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Macroscopic properties are governed by conservation laws and broken 
symmetries: 

• The high temperature state is disordered, uncorrelated, uniform and 

isotropic: it has the full rotational and translational symmetry of free 
space.  

• As T lowers, new phases condense, with lower symmetry (broken 

symmetry states).
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Long range order is created by short range forces but the details of the 
microscopic interactions are not important and universal behaviours at the 
phase transitions are found. 



Outline

• Classical phase transitions

• Concepts with examples and definitions

• Landau theory

• Criticality and universal behaviour

• Goldstone modes, Mermin Wagner theorem

• Kosterlitz Thouless transition


• Quantum phase transitions

• Quantum Ising model

• Mapping to classical mechanics
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Symmetry
• The properties of any system of particles are determined by a Hamiltonian H which is invariant 

under some transformations (which form a group G). 


• Possible transformations: translation, time reversal, rotation, reflection…


• Examples of groups:


• Euclidian group: all spatial translations, rotations and reflections.


• O(n): all rotations in an n-dimensional space. 


• U(1): isomorphic to O(2). 


• Properties of groups:


• Contain the identity


• The combination of any pair of elements is also an element of the group. 


• Each element must have an inverse


• Symmetries can be continuous or discrete, global or local (gauge).
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Classical versus quantum transitions
Thermal fluctuations versus quantum fluctuations

Phase 1 Phase 2
Thermal 

fluctuations

Control parameter: temperature…

With temperature, even if the underlying phenomenon is quantum mechanical, the phase transition can be 
described classically. 

Classical phase transition

Quantum phase transition

T=0, with effects on T>0

Phase 1 Phase 2
Quantum 

fluctuations

Control parameter: pressure, magnetic field, 
chemical composition… 6



Classical phase transitions
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High T: 

• Kinetic energy dominates over potential energy due to 

intermolecular interactions  gas

• Full rotational and translational symmetry (density is uniform)

	
Lower T (lower kinetic energy)

• Attraction between molecules starts to dominate  density 

fluctuations  clustering

• Larger clusters have slower dynamics

• At a certain T, you get a liquid. Still full rotational and 

translational symmetry (density is uniform)


Liquid and gas have different densities and compressibilities but the  
same symmetry. By changing pressure and temperature, we could 
go from one to another without crossing a phase boundary! 


This is a discontinuous phase transition. At the line the two phases 
coexist. This phase transition requires energy (latent heat).

Critical 

point

Isothermals:
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At the critical point (density ρc=0.322 g/cc, Tc=647 K, Pc=2.2 x 108 
Pa), the transition is continuous (no phase coexistence)


At this continuous transition the compressibility (the capacity of a 
gas to change its density upon pressure) is very large (it diverges: 
a small change in pressure leads to a large change in density). 

This divergence is associated to a divergent size of droplets and 
slowing down of fluctuations (critical behaviour). When the size of 
the droplets is of the order of the wave-length of visible light (0.5 
µm) critical opalescence.

In general: 


Continuous transitions are characterized by divergent 
susceptibilities (of which compressibility is an example). 


Divergences occur following scaling laws: critical exponents.
Stanley

Isothermals:

Order parameter:

ρL-ρg
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Liquids are correlated: knowing the position of a molecule you 
can know the position of nearby molecules (within a distance 
called the correlation length ξ).

In a crystalline solid, the position of one molecule or atom 
determines the position of all the other ones in the system 
(long range order). 

We distinguish liquids and solids for their symmetry:

• A liquid is isotropic and homogeneous (it is invariant 

under any continuous translation or rotation)

• A solid have ordered particles (only particular 

rotations and translations leave the system invariant).

The symmetry of the solid is lower than in the liquid. 

The liquid-solid transition breaks the continuous symmetry 
of the liquid state. The system acquires rigidity.

The transition is characterised by an order parameter, the 
Fourier transform of the density: 0 in the liquid, finite in the 
solid).
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• Temperature

• Pressure

Critical point:

• Tc: 647 K, Pc: 2.2 x108 Pa

Triple point
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MAGNETIC CONTINUOUS TRANSITIONS
Consider a set of magnetic dipoles (spin S) positioned in, for 
instance, a square lattice. S is the degree of freedom.

They interact through a quantum quantity called exchange J. 

J is the coupling constant. It can be positive or negative.

Some typical models:


• Heisenberg model: continuous symmetry 

(S can point on any direction)


• Ising model: discrete symmetry

(possible values of σ are up and down)  

 i and j are nearest neighbours13

H = − J∑
⟨i, j⟩

⃗S i
⃗S j

H = − J∑
⟨i, j⟩

⃗σ i ⃗σ j



HEISENBERG MODEL

Low T: lower symmetry. Ferromagnet (FM)

Rotational symmetry is lost.

Continuous symmetry case: O(3)

Note: The hamiltonian is always invariant under rotational symmetry but the ground state (T<Tc) is not. 
The low T phase could point in any of the directions in space! 


One of the directions is “chosen”  spontaneous symmetry breaking. 

(with J>0)

High T: high symmetry. Paramagnet 
(PM): in time, any spin points in all 

directions with equal frequency. 

Continuous rotational symmetry. 

Spins 
rotating in 3 
spatial 
directions
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H = − J∑
⟨i, j⟩

⃗S i
⃗S j

At Tc :

Spontaneous 

symmetry 
breaking


Diverging

temperature 
fluctuations



HEISENBERG MODEL

Low T: lower symmetry. Ferromagnet (FM)

Rotational symmetry is lost.

Continuous symmetry case: O(3)
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H = − J∑
⟨i, j⟩

⃗S i
⃗S j

Correlation length ξ: 

• related to the size of FM clusters that arise spontaneously at high T. 

• FM clusters get larger as T decreases until it diverges at Tc (for the thermodynamic limit. For finite 

systems there cannot be a divergence  finite size effects).

At Tc :

Spontaneous 

symmetry 
breaking


Diverging

temperature 
fluctuations

High T: high symmetry. Paramagnet 
(PM): in time, any spin points in all 

directions with equal frequency. 

Continuous rotational symmetry. 

Spins 
rotating in 3 
spatial 
directions



HEISENBERG MODEL

At Tc :

Spontaneous 

symmetry 
breaking


Diverging

temperature 
fluctuations

Continuous symmetry case: O(3)
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H = − J∑
⟨i, j⟩

⃗S i
⃗S j

FM: M≠0 PM: M=0

T

M
CONTINUOUS  
TRANSITIONOrder parameter: magnetization M = ⟨ ⃗S i⟩

Note: The order parameter is not invariant under the O(3) group. 



ISING MODEL

At Tc :

Spontaneous 

symmetry 
breaking


Diverging

temperature 
fluctuations

Discrete symmetry case: Z2
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FM: M≠0 PM: M=0

T

M
CONTINUOUS  
TRANSITIONOrder parameter: magnetization M = ⟨ ⃗σ i⟩

Note: The order parameter is not invariant under the Z2 group. 

H = − J∑
⟨i, j⟩

⃗σ i ⃗σ j

PM: in time, any spin points in the two 
possible directions with equal frequency. 

(with J>0)



Spontaneous symmetry breaking
There are many possible symmetry broken states (i.e. all possible orientations of the 
magnetisation allowed by the symmetry of the Hamiltonian).
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We can induce an order parameter by cooling in the presence of an external field h 
(conjugate field) that couples to the order parameter. 

The conjugate field of the magnetisation is the external magnetic field: 

For a finite system, thermal fluctuations generate domains and the order parameter 
averages to 0. The order parameter will be thermally stable in the thermodynamic limit. 



➢At high T, F is dominated by entropy S: uncorrelated, isotropic, 

homogeneous, high symmetry.


➢At low T: F is dominated by the interactions. 


➢At Tc: singularities of the free energy.  

Phase 1 Phase 2
Thermal 

fluctuations

Control parameter: temperature…

➢All macroscopic properties can be deduced from the free energy 

(thermodynamic limit).
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 SUMMARY OF CONCEPTS (SO FAR)
• At high T


• kinetic energy dominates over potential energy

• high symmetry, higher entropy


• Lowering T, a transition may occur:

• Continuous transition: divergence of characteristic lengths, susceptibilities and relaxation 

times. Continuous entropy. (Also called second order phase transition). Critical 
phenomena. Universality.


• Discontinuous transitions: involves nucleation (or phase separation). Latent heat (jump in 
entropy). (Also called first order phase transition).


• Low T: 

• Potential energy dominates over kinetic energy

• Lower symmetry phase (spontaneous symmetry breaking)


• Continuous broken symmetry (as in liquid-to-solid water transition, Heisenberg model). 

• Discrete broken symmetry (Ising model)


• Phase transitions are characterized by order parameters (expectation value of a 
quantum operator) 20



Statistical mechanics
• A microstate is a possible microscopic configuration of the system (position 

and momenta, eigenstates…).


• The probability of finding the system in the microstate α with energy Eα is 
given, in thermal equilibrium, by the Boltzmann factor: exp(-Eα/kBT).


• Partition function    with .


• All properties can be calculated from Z. For instance, the average energy: 

Z = ∑
α

e−βEα β = (kBT )−1

⟨E⟩ =
1
Z ∑

α

Eαe−βEα = − ( ∂logZ
∂β )

V
21



➢Ex. Ising model in a magnetic field h:

Order parameter:

Susceptibility:
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Also the free energy as F = −
1
β

logZ

Correlation functions: G(n) ≡ ⟨σ1σ2 . . . σn⟩ ∝
1
Z

∂nZ
∂h1∂h2 . . . ∂hn

Connected correlation function: G(2)
c ≡ ⟨σiσj⟩ − ⟨σi⟩⟨σj⟩

Give information 
about the 
fluctuations of the 
order parameter



Landau theory 

➢Writes the free energy as a polynomial expansion of the order 
parameter M. (Valid for small values of the order parameter: close to a 
transition in a continuous phase transition ). 


➢Allowed terms only depend on the symmetries of the system. 

➢It is a good description on length scales larger than the coherence 

length. It’s a mean field theory. It doesn’t know about the microscopic 
interactions.


➢For an Ising order parameter (Z2 symmetry) only even power terms of M 
are allowed.


Co
le

m
an
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Landau theory

for an Ising model
Calculate M as that which minimizes the Landau functional

with B>0

24

∂f
∂M

= 2AM + 4BM3 = 0

M = 0M = ± −A /2B

A>0

f

M

A<0

f

M

M=

A is chosen such that 
it changes sign at Tc

A = a(T − Tc)

0, T > Tc

± a(Tc − T )
2B

, T < Tc



With a magnetic field h

T>Tc


h=

h>

h<

M

f
h=

h>

h<

T<Tc


M

f

Hysteresis

(discontinuous 
phase transition)
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Continuous phase transitionDiscontinuous phase transition

M

B



Note the analogy with the liquid gas transition: the magnetic field acts on 
the magnetization similarly to pressure on the gas and liquid densities.

Pr
es

su
re

 (P
)

Temperature (T)

Solid

Liquid 

Gas

Critical 

point

First
 order lin

e

Magnetic field (h)

Critical 

point

h=0

M<0 M>0

Fi
rs

t o
rd

er
 li

ne
T

26



At the transition Tc (with h=0): 

f is continuous

27

The entropy S is continuous S =
∂f
∂T

=

The specific heat has a jump CV = − T
∂2f
∂T2

= C0(T )+
(T < Tc)

The susceptibility diverges =
1

a |T − Tc |
×

1 (T > Tc)
1
2 (T < Tc)



Landau theory for discontinuous phase transitions

Both the order parameter and the 
susceptibility have a jump at Tc

With B<0 

(and go to next order in the order parameter expansion to get a finite M solution)

M

M

28



Continuous vs discontinuous transitions

Continuous (2nd order) 

phase transition (B>0)

Continuous order parameter

Divergences at Tc: critical phenomena.

Discontinuous (1st order) 

phase transitions (B<0)

The order parameter and the susceptibility 
both have a jump at Tc.

There can be phase separation (negative 
compressibility).  Hysteresis. 
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Landau for a continuous symmetry
Consider symmetry U(1) (isomorphic to O(2))

Co
le

m
an

Order parameter is complex:

The free energy has a mexican hat shape: 

The free energy is independent of the global phase φ.


When you break the continuous symmetry the system 
acquires a rigidity. 

In order to include the rigidity we have to allow the order 
parameter to be inhomogeneous. 

30



Inhomogeneous order parameters: Ginzburg Landau

31

This theory was developed to study superfluidity (neutral fluid) and superconductivity (charged fluid).

Long-wavelength fluctuations can be added in Landau theory. φ(x) is 
slowly varying. The simplest functional (for a neutral fluid) is:


                                                         

NotefGL[T, Φ] =
c
2

(∇Φ)2 +
r
2

Φ2 + g(T )Φ4 − hΦ r = a(T − Tc)

The correlation length ξ (characteristic length of the order-parameter fluctuations) can 
be introduced: 

With the coherence length: 

ξ(T ) =
c
r

= ξ0 1 −
T
Tc

−1/2

ξ0 = ξ(T = 0) =
c

aTc

ξ is the characteristic length for the 
correlation function   
(close to Tc).

G(2)
c ∼ e−R/ξ

G(R) ∝ |R |−d+2−η
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Close to the critical point the correlation length is the only relevant 
length scale


we can rescale all lengths in the system by a common factor and at the 
same time adjust the external parameters in such a way that the 

correlation length retains its old value. 

Scale invariance at Tc

All observables depend on power laws   critical exponents

f( |T − Tc | /T, h) = b−df ( |T − Tc |
T

b1/ν, hbyB) with b the scale factor
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Correlation length: 

Order parameter:

Susceptibility:

Specific heat:

Note that the Landau theory for 
an Ising model (or φ4 theory) 

gives


β=1/2

ν=1/2

γ=1

α=0




 

δ = 3

The singular behaviour close to the critical point is characterized by 
critical exponents: 

ψ ∝ {(Tc − T )β

h1/δ

ξ ∝ (Tc − T )−ν

χ ∝ (Tc − T )−γ

C ∝ (Tc − T )−α

G(2)
c (r) ∼

1
rd−2+η

Two-point 

correlation function:

r large and T=Tc

The exponents are related: 

(only 2 are independent)

2 − α = 2β + γ

2 − α = β(δ + 1)

(2 − η)ν = γ
νd = 2 − α



The critical exponents depend on:

•Dimensionality of the space d

•Symmetries of the order parameter (dimensionality D)

but not on the details of the interaction (universality).

UNIVERSALITY

34
The theory of critical phenomena

Universality class: 

same d and D. 



LIQUID-GAS ISING FERROMAGNET

β ~0.32
35

UNIVERSALITY



36Guggenheim, The Journal of Chemical Physics 13,  253 (1945)

UNIVERSALITY
The liquid gas transitions of many 
fluids collapse into each other by 
scaling the variables: T/Tc and 

(same for magnetic systems).

ρ/ρc



Validity of mean field
✓ The amplitude of the fluctuations has to be sufficiently small. 

✓ The amplitude of the fluctuations is small if the dimension of the system is 
larger than a critical dimension (dc=4 for the Ising Universality class). This 
is stated by the Ginzburg criterion. 

✓ If the coherence length is large, the deviation from mean field only affects 
very close to Tc. This is the case for conventional superconductors and 
superfluids.


✓ Beyond mean field renormalization group (a procedure to eliminate high 
energy states keeping only what affects the low energy physics). 

✓ Thermal fluctuations will tend to decrease Tc

37



Goldstone modes and 
Mermin-Wagner theorem



Goldstone theorem
Low energy (long wavelength) excitations are possible in systems with continuous symmetry 
(namely, with a mexican hat potential). 

w
ikim

edia

Example: Heisenberg model [invariant under O(n)]

U
ni

 M
ün

st
er

The cost of this excitation can be made vanishingly small: E ~q2  (q 0 if λ ) ∞

Spin-waves with wavelength λ.

The excitations are massless Goldstone bosons. In the case of spins, these 
bosons are called magnons. 39



Goldstone theorem
Low energy (long wavelength) excitations are possible in systems with continuous symmetry 
(namely, with a mexican hat potential). 

w
ikim

edia

✓ In a superfluid (neutral fluid), Bogoliubov modes.

✓ BUT: a charged  fluid (superconductor) develops a gapped spectrum: Anderson-

Higgs mechanism. 

✓ In a crystalline solid: acoustic phonons

E ~|q|.

40



If the symmetry is discreet:

Example: Ising model (Z2 symmetry: up and down spins).


An excitation consists on flipping a single spin 

(which involves a finite energy ~ J).

Therefore, a gapless excitation spectrum is not possible. 
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Mermin-Wagner theorem 

42

Mermin, N. D. & Wagner, H. Phys. Rev. Lett. 17, 1133–1136 (1966).

Goldstone modes gives rise to large fluctuation effects in low dimensions such that 
the ordered phase is destroyed. 


In general, there is no phase transition for dimension d≤2 (for T > 0) if we have:

• Spontaneous symmetry of a continuous group (i.e not applicable to Ising model)

• Short range forces 




The special case of d=2 and D=2:  
the Kosterlitz-Thouless transition

The XY model (D=2) in 2dim (d=2) has continuous symmetry U(1)/O(2), hence it 
cannot have a phase transition to a long-range ordered state (Mermin-Wagner). 

43

Berezinskii (1970), Kosterlitz and Thouless (1972) demostrated that the system 
undergoes a phase transition (though not long range ordered, there is not symmetry 
breaking). 

The correlation function dies algebraically instead of exponentially (quasi-long range 
order).
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The special case of d=2 and D=2:  
the Kosterlitz-Thouless transition

The xy-model in 2dim has topological defects. 

Vortices are characterized by the winding number n

n=-1 n=2 n=-2n=1

Ch
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n 

&
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The special case of d=2 and D=2:  
the Kosterlitz-Thouless transition

High T

Free vortices


Exponential correlation decay 


(disorder)

exp (c/ T − Tc)

Low T

Vortex-antivortex binding


Correlations show an algebraic decay 

(quasi long range order)

r− kBT
2πJ

Pairs of vortices



Quantum phase transitions



QUANTUM PHASE TRANSITIONS
Singularities in the ground state of the system (namely, at T=0). 


Competing ground state phases.

• Transition at gc (a point of non-analyticity of the ground state).

• The nature of the correlations in the ground state changes 

qualitatively at gc.

Quantum fluctuations are driven by the Heisenberg uncertainty principle

W
ikipedia

Also effects at finite T

47

Phase 1 Phase 2
Quantum 

fluctuations

Control parameter: pressure, magnetic field…



QUANTUM PHASE TRANSITIONS

Transition at gc

The characteristic energy scale of fluctuations is the gap

(Note: focusing on continuous phase transitions) 

z is the dynamic critical exponent

The correlation length

diverges

The coherence time (time over which the 
wave function retains its phase) also diverges

At gc there is no gap critical behaviour 

48



Quantum Ising model
✓ g=0  is the classical Ising model. 

The ground state is a FM. 

✓ Jg is a transverse (along x) 

magnetic field.  

Eigenvalues σz=±1; eigenstates 

Eigenvalues σx=±1; eigenstates 
49

QPT observed in LiHoF4 (FM with Tc=1.53K) 

Phys. Rev. Lett. 77, 940 (1996)

Divergence of the 

susceptibility at Tc and at Ht

c



For g>>1 (strong coupling) the ground state is 

It is not possible to go from the g<<1 (magnetic order) to the g>>1 (quantum 
paramagnet) analytically there must be a phase transition at some gc

For g<<1 (weak coupling)

(classical solution)

or

In the thermodynamic limit: Long range order 

(spontaneous breaking of 


the Z2 symmetry)

GROUND STATE

50

And the values of σz are uncorrelated: 

Quantum paramagnet⟨0 | ̂σz
i ̂σz

j |0⟩ ∼ e−|xi−xj|/ξIn general, for large g



Exact spectrum for the Ising chain 

It can be solved by applying a Jordan-Wigner transformation 

(it maps models with spin ½ to spinless fermions).

At g=1, fermions with low momenta must dominate. 

This implies critical behavior.

The mimimum excitation energy is at k=0 gc=1

51



Finite temperature phase diagram for the Ising chain  
Quantum phase transitions also affect the finite T phase diagram

52

Low-T, outside of the quantum critical region: effective models of quasiclassical particles. 
Relaxation time is long.  

In the quantum critical region, the relaxation time is short. 



Mapping to classical mechanics
A quantum transition in d dimensions is connected to classical phase transitions 
in d+z dimensions. The additional dimension deals with (imaginary) time. 

In a classical system with H=Hkin+Hpot, [Hkin,Hpot]=0  Z=Zkin Zpot  

(statics and dynamics are decoupled and classical phase transitions can be studied 

using time independent theories)

In a quantum system the partition function doesn’t factorize: 
statics and dynamics  are coupled.

With

Time evolution operator 
in imaginary time

53



Mapping to classical mechanics
A quantum transition in d dimensions is connected to classical phase transitions 
in d+z dimensions. The additional dimension deals with (imaginary) time. 

In a classical system with H=Hkin+Hpot, [Hkin,Hpot]=0  Z=Zkin Zpot  

(statics and dynamics are decoupled and classical phase transitions can be studied 

using time independent theories)

In a quantum system the partition function doesn’t factorize: 
statics and dynamics  are coupled.

54

f( |g − gc | /g, h) = b−(d+z)f ( |g − gc |
g

b1/ν, hbyB)
New rescaling:

Compare to f ( |T − Tc | /T, h) = b−df ( |T − Tc |
T

b1/ν, hbyB)



What is different about quantum transitions?
Although many properties can be calculated with this mapping, others 
need special attention:


✓ Some quantum models are qualitatively different from the classical 
counterparts, like some topological terms.


✓Calculating real time dynamics from imaginary time dynamics is tricky 
(it requires analytical continuation).


✓A new time scale arises, the phase coherence time τφ, with no 
analogue in the classical phase transitions. 
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Outline
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• Concepts with examples
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• Criticality and universal behaviour
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• Quantum phase transitions

• Quantum Ising model

• Mapping to classical mechanics
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For g>gc

EXCITED STATES

For g<gc

The excited states are domain walls (they cost energy)
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