplet \rightarrow odd parity orbital wave-function p, f

s-wave: conventional spc d-wave: cuprates

p-wave 0.51K currently under 0.93K

Rev. Mod. Phys. 69, 645

SUPERFLUIDITY IN ³HE (1972)_{$T_c=2.7$ mK}

Pairing cannot be mediated by the lattice. Nuclear forces are strongly repulsive in the core \rightarrow no s-wave possible. Need of wavefunctions that vanish at $r \rightarrow 0$.

One possibility is mediation by ferromagnetic spin fluctuations: FM paramagnons (FM fluctuations suppress s-wave and enhance pwave pairing).

Rev. Mod. Phys. 69, 645

SUPERFLUIDITY IN ³HE

Attractive interactions by ferromagnetic fluctuations:

FM clouds are formed which attract the ³He quasiparticles (something like magnetic polarons instead of lattice polarons)

17

High angular momentum pairing (p-wave)was proposed for ³He as a way to overcome the short range repulsion (Pitaevskii 1959)

What about non-conventional superconductors?

Mostly singlet pairs with mainly d-wave symmetry. In iron superconductors both s and d are postulated.

Gap equation from BCS (T=O)

$$\Delta_{k} = -\frac{1}{\Omega} \sum_{kk'} V_{kk'} \frac{\Delta_{k'}}{2E_{k'}}$$

icmm

CSIC

For $V_{kk'}$ constant and attractive: isotropic gap $\Delta_k = \Delta$

\mathcal{D} -WAVE

Gap equation from BCS (T=0)

$$\Delta_{k} = -\frac{1}{\Omega} \sum_{kk'} V_{kk'} \frac{\Delta_{k'}}{2E_{k'}}$$

Repulsive $V_{kk'}$ \longleftrightarrow Anisotropic Δ_k with sign change! $sign(\Delta_k) = -sign(V_{k,k'})sign(\Delta_{k'}).$

The gap has nodes and sign changes An anisotropic pair potential leads to an anisotropic gap

$$V_{kk'} = -V_0 \gamma_k \gamma_k$$
$$\Delta_k = \gamma_k \Delta_0$$

SINGLET-TRIPLET

PRB 63, 060507 (2001)

NODES VERSUS NODELESS

Without nodes: activated behavior (λ , specific heat...) With nodes: power law behaviors

Gap with nodes

Power law dependencies

Gap without nodes

London penetration length within BCS

T = 30 K $\Delta E \sim 3 \text{ meV}$

90

 $\Delta k \sim 0.005 \text{ Å}^{-1}$

75

25

Bi2212

OD80

15

30

45

 $\theta(\circ)$

Nature Physics 10, 483-495 (2014)

(no phase information)

60

0

0

d

TUNNELING SPECTROSCOPY

(a) SENSITIVITY TO THE PHASE: JOSEPHSON EFFECT $I_s = I_c \sin \Delta \varphi$ Calculated critical current

A FEW WORDS ABOUT THE MATERIALS

SOME TYPICAL PHASE DIAGRAMS

Eur. Phys. JB 21, 175

HEAVY FERMIONS (1979)

"Our experiments demonstrate for the first time that superconductivity can exist in a metal in which many-body interactions, probably magnetic in origin, have strongly renormalized the properties of the conduction-electron gas."

PRL 43, 1892 (1979)

Coexisting AF + SPC

Reentrant SPC due to competition with Kondo

Quantum criticality Nat. Phys. 4, 186

FERROMAGNETIC SUPERCONDUCTORS

Proximity of quantum critical point can lead to coexistence Triplet pairing? PRL 94, 097003 (2005)

CUPRATES

Layers of CuO_2 . Different related structures. But note!: SPC requires coherence in 3dim.

Highest Tc 134K (at ambient pressure). Tc increases with number of CuO2 planes in the unit cell (up to n=3).

Pairs were found to be singlets.

d-wave pairing was proposed in the cuprates early on.

Scalapino, Phys. Rep. 250, 329 (1995)

Undoped cuprates are correlated insulators and AF (π,π) .

wikipedia

Origin?: spin-singlet formation (Anderson), pairing with short range order (preformed pairs), antiferromagnetic fluctuations, charge density wave

Is it due to fluctuations or is it a new phase (with a related broken symmetry)? Transition or crossover?

In other words: Is it a precursor or a competing phase?

Science 307, 901

Norman, cond-mat:0507031 http://www.msd.anl.gov/files/msd/cuprates-columbia.pdf

Many different families discovered, all sharing a Fe plane

Nandi et al, PRL 104, 057006 (2010)

An important breakthrough because it could help understand cuprates

Fe-As or Fe-Se planes

HIGHEST TC IN FE SUPERCONDUCTORS

Single layer FeSe on SrTiO₃

(interface superconductivity)

Nature Materials 14, 285–289 (2015)

Differences with cuprates:

- The AF state is metallic (not Mott insulator): Hund metal (correlations).
- Multiorbital system (more than 1 gap possible)
- SPC can be achieved without chemical doping.
- More 3dim-like (less anisotropy in c-direction)
 Proposed mechanisms for superconductivity
 - Spin fluctuations (π,0)
 - Orbital fluctuations

Extended BZ (1 Fe unit cell)

Gap symmetry

Family	Full gap	Highly anisotropic	Strong nodal
1111	$PrFeAsO_{1-y}[52K]$ [293] SmFeAs(O,F)[55K] [295]	LaFeAs(O,F)[26K] [214] NdFeAs(O,F) [214]	LaFePO[6K] [203, 204, 294]
122	$\begin{array}{l} ({\rm Ba},{\rm K}){\rm Fe}_2{\rm As}_2[40{\rm K}] [146,236,296,242] \\ {\rm Ba}({\rm Fe},{\rm Co})_2{\rm As}_2 [{\rm OP},\!23{\rm K}] [238,208] \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} & {\rm KFe_2As_2} \ [4{\rm K}] \ [211, \ 309] \\ & {\rm BaFe_2(As,P)_2[OP,31{\rm K}]} \ [205, \ 149] \\ & ({\rm Ba,K}){\rm Fe_2As_2} \ [{\rm UD}] \ [242] \end{array}$
111	LiFeAs [18K] [298, 258]		LiFeP [6K] [299]
11		Fe(Se,Te) [27K] [231, 246]	

arXiv:1106.3712

Role of <u>nematicity</u>?

Breaks the tetragonal symmetry.

Related to magnetic fluctuations.

Nematic order postulated for the pseudogap in cuprates.

doping http://www.ifsc.usp.br/coloquio/2013/Fernandes.pdf

Pseudogap

Gap opening due to spin fluctuations: Nat. Comm. **2**, 392 (2011)

MECHANISMS

Spin fluctuations play the role of phonons (à la BCS).

The "normal" state can be described as a nearly AF Fermi liquid (unconventional Fermi liquid close to an AF instability).

Note: calculating the effective interaction is not trivial because vertex corrections can be important (Migdal's theorem doesn't apply)

If the magnetic susceptibility has a peak at q (remember nesting) the interaction is also peaked at q and $\Gamma_s(k, k') = \frac{3}{2}U^2 \frac{\chi_0(q)}{1 - U\chi_0(q)}$ positive.

If you look at the interaction in real space

It changes sign with position!!

Attractive interaction by space avoidance

Scalapino, Phys. Rep. 1995 Hirshfield et al. 1106.3712

Square lattice at half-filling:

$$V_{k,k'} = V_{k-k'} = V_q \propto \chi_q > 0 \quad q = (\pi, \pi)$$

To fullfil the gap equation, you need an anisotropic gap such that

$$\Delta_{k} = -\frac{1}{\Omega} \sum_{kk'} V_{kk'} \frac{\Delta_{k'}}{2E_{k'}} \qquad \text{sign}(\Delta_{k}) = -\text{sign}(V_{k,k'}) \text{sign}(\Delta_{k'}).$$
d-wave
$$\Delta_{k} = \frac{\Delta_{0}}{2} (\cos k_{x} - \cos k_{y})$$

$$\Delta_{k+(\pi,\pi)} = \frac{\Delta_{0}}{2} (-\cos k_{x} + \cos k_{y}) = -\Delta_{k}$$
Hirshfield et al. 1106.3712

M.J. Calderón calderon@icmm.csic.es

Correlation between Tc and a typical energy scale of spin fluctuations.

In the Scalapino approach, the t-J model is the basis for understanding.

Moriya–Ueda, Rep. Prog. Phys. 66, 1299 (2003) Scalapino, Rev. Mod. Phys. 84, 1383 (2012)

45

For a murtiorbital system (as Fe-superconductors)

For instance, spin fluctuations related to nesting between electron and hole pockets: $q=(\pi,0)$

This would lead to an s_{\pm}

(as the order parameter averages to zero on the Fermi surface, you also get "Coulomb avoidance")

ELECTRON-PHONON

Not discarded! For cuprates: Phys. Rev. Lett. 105, 257001 Maybe coupled to other degrees of freedom?

For Fe-superconductors

Spin-phonon?

Adv. in Cond. Matt. Phys. 2010, 164916 (2010)

Orbital fluctuations induced by electron-phonon.

PRL 104, 157001

PRB 88, 165106 (2013)

KINETIC ENERGY DRIVEN MECHANISM Carlson e

Different energy scales involved for underdoped cuprates

T*: Phase transition or crossover (no exp. evidence of phase transition)

T_c< T^{*}_{pair}<T^{*}_{stripe}

KINETIC ENERGY DRIVEN MECHANISM Carlson et

Carlson et al, Chapter 21

Different energy scales involved for underdoped cuprates At T^*_{stripe} : stripe formation. Stripes are rivers of charge where holes can move (gain kinetic energy in 1dim). In between, AF regions where the carriers are localized. At T^*_{pair} : local pairing (spin-gap) within the 1DEGs (stripes). Pairs can tunnel to neighboring 1DEG (which in principle has another k_F). This way the system gains kinetic energy in a perpendicular direction as well. There is finite Δ but not fixed phase.

At T_c : phase coherence sets in (Josephson coupling between stripes) \rightarrow superconductivity.

T_c< T^{*}_{pair}<T^{*}_{stripe}

QUANTUM PHASE TRANSITIONS

Region in which termal and quantum fluctuations are equally important

Linear T resistivity coming from fluctuations in the pseudogap phase (spin density wave order).

In organic spc and Fe pnictides, similar phenomena coming from spin fluctuations.

HIDDEN ORDER

Idea: the pseudogap phase is in fact a gapped phase (pseudo in experiment due to imperfections or dynamic effects)

PRL 83, 3538

Charge order PRL 87, 056401 d-density wave PRB 63, 094503 Nematic phase arXiv:1404.0362

RESONATING VALENCE BONDS

(Anderson)

Mottness from the start.

Pairing scale very large (related to T*)

Quantum fluctuations destroy long range order leading to a spin liquid of singlets.

However, spin liquid not found on cuprates.

http://www.msd.anl.gov/files/msd/cuprates-columbia.pdf

POST HIGH T_C PRINCIPLES TO FIND SPC MAZIN, NATURE 464, 183 (2010)

- Layered structures
- Carrier density should not be too high (compared to conventional metals)
- Transition metals of the fourth period (3d) are good
- Magnetism is essential
- Proper Fermi surface geometry is essential (in relation to spin excitations)

Corollary: work with solid state chemists (you need complex chemical compounds)

SUPERCONDUCTIVITY IN MULTILAYERED GRAPHENE (2018-)

Cao et al, Nature 556, 80 (2018); Nature 556, 43 (2018) Lu, et al Nature 574, 653 (2019)

Park et al, Nature 590, 249 (2021)

M.J. Calderón calderon@icmm.csic.es

OUTLINE

Superconductivity

- Properties (zero resistivity, Meissner effect)
- Understanding (pairing, BCS, Ginzburg-Landau)
- Electron-phonon interaction (conventional superconductivity)
- Unconventional superconductivity (unsolved)
 - What are the new issues.
 - What are the proposals.

