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Magnetism is a cooperative phenomenon 
in which many spins interact and order. 

Many applications.

Important theoretical developments in the 
context of magnetism have been relevant for 

other fields of physics.  
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Interactions

Microscopic description (MODELS)

Magnetic 
moments

Environment 

Macroscopic description (phase transitions)

Phases Dimensionality

Symmetry Universality



✓The magnetic moment of electrons 


✓Electron's kinetic energy


✓Pauli exclusion principle


✓Coulomb repulsion between electrons
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Magnetism originates from: 



Magnetic atoms/ions 
electrons in incomplete shells (d or f orbitals)
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s and p electrons overlap 
easily and form the 
conduction bands (large 
bandwidth W).

d and f electrons have 
smaller wave-functions. 
Their overlap is small 
and the electron-
electron interaction may 
control their behavior. 
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Pauli matrices

Spin angular momentum operator

Eigenvalues of Sz: ms=±1/2

Eigenvectors: 


Spinor representation

Total spin operator Raising and lowering operators



Magnetic moment of electrons
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Magnetic moment for the nucleus is much smaller:   

 μN<<μB (due to the much larger mass of the proton)

Orbital magnetic moment:
μo = −

e
2c

(r × v) = −
e

2mc
(r × p) = − μBl

Spin magnetic moment:

ms=±1/2

g=2.0023 

The Bohr magneton is µB =
e
2mc

μs = − gμBS

For free electrons: g=2.0023



• Free magnetic moments 


• Environment


• Magnetic order and susceptibility


• Interactions


• Between localized moments


• Localized moments + itinerant electrons


• Itinerant electrons


• Excitations.
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• Free magnetic moments 


• Environment


• Magnetic order and susceptibility


• Interactions


• Between localized moments


• Localized moments + itinerant electrons


• Itinerant electrons


• Excitations.
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Electrons move in the effective potential created by the nucleus plus an average 
potential from the other electrons  (Hartree approx)

Magnetic atoms/ions 
electrons in incomplete shells (d or f orbitals)

An ion/atom has a net magnetic moment if it has an incomplete atomic shell 
(characterized by the atomic numbers n and l). L and S are zero for complete shells.

(2S+1)(2L+1) possible multiplets. L and S are constants of motion in the absence of spin-
orbit coupling. The degeneracy is lifted by the correlation energy (deviation of the electron-
electron interaction with respect to Hartree): maximize S and maximize L (Hund’s rules).
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Spin orbit coupling
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Spin orbit is more important for small r (f-electrons)

For a Hydrogen like atom, 

Interaction between the electron and the magnetic field created by the orbiting nucleus

F 
R 

E 
E 

  M
 A

 G
 N

 E
 T

 I 
C 

  I
 O

 N
 S



13

Increasing 

SO

Spin orbit coupling
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Total angular momentum: J=L+S

|L-S| ≤ J ≤ L+S

With spin-orbit coupling (λLS), L and S are not constants of motion define J. 


For Russel-Saunders coupling (SO as a weak perturbation):


• The (2S+1)(2L+1)-fold degenerate level splits into (2J+1) degenerate (2S+1) [for L>S] 
or (2L+1)  [for L<S] levels.


• The lowest energy state is J=L+S if the shell is more than half filled or J=|L-S| 
otherwise (3rd Hund’s rule)

→

Magnetic atoms/ions

µeff = gJµB J(J +1) gJ =
3
2
+
S(S +1)− L(L +1)

2J(J +1)
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Example  d1: L=2, S=1/2
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(x10)

(2L+1)(2S+1)
J=|L-S|=3/2(x4)

(x6) J=L+S=5/2

L>S 2S+1=2 states with degeneracy 2J+1→

fine structure
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1. Maximize S

2. Maximize L

3. Minimize spin-orbit energy:


J=|L-S| if shell is less than half-full

J=L+S if shell is more than half full

Ground state (GS) selection: Hund’s rules

 

2S+1LJ

L	 0	 1	 2	 3	 4	 5	 6

	 

	  S	 P	 D	 F	 G	 H            I		

µeff = gJµB J(J +1) gJ =
3
2
+
S(S +1)− L(L +1)

2J(J +1)F 
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For S=0, gJ=1

For L=0, gJ=2

Electrons tend to avoid each other to 
decrease Coulomb repulsion
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Mn3+  (3d)4 

 

ml =2

      1


  0

-1

-2

S=2

L=2

1. Maximize S

2. Maximize L

3. Minimize spin-orbit energy:


J=|L-S| if shell is less than half-full

J=L+S if shell is more than half full

μeff=0

J=|L-S|=0

2S+1LJ

3D0

µeff = gJµB J(J +1)
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Dy3+  (4f)9 

 

ml =3

2


      1

  0

-1

-2

-3

S=5/2

L=5

J=5+5/2=15/2

μeff=10.63μB

2S+1LJ

6H15/2

µeff = gJµB J(J +1)
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1. Maximize S

2. Maximize L

3. Minimize spin-orbit energy:


J=|L-S| if shell is less than half-full

J=L+S if shell is more than half full
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1. Maximize S

2. Maximize L

3. Minimize spin-orbit energy:


J=|L-S| if shell is less than half-full

J=L+S if shell is more than half full

For (3d)4, we got μeff=0. 

But experimentally (in a solid) μexp=4.82μB


In contrast, for (4f)9, μeff ≈ μexpF 
R 

E 
E 

  M
 A

 G
 N

 E
 T

 I 
C 

  I
 O

 N
 S Ground state (GS) selection: Hund’s rules
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1. Maximize S

2. Maximize L

3. Minimize spin-orbit energy:


J=|L-S| if shell is less than half-full

J=L+S if shell is more than half full

Environment: crystal field

Why μeff≠μexp for (3d)4 in a solid?
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• Free magnetic moments 


• Environment


• Magnetic order and susceptibility


• Interactions


• Between localized moments


• Localized moments + itinerant electrons


• Itinerant electrons


• Excitations.
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Crystal field (CF): 

➢Electrostatic interaction with electrons in surrounding ions. 

The medium is not isotropic: it has the symmetry of the 
crystal or magnetic molecule. It can be affected at surfaces 
and interfaces. 


➢More important for less confined electrons.

Environment (breaking orbital degeneracy) 
E 

N
 V

 I 
R 

O
 N

 M
 E

 N
 T



23

d electrons: 

Large CF

Small SO

f electrons:

Small CF

Large SO

E 
N

 V
 I 

R 
O

 N
 M

 E
 N

 T



Crystal field

Magnetic ion
Anion

d-electrons in cubic symmetry

(perovskite structure)

x
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ABO3
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Magnetic ion
Anion

x

y
z

eg

t2g

(|x2-y2>, |3z2-r2>)

(xy,yz,zx)

3Δ/5

2Δ/5
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d-electrons in cubic symmetry

(perovskite structure)

Crystal field



In many cases (manganites, titanates) the splitting Δ is large 
compared to the bandwidth W. 

(|x2-y2>, |3z2-r2>)

(xy,yz,zx)

Δ

W Manganites LaxSr1-xMnO3

eg orbitals at EF 

(t2g localized)
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Crystal field

d-electrons in cubic symmetry

(perovskite structure)



In many cases (manganites, titanates) the splitting Δ is large 
compared to the bandwidth W. 

(|x2-y2>, |3z2-r2>)

(xy,yz,zx)

Δ

W
Doped SrTiO3


t2g orbitals at EF
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Crystal field

d-electrons in cubic symmetry

(perovskite structure)



If the splitting Δ is small compared to the bandwidth W. 

(|x2-y2>, |3z2-r2>)
(xy,yz,zx)Δ

W
All d-orbitals at EFE 
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Crystal field
d-electrons in cubic symmetry

(perovskite structure)
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Crystal field

d-electrons in tetragonal symmetry

(perovskite structure)

eg

t2g

x2-y2

xy

 3z2-r2

(yz,zx)

Magnetic ion
Anion

x

y
z
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Which orbitals are at EF is important to determine the bands in the model.

Hoppings are determined by 

the symmetry of the orbitals and the lattice

Slater and Koster, Phys. Rev. 94, 1498 (1954) 
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For t2g orbitals:

t2g orbitals don’t mix: three 2dim bands

If only one t2g orbital (as for a low crystal symmetry): 2dim model

In a cubic lattice (l,m,n): (1,0,0), (0,1,0), (0,0,1)

Nature 469, 189 (2011) 

tx
xy,xy = ty

xy,xy = ty
yz,yz = tz

yz,yz= tz
zx,zx = tx

zx,zx

tα,β = 0
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eg orbitals mix. 

For cuprates, further splitting (tetragonal)

Cu (9±x) electrons.

x2-y2

xy

 3z2-r2

(yz,zx) Carriers on x2-y2: 2dim band

For eg orbitals:

In a cubic lattice (l,m,n): (1,0,0), (0,1,0), (0,0,1)
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Crystal field

d-electrons in a tetrahedral symmetry

Magnetic ion
Anion

x

y
z
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Crystal field

d-electrons in a tetrahedral symmetry

Magnetic ion
Anion

x

y
z

eg

t2g

(|x2-y2>, |3z2-r2>)

(xy,yz,zx)

3Δ/5

2Δ/5
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Crystal field

d-electrons in a tetrahedral symmetry

Magnetic ion
Anion

x

y
z

(|x2-y2>, |3z2-r2>)

(xy,yz,zx)

3Δ/5

2Δ/5

In iron superconductors, the splitting Δ is 
small compared to the bandwidth so all 

five orbitals contribute at EF 
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PRB 87, 075136

d-bands for iron superconductors
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Also change the crystal field and lead to orbital splittings:


• strain in thin films

• the presence of interfaces

• surfaces

• pressure
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Environment


Orbital “selection”


anisotropies
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Treat surrounding ions as point charges

…expand for r<R

and rewrite as a function of spherical harmonics.

Ri has the 
information of the 
crystal symmetry

Vcryst =
qi

| r−Ri |i
∑

Vcryst = Klm
m=−l

l

∑
l
∑ rlPl

|m|(cosθ )eimϕ

Klm =
(l− |m |)!
(l+ |m |)!

qi
Ri
l+1

i
∑ Pl

|m|(cosθi )e
imϕi

Crystal field. Calculation (sketch)
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Treat surrounding ions as point charges

Ri has the 
information of the 
crystal symmetry

Vcryst =
qi

| r−Ri |i
∑

Crystal field. Calculation (sketch)

Calculate expected values of atomic orbitals 

(also expressed in spherical harmonics) 〈Ψ lm (r) |Hcryst (ri ) |Ψ lm ' (r)〉

The calculations involve averages over radial wave-functions <rn> 

The results depend on the number of electrons

Yosida, Chapter 3.
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Magnetic ion
Anion

x

y
z
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Jahn-Teller distortion

when the orbital ground state is 
degenerate, a distortion in the lattice 
splits the orbitals to minimize energy. 

(xy,yz,zx)

(x2-y2, 3z2-r2)

For a cubic perovskite lattice. Crystal field:



Magnetic ion
Anion

x
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z
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when the orbital ground state is 
degenerate, a distortion in the lattice 
splits the orbitals to minimize energy. 

(xy,yz,zx)

For a cubic perovskite lattice:
x2-y2 

3z2-r2

xy

yz, zx

(x2-y2, 3z2-r2)

For a cubic perovskite lattice. Crystal field:

Jahn-Teller distortion
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when the orbital ground state is 
degenerate, a distortion in the lattice 
splits the orbitals to minimize energy. 

(xy,yz,zx)

x2-y2 

3z2-r2

xy

yz, zx

Q3

(x2-y2, 3z2-r2)

Jahn-Teller distortion
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when the orbital ground state is 
degenerate, a distortion in the lattice 
splits the orbitals to minimize energy. 

(xy,yz,zx)

x2-y2 

3z2-r2

xy

yz, zx

Mn3+

Electronic energy

Elastic energy

E = ±AQ+ 1
2
Mω 2Q2

However, for Mn2+ or Mn4+ no energy gain by the splitting  no distortion.→ →

(x2-y2, 3z2-r2)

Jahn-Teller distortion
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Jahn-Teller distortions are cooperative. 

They may lead to structural phase transitions
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Jahn-Teller distortions are cooperative. 

They may lead to structural phase transitions

Cubic to tetragonal transitions:

LaMnO3 (Ts=800K). Perovskite.

CuFe2O4 (Ts=713K). Spinel.


Mn3O4 (Ts=1443K). Spinel.
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Spinel structure
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Jahn-Teller distortions are cooperative. 

They may lead to structural phase transitions


and orbital order
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Jahn-Teller distortions are cooperative. 

They may lead to structural phase transitions


and orbital order
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Jahn-Teller distortions are cooperative. 

They may lead to structural phase transitions


and orbital order
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Orbital order in manganites 
(0.5 e- per Mn)

Salafranca et al, PRB (2008)
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Jahn-Teller distortions are cooperative. 

They may lead to structural phase transitions


and orbital order
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At high temperatures: 

dynamic Jahn-Teller effect



Pending question: Why μeff≠μexp for (3d)4 in a solid?
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1. Maximize S

2. Maximize L

3. Minimize spin-orbit energy:


J=|L-S| if shell is less than half-full

J=L+S if shell is more than half full

Ground state (GS) selection: Hund’s rules

 

Mn3+  (3d)4 

 

 l =2

      1


  0

-1

-2

S=2

L=2 μeff=0

J=0

3D0

But experimentally μexp=4.82μB
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Orbital quenching
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If we considered L=0 for (3d) ions

With L=0, for (3d)4 we would get μeff=4.89 μB   

(experimentally μexp=4.82 μB)


    
(diff between μeff and μexp due to finite orbital angular momentum)

µeff = gJµB S(S +1) gJ = 2

µeff = gJµB J(J +1) gJ =
3
2
+
S(S +1)− L(L +1)

2J(J +1)
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Orbital quenching
Experimental observation: When crystal field effects are 

larger than spin-orbit coupling (as for 3d ions), the ground 
state is non degenerate and L=0. Why?
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<GS|L|GS> must be real

L is purely 

imaginary

Non-degenerate 

GS is real 


(is an eigenfunction of the crystal field)

<GS|L|GS> =0    
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Orbital quenching
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NOTE

 


For degenerate levels, you can define the d-levels in different basis 
involving any combination of angular momenta.


When the eg and t2g levels are split by crystal field, you can only 
make combinations within the restricted set of degenerate levels. In 
the eg sector, any combination leads to zero L. In the t2g sector, you 

can choose a combination with Lz=1. Therefore, 1 electron in a t2g 
level has a partially quenched orbital.
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Spin-orbit coupling for d-atoms

56

• Partially restores the quenched orbital momentum

• Induces magnetic anisotropy (the spin feels, through the orbital, the 

orientation of the crystal axes).




M.J. Calderón  
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Spin-orbit coupling for d-atoms
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Start from a quenched orbital (L=0) and introduce LS and magnetic 
field within second order perturbation theory

Anisotropy spin Hamiltonian

V = λL ⋅ S + μBH ⋅ (2S + L)

Induced orbital moment

gμν /2

HS = ∑
μν

2μBHμ(δμν − λΛμν)Sν − λ2SμΛμνSν − μ2
BHμΛμνHν

Λμν = ∑
n

⟨0 |Lμ |n⟩⟨n |Lν |0⟩
En − E0

Van Vleck 
orbital PM 



The anisotropy spin Hamiltonian can be written:
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• H lifts the (2S+1) degeneracy.

• The first term: 


• For integer S, splitting into doubly degenerate Sz=±S, ±(S-1)… ±1, and non-degenerate 0.

• For half-integer S, splitting into doubly degenerate Sz=±S, ±(S-1)… ±1/2. 


• Sx
2 and Sy

2 produce transitions ΔSz=±2. Therefore the second term further splits the levels 
for integer S. 


• For half integers (ΔSz=±2 can’t connect ): Kramers doublet.

• Kramers degeneracy holds as long as the Hamiltonian is invariant under time reversal (and 

lifted by, for instance, Zeeman energy).

±S

Spin-orbit coupling for d-atoms

H = DS2
z + E(S2

x − S2
y )



Crystal field for f-atoms

• Crystal field is weak so you have to start from the total angular momentum 
predicted by third Hund’s rule: (2J+1) degeneracy. This degeneracy is 
usually lifted by the weak crystal field as a (2J+1) degeneracy is too large. 


• We have to work with total angular momentum J rather than L. In principle 
J could be quenched but in practice the crystal field is so small that an 
external magnetic field or an exchange field can change the relative 
position of the levels. 
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L=0 (orbital quenching)

S relevant

SO coupling 

J relevant
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Three energy scales to determine local 
moments in a solid


Hund’s coupling (local exchange)

Crystal field (environment)


Spin-orbit coupling
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Crystal field vs  
Hund’s coupling
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Crystal field > JH

3d6

Crystal field < JH

S=0 S=2

Crystal fields may be changed with pressure

Low spin state High spin state

cf

JH

cf JH
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Crystal field vs  
spin-orbit coupling

63

3d ions: crystal-field >> spin-orbit coupling

4f and 5f ions: crystal-field << spin-orbit coupling

Ce 3+ (4f1)

L=3

S=1/2

(x14)

mJ=±3/2

mJ=±5/2, ±7/2

mJ=±1/2

mJ=±5/2, ±7/2

mJ=±3/2

mJ=±1/2
mJ=±5/2 5meVJ=5/2 (x6)

J=7/2 (x8)

0.3eV

SO CF
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Crystal field vs  
spin-orbit coupling

64

3d ions: crystal-field >> spin-orbit coupling

4f and 5f ions: crystal-field << spin-orbit coupling

4d-5d: crystal-field ≈ spin-orbit coupling

Kim et al, PRL 101, 076402 

5d5
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Three energy scales to determine local moments

– Hund’s coupling (local exchange)

– Crystal field (environment)

– Spin-orbit coupling 

65

3d ions: 

• Crystal field >> spin-orbit coupling


• orbital quenching (L=0)


• Crystal field vs Hund’s coupling: low spin-high spin

4f-5f:

• Crystal field << spin-orbit coupling

• Large total magnetic moments J

4d-5d: All scales relevant. U competes with LS



• Free magnetic moments 


• Environment


• Magnetic order and susceptibility


• Interactions


• Between localized moments


• Localized moments + itinerant electrons


• Itinerant electrons


• Excitations.
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Susceptibility

Response to a perturbation (e.g. external field). 

In general χ(r,t) [or χ(q,ω)]
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Here: magnetic susceptibility

A measure of correlations


χ =
∂M
∂H

χij =
(gμB)2

kBT
(⟨SiSj⟩ − ⟨Si⟩⟨Sj⟩)M

 A
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An atom in a magnetic field (non-interacting moments)

Paramagnetic term. χ > 0

A magnetic field aligns local magnetic moments J
M

 A
 G

 N
 E

 T
 I 
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  O

 R
 D

 E
 R H = ∑

i ( [ ⃗pi + e ⃗A ( ⃗ri)]2

2me
+ Vi) + gμB

⃗B ⋅ ⃗S =

∑
i ( p2

i

2me
+ Vi) + μB( ⃗L + g ⃗S) ⋅ ⃗B +

e2

8me ∑
i

( ⃗B × ⃗ri)2

⃗A ( ⃗r ) =
⃗B × ⃗r
2

ℏ ⃗L = ∑
i

⃗ri × ⃗pi
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Paramagnetic susceptibility

Partition function

Free energy

Magnetization

gμBB

mJ=-1/2

mJ=1/2J=1/2

Magnetic susceptibility

Curie’s Law

In 2nd order perturbation theory 
there is another contribution to the 

paramagnetic susceptibility (van 
Vleck). Relevant when J=0. Small and 

independent of T. 

Z = eµBB/kBT + e−µBB/kBT

F = −kBT ln Z

M = −
∂F
∂B
#

$
%

&

'
(
T

χ =
∂M
∂H

∝
1
T
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 R ∑
i ( p2

i

2me
+ Vi) + μB( ⃗L + g ⃗S) ⋅ ⃗B +

e2

8me ∑
i

( ⃗B × ⃗ri)2
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Diamagnetic term. χ< 0


• Orbital effect

• Usually weak: relevant when there are no unpaired 

electrons.

H = ∑
i ( [ ⃗pi + e ⃗A ( ⃗ri)]2

2me
+ Vi) + gμB

⃗B ⋅ ⃗S =

∑
i ( p2

i

2me
+ Vi) + μB( ⃗L + g ⃗S) ⋅ ⃗B +

e2

8me ∑
i

( ⃗B × ⃗ri)2

An atom in a magnetic field (non-interacting moments)
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Diamagnetic susceptibility

Apply Bz. For a spherically symmetric atom

• r is the ionic radius

• Independent of T

∑
i ( p2

i

2me
+ Vi) + μB( ⃗L + g ⃗S) ⋅ ⃗B +

e2

8me ∑
i

( ⃗B × ⃗ri)2
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ΔE0 =
e2B2

8me ∑
i

⟨ | (x2
i + y2

i ) |0⟩ =
e2B2

12me ∑
i

⟨0 |r2
i |0⟩

M = −
∂F
∂B

= −
N
V

∂ΔE0

∂B
= −

Ne2B
6meV ∑

i

⟨r2
i ⟩

χ ∝ − Zeffr2
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Broken symmetry: rotational symmetry

Now let the magnetic moments interact…

But note: there can be a magnetocrystalline 
anisotropy (easy axes/hard axes), originated by 
spin-orbit coupling, that would reduce the 
rotational symmetry. M
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Now let the magnetic moments interact…

Given a pair of magnetic moments, they can interact 
ferromagnetically (FM) or antiferromagnetically (AF).
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Ferromagnetism FM Antiferromagnetism AF

Helical (J1, J2) 

Ferrimagnetism
Spin glass

Néel order

?
Frustration

(AF exchange in a 

non-bipartite lattice)M

 A
 G

 N
 E
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 R
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 E
 R

Different orders



Frustration
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Anderson proposed quantum spin-liquid 

(resonating valence bond)  


Pairs of spins correlated in singlets with 

no long range magnetic order and no spontaneously broken 
symmetry.

Materials Research Bulleting 8, 153 (1973)

?
M

 A
 G

 N
 E

 T
 I 

C 
  O

 R
 D

 E
 R



Spin glasses
Due to randomness:

• Site randomness 

• Bond randomness (between 2 different magnetic ions which 

are distributed randomly)

• Random magnetic anisotropies in amorphous materials.
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Cooperative freezing transition: 

the system freezes in one of its 

many possible ground statesM
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Order parameter

Ferromagnetism FM Antiferromagnetism AF

Magnetization Staggered magnetization

Sublattices A,BM
 A
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 R

Mz = limH 0<Sz>→ Mst=<ΣASz>-<ΣBSz >
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Order parameter

Ferromagnetism FM Antiferromagnetism AF

Magnetization Staggered magnetization

M
 A
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 E
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Mz = limH 0<Sz>→ Mst=<ΣASz>-<ΣBSz >

Spin glass

Order parameter 0 at phase transitions→

(freezing)q = limt→∞⟨⟨Si(0)Si(t)⟩⟩
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FM Q=(0,0) AF Q=(π/a,π/a)

Q=π/2a

Q=π/4a

The different orders can be characterized by a wave-vector

a
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FM Q=(0,0) AF Q=(π/a,π/a)

Q=π/2a

Q=π/4a

The different orders can be characterized by a wave-vector

a

M
 A

 G
 N

 E
 T

 I 
C 

  O
 R

 D
 E

 R

Q can be incommensurate with the lattice Blundell’s book



Susceptibility: FM
In mean field, the magnetization of a FM system 
produces an effective molecular field Bmf=λM (typically 
much larger than any applied field)
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For T>Tc 

χ ∝
1
T
→

1
T −Tc

T

χ

PM
FM

Tc

Curie-Weiss law 
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Susceptibility: AF
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For an AF there is a different molecular field for 

each sublattice, B+ and B-

For T>TN 

T

χ

PM
FM

AF

Tc

M
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χ ∝
1

T +TN



Susceptibility: AF
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For an AF there is a different molecular field for 

each sublattice, B+ and B-

For T>TN 

M
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T

χ χperp

χpar TN

χ depends on the 
direction of the  
applied field.



• Free magnetic moments 


• Environment


• Magnetic order and susceptibility


• Interactions


• Between localized moments


• Localized moments + itinerant electrons


• Itinerant electrons


• Excitations
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Different mechanisms


1. Localized moments. Heisenberg model.


2. Localized moments + itinerant electrons.


3. Itinerant electrons. Fermi surface instability.
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Interaction between localized moments

Magnetic dipolar interactions too weak to explain 
typical magnetic critical temperatures
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EXCHANGE 

Heisenberg model  Σij J Si Sj


• J is the exchange parameter. 

• J>0, AF. J<0, FM.

• Strong interaction: it arises from  Coulomb 

interactions between electrons.  

• Intra-atomic exchange: Hund’s coupling JH
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Interaction between localized moments



Direct exchange 

• Basic idea: electron-electron repulsion energy is 
minimized when two electrons have the same spin 
(due to Pauli exclusion principle the electrons are as 
further away as possible). 


• Therefore, direct exchange is ferromagnetic.

• Between orthogonal orbitals. 

• Hund’s coupling is an onsite direct exchange.

• Proposed by Heisenberg, 1928. 
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Direct Exchange 

89

Expand Ψ(r) in terms of orthogonal wave functions localized 

at the magnetic ions ϕn(r). No double occupancy is allowed (U>>t). 


Two kinds of terms arise:

Cn,n’ Coulomb int. 
between electrons at n 

and n’ ions

Jn,n’ Exchange int. 

Due to Fermi statistics

Ψ*∫∫ (r1)Ψ
*(r2 )

e2

r12
Ψ(r2 )Ψ(r1)dτ1dτ 2

φn
*∫∫ (r1)φn '

*(r2 )
e2

r12
φn ' (r2 )φn (r1)dτ1dτ 2

− φn
*∫∫ (r1)φn '

*(r2 )
e2

r12
φn (r2 )φn ' (r1)dτ1dτ 2
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Alternatively, the exchange term can be written

Jn,n’ is always positive: Ferromagnetism

Heisenberg model:

Direct exchange 

For n and n’ two orbitals on the same site, this is the Hund’s coupling. 
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ans
+

s,s '
∑ ans 'an 's '

+ an 's

sz =
1
2
(a↑

+a↑ − a↓
+a↓)

sx + isy = a↑
+a↓ ; sx − isy = a↓

+a↑

−Jn,n '
1
2
+ 2sn ⋅ sn '

#

$
%

&

'
(



But note: The same mechanism gives antiferromagnetism if the orbitals 
involved are non-orthogonal !

The simplest example: The H2 molecule ground state is a spin-singlet (Wigner’s 
theorem for the 2-electron problem: the ground state does not have a node)
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Direct exchange 
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overlap=0 for orthogonal orbitalsExchange = 2
overlap2Cab − Jab

1 − overlap4

Wigner’s theorem does not apply to our magnetic ions because a shell in a 
3d2 configuration is not a 2-electron problem! 



• Basic idea: due to virtual electron transfers. Consider hopping as a 
perturbation and go to second order perturbation theory. 


• Kramers 1934. Formalized by Anderson 1950.

• Kinetic exchange is antiferromagnetic.

• Start from single band Hubbard Hamiltonian (on-site interactions) with 

U>>t. (The strong interacting limit of the Hubbard model is an AF 
Heisenberg model)

92

Kinetic exchange
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H = − tij
ijσ
∑ (ciσ

+ cjσ + cjσ
+ ciσ )+U nj↑

j
∑ nj↓



Kinetic exchange
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Treat kinetic energy in second-order perturbation (one band model) 

i j
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For this process to take place you need antiparallel 
moments (Pauli principle)

1

2

ΔE2 = −
| tij |

2

Ui, j
σ ,σ '

∑ aiσ
+ ajσajσ '

+ aiσ '

H = − tij
ijσ
∑ (ciσ

+ cjσ + cjσ
+ ciσ )+U nj↑

j
∑ nj↓
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Heisenberg model:

Antiferromagnetic

Kinetic exchange
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sz =
1
2
(a↑

+a↑ − a↓
+a↓)

sx + isy = a↑
+a↓ ; sx − isy = a↓

+a↑

ΔE2 =
| tij |

2

Ui, j
σ ,σ '

∑ −
1
2
+ 2si ⋅ sj

%

&
'

(

)
*

ΔE2 = −
| tij |

2

Ui, j
σ ,σ '

∑ aiσ
+ ajσajσ '

+ aiσ '
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Hubbard model
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H = − tij
ijσ
∑ (ciσ

+ cjσ + cjσ
+ ciσ )+U nj↑

j
∑ nj↓

U>>t

At half-filling

(1 electron per site)

AF Heisenberg model
J∑

ij

⃗Si
⃗Sj

J = 4 | t |2 /U

Away from 

half-filling

t-J model

Hopping only between an empty and a filled site. 

−∑
ijσ

tij(b†
iσbjσ + b†

jσbiσ) + J∑
ij

⃗Si
⃗Sj



Superexchange
Exchange mediated by an anion: Edirect+Ekin. 
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From this, SE is antiferromagnetic but…

Note that we are assuming half-filling (1 electron per site) I N
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 S O2-



Superexchange is AF when the virtual hopping involves 
overlapping half-filled orbitals while it can be FM when:


• overlap is zero: tij=0

(note that tij depends on the 

orientation of the M-O-M bonds)


Goodenough-Kanamori rule
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http://www.scholarpedia.org/article/Goodenough-Kanamori_rule

Kanamori, J. Phys. Chem. Solids 10, 87 (1959)

Goodenough, PR 100, 564 (1955)
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Ekin = −
| tij |

2

Ui, j
σ ,σ '

∑ aiσ
+ ajσajσ '

+ aiσ '

Only direct FM exchange



Superexchange is AF when the virtual hopping involves 
overlapping half-filled orbitals while it can be FM when:


• overlap is zero: tij=0

• it involves transfers between a half-filled and an empty 

orbital. Kinetic exchange can be FM because it is not 
restricted by Pauli principle. (Related to double 
exchange – see later)


Goodenough-Kanamori rule
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http://www.scholarpedia.org/article/Goodenough-Kanamori_rule
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Superexchange is AF when the virtual hopping involves 
overlapping half-filled orbitals while it can be FM when:


• overlap is zero: tij=0

• it involves transfers between a half-filled and an empty 

orbital.

• *in multiorbital systems:


Goodenough-Kanamori rule
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http://www.scholarpedia.org/article/Goodenough-Kanamori_rule
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* Generalization
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For multiorbital systems, the model for electron-electron 
interaction includes more terms:

Spin rotational invariance: 

U’=U-2JH             J’=JH
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Superexchange is AF when the virtual hopping involves 
overlapping half-filled orbitals while it can be FM when:


• overlap is zero: tij=0

• it involves transfers between a half-filled and an empty 

orbital.

• *in multiorbital systems : the onsite interaction for 

electrons in different orbitals is   U’ – JH (and U’=U-2JH),    
Jkin  = -t2/(U-3JH)


Goodenough-Kanamori rule

101http://www.scholarpedia.org/article/Goodenough-Kanamori_rule
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* Generalization
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For multiorbital iron 
superconductors, the sign of 
exchange depends on the 
parameters (JH, U, crystal field. 
The anisotropies in the 
hoppings are included).

Physical Review B 86, 104514 (2012).

J1

J2

 J2>J1/2
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Goodenough-Kanamori rule:

consequences

• Superexchange can be of different strengths 
and signs in the different directions of the 
crystal. The crystal symmetry and the orbitals 
symmetry has to be taken into account (Slater-
Koster). 


• Associated to orbital order (competing 
sometimes with Jahn-Teller distortions) 

Slater and Koster, Phys. Rev. 94, 1498 (1954) 

Millis, PRB 55, 6405 (1997).
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Example: 
Manganites

104

Tokura, Rep. Prog. Phys. 69, 797 (2006)

AO

Mn

Interplay of spin, orbital and lattice
Kanamori, J. Phys. Chem. Solids 10, 87 (1959)


Goodenough, PR 100, 564 (1955)

Millis, PRB 55, 6405 (1997).
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Example: 
Manganites
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Tokura, Rep. Prog. Phys. 69, 797 (2006)

Interplay of spin, orbital and lattice
Kanamori, J. Phys. Chem. Solids 10, 87 (1959)


Goodenough, PR 100, 564 (1955)

Type A: Q=(0,0,π)

Type C: Q=(π, π,0)
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Anisotropic exchange 
 (for d-orbitals) 
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K. Yosida’s book.

H ' = λ(L1 ⋅S1)+λ(L2 ⋅S2 )+Vexch
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HDM =D ⋅ (S1 ×S2 )Dzyaloshinskii-Moriya

D=0 with inversion symmetry between the 2 ions

D direction depends on symmetry

Causes AF spins to cant by a small angle: weak ferromagnetism. 


Examples: α-Fe2O3, MnCoO3, RFeO3 (R: rare-earth).

Superexchange in which the excited intermediate state is not due to an 
interceding anion but to an excited state produced by spin-orbit interaction in 
one of the magnetic ions.




Different mechanisms


1. Localized moments. Heisenberg model.


2. Localized moments + itinerant electrons.


3. Itinerant electrons. Fermi surface instability.
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Itinerant electrons coupled to localized moments
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Kondo model: coupling to an impurity

Kondo lattice

H = − ∑
ijσ

tij(c†
iσcjσ + c†

jσciσ) − JlocalS ⋅ s

H = − ∑
ijσ

tij(c†
iσcjσ + c†

jσciσ) − Jlocal ∑
i

Si ⋅ si

See next lecture on Kondo effect. Here we are focusing on 
the regime in which this term gives rise to magnetic order.

for f-electrons S J→
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Itinerant electrons coupled to localized moments
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Basic idea: the local exchange with an impurity polarizes the surrounding 
Fermi sea which carries this information to other magnetic impurities.


How effective is this process of the magnetic polarization 
of the Fermi sea?  susceptibility
→

H = − ∑
ijσ

tij(c†
iσcjσ + c†

jσciσ) − JlocalS ⋅ s

Kondo model: coupling to an impurity



Paramagnetic susceptibility of conduction electrons

In a uniform magnetic field n n↑≠ ↓

110

EF

ρ (E)↑ ρ (E)=½ρ(E)↓

M=μB(n -n )↑ ↓

H

½ g ρ(EF)μBH

 gμBH

Pauli PM only affects 
electrons close to EF

Constant with T.

Without magnetic field n =n  ↑ ↓
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χPauli =
1
2
g2µB

2ρ(EF )



PM susceptibility in a non-uniform magnetic field
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Consider the perturbative effect of Hq 
on the electron spin

M(r)=μB(|Ψk+(r)|2-|Ψk-(r)|2)

Within first order perturbation theory on a plane wave state

Mq
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 S H (r) = Hq
q
∑ e−iq⋅r

χq = χPauli f
q
2kF

!

"
#

$

%
&

ψk±(r) = =
1

V (eik⋅r ±
gμ0μBHq

4 [ ei(k+q) ⋅ r
Ek+q − Ek

+
ei(k−q) ⋅ r
Ek−q − Ek ])



PM susceptibility in a non-uniform magnetic field
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Consider the perturbative effect of Hq 
on the electron spin
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 S H (r) = Hq
q
∑ e−iq⋅r

0 0.5 1 1.5 2
q/2kF

0

0.5

1

χ q
/χ
P

0 0.5 1 1.5 20

0.5

1 (3dim)

Linhard function

(in momentum space)

χq = χPauli f
q
2kF

!

"
#

$

%
&



RKKY exchange 
Rudderman-Kittel-Kasuya-Yosida 
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For Kondo model: A magnetic impurity with local exchange amounts to

having a local external field: H(r) ~ δ(r) 

Jlocal : JH or s-d or s-f exchange.

Real space susceptibility: Friedel 
oscillations λ=2π/kF

Colem
an’s bookI N
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Hq =
2Jlocal
NgµB

Sz

χq = χPauli f
q
2kF

!

"
#

$

%
&

χ (r) = 1
(2π )3

d3∫ q χqe
iq⋅r

=
2k

F

3χP

π
F(2kFr)
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The conduction electron interacting with the single magnetic 
impurity acquires a spin polarization that depends on distance

JRKKY oscillates with distance: A local magnetic moment produces a 
wave-like local perturbation, similar to throwing a stone into water. 
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RKKY exchange

ψ↑

2
− ψ↓

2
∝ JlocalF(2kFr)

Now this polarized cloud interacts with another magnetic impurity

(The sign of Jlocal does not matter)

JRKKY ∝ Jlocal
2 F(2kFr)
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RKKY exchange
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(The sign of Jlocal does not matter)

JRKKY oscillates with distance: A local magnetic moment produces a 
wave-like local perturbation, similar to throwing a stone into water. 

 

JRKKY ∝ Jlocal
2 F(2kFr)
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Nature Physics 8, 497–503 (2012) 

Fe atoms on Cu(111)

RKKY exchange
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Note that if kFr is small, JRKKY is FM. 
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RKKY exchange
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• Spin glass in CuMn (Mn is random in Cu lattice).

• FM in diluted magnetic semiconductors, like (Ga,Mn)As 

or diluted magnetic oxides as (Ti,Co)O2
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(Important for spintronics, 
where you need carriers to be 
spin polarized).

RKKY competes with Kondo effect (R. Aguado’s Lectures)

RKKY exchange
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Carriers are bound (not-itinerant!) electrostatically by the Coulomb 
potential and the spin-polarization is a secondary phenomenon. 

Polaron: FM cloud.

Proposed for diluted magnetic semiconductors. Percolation Tc→

Other effects of local exchange: 

Bound magnetic polarons

119

Due to the local exchange, the size 
of the bound electron wave-
function Rp depends on T as

Annals of Physics 322, 2618 (2007)
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Other effects of local exchange: 

Free magnetic polarons
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 S Carriers are self-trapped by a FM cloud they have formed themselves in a 
background of disordered spins (above the FM Tc). Low carrier density is 
required. Can also form in an AF background.

PRB 62, 3368 (2000)
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JH ∞ implies the spin of the conduction electrons is 
always parallel to the localized spin


This model was proposed for manganites

A1-xA’xMn3+

1-xMn4+
xO3

→

C. Zener, Phys. Rev. 82, 403, (1951)

P. W. Anderson and A. Hasegawa , Phys Rev  100, 675 (1955)

Double exchange  
(Jlocal ∞ limit of Kondo lattice) →
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αβ

tαβ ∑
ijσ

c†
iασciβσ + JH ∑

i

Sisi JH → ∞ ∑
αβ

∑
ij

tαβ
ij d†

iαdiβ
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C. Zener, Phys. Rev. 82, 403, (1951)

P. W. Anderson and A. Hasegawa , Phys Rev  100, 675 (1955)

Double exchange  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αβ

tαβ ∑
ijσ

c†
iασciβσ + JH ∑

i

Sisi JH → ∞ ∑
αβ

∑
ij

tαβ
ij d†

iαdiβ

Kinetic exchange with real 

(not virtual) electron hopping


Promotes FM with metallicity

(as observed in manganites)

Note: spinless Hamiltonian
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C. Zener, Phys. Rev. 82, 403, (1951)

P. W. Anderson and A. Hasegawa , Phys Rev  100, 675 (1955)

Double exchange  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A1-xA’xMn3+
1-xMn4+

xO3 (x≠0 or 1  mixed valency)→

Tc proportional to the 
number of carriers


(actually, manganites are governed by a 
much more complex Hamiltonian and 
DE competes with AF superexchange)
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Double exchange  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Half-metal: metallic conduction for one spin electrons but 
insulator for the other spin electrons.


Useful for spintronics.

JH



Different mechanisms


1. Localized moments. Heisenberg model.


2. Localized moments + itinerant electrons.


3. Itinerant electrons. Fermi surface instability.
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Itinerant ferromagnetism:  
spontaneously spin-split bands

126

Question: Is it energetically favourable to have a spin imbalance for the 
itinerant electrons? 

In mean-field, a polarized electron gas produces a molecular field (similar to an 
external field) which magnetizes the electron gas - Pauli PM. 

Spin imbalance is 

• non favoured in terms of kinetic energy 

• favoured by the interaction with the molecular 

field.
kF↓

kF↑I N
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Itinerant ferromagnetism

127

Hubbard model in 
a magnetic field

Energy 
density

At some value of U, -m2U will favour a finite magnetization m

(polarizing the spins makes them less likely to meet)

Fazekas’s book

H = εk
kσ
∑ nkσ +U nj↑

j
∑ nj↓ −

gµBH
2

(nj↑ − nj↓
j
∑ )

nj↑n j↓→ nj↑ n j↓ + nj↓ n j↑ − n j↑ n j↓nj↑,↓ =
n
2
±m

Ε(m) = ερ(ε)dε +
µ↑

∫ ερ(ε)dε +
µ↓

∫ U n2

4
−m2&

'
(

)

*
+− gµBHm

I N
 T

 E
 R

 A
 C

 T
 I 

O
 N

 S



Itinerant ferromagnetism
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U ρ(EF) = 1  (Stoner criterium for itinerant FM)

Calculate susceptibility


(Pauli susceptibility is enhanced by electron-electron interaction)

Stoner 

enhancement

Band narrowing and high density of electrons at EF promote FM

Hubbard model in 
a magnetic field H = εk

kσ
∑ nkσ +U nj↑

j
∑ nj↓ −

gµBH
2

(nj↑ − nj↓
j
∑ )

χ =
χPauli

1−Uρ(EF )
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Itinerant magnetism

129

If Stoner criterium is marginally satisfied: 


• Nearly FM metals (very large susceptibility)

	 Example: Pd  

	 U ρ(EF) ~0.9. 

	 Alloying with 0.1% Fe or Co, turns Pd FM


• Weak (m<<n) itinerant ferromagnetism

    Example: ZrZn2 (neither Zr nor Zn is magnetic)

Itinerant FM: Fe, Co, Ni, and alloys YCo5, La2Fe14B
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Instabilities with wave-vector q≠0 (non FM order) 

Generalized susceptibility: Stoner criterium for finite q. For a non-uniform 
magnetic field we calculated a q dependent susceptibility 

130

In the presence of Coulomb interactions

S. Blundell, OUP

χ
q

(0) = χPauli f
q
2kF

!

"
#

$

%
&

χ
q
=

χ
q

(0)

1−αχ
q

(0) =

χPauli f
q
2kF

"

#
$

%

&
'

1−Uρ(E F ) f
q
2kF

"

#
$

%

&
'
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Instabilities with wave-vector q≠0. Spin density 
waves. Nesting
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If χq
(0) diverges, you can have a collective mode even for very weak electron-electron 

interaction U. The instability that sets in is the one corresponding to the lowest U.

Coleman’s book

Reminder: a metal is in the

 degenerate limit T<<EF

Excitations around EF


EF

q=0q≠0

V (r) = V (q)eiqr
q
∑
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Instabilities with wave-vector q≠0. Spin density 
waves. Nesting
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For a parabolic band you can have 
excitations at all possible q. q=0 is 
going to dominate (max χ at q=0)

However, if there are sectors of the Fermi surface that are 
connected by the same q, the maximum of the susceptibility 

can be at that particular q: nesting.

EF

q=0q≠0
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Nesting in 1d
In 1d there is always nesting at q=2kF leading to AF order (q=π/a).


A periodic modulation of the magnetization opens a gap, lowering the total energy:  

133

Kohn anomaly

For d>1, the nesting condition is more restrictive

S. Blundell, OUP

In 1d, the AF order competes with a Peierls instability: dimerization and charge 
density wave. 
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Nesting in a 2D square lattice
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ε(k)=-2t(coskx+cosky) 
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Nesting in a 2D square lattice
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ε(k)=-2t(coskx+cosky) 

For an incommensurate filling: The Fermi surface is similar 
to the parabolic bands and there is no nesting

I N
 T

 E
 R

 A
 C

 T
 I 

O
 N

 S



Nesting in a 2D square lattice
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ε(k)=-2t(coskx+cosky) 

For half filling (1 e- per site)

π/a-π/a kx

ky

-π/a

π/a

q

There is perfect nesting with q=(π/a,π/a)
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a

Folding of Brillouin zone

in the reciprocal space

AF: Doubling of 

unit cell

A gap opens at the zone boundary: the system is 
insulating at half-filling even in the weak coupling 
regime if there is perfect nesting.

(Slater insulator) 

Note that we have used U=0!!π/a-π/a kx

ky

-π/a

π/a
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Instabilities with wave-vector q≠0. Spin density 

waves. Nesting
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In general,  q can be an incommensurate vector

S. Blundell’s book
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Instabilities with wave-vector q≠0. Spin density 

waves. Nesting
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Q=(0,0,1-δ) 2π/a  (0.037 < δ < 0.048)

RMP 60, 209 (1988)

Example: SDW in Cr

Instabilities with wave-vector q≠0. Spin density 
waves. Nesting

Note in this case the SDW does not open 
a gap over the entire Fermi surface: the 
system is metallic
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• Nesting can lead to different Fermi surface instabilities (charge 
density wave, superconducting pairing) that would compete 
with the spin-density wave. 


   The one with the largest Tc would set in.


• Incommensurate instabilities sometimes suffer “lock-in” 
transitions becoming commensurate at low temperatures.
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Example: CaFe4As3


k=(0,δ,0)

PRB 81, 184402 (2010)
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Lock in transitions
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Ginzburg-Landau formalism 

Complex order parameter

Free energy

Elastic term Umklapp term
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q0 is the incommensurate nesting vector. 

Elastic term favours 

Umklapp term favours 

INCOMMENSURABILITY

COMMENSURABILITY

n is the period of the lattice

Lock in transitions
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For n>2, at high T, ρ is small and the elastic term wins. At 
lower T, ρ is large and the Umklapp term wins.

Lock in transitions
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• Free magnetic moments 


• Environment


• Magnetic order and susceptibility


• Interactions


• Between localized moments


• Localized moments + itinerant electrons


• Itinerant electrons


• Excitations.
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Spin waves

Low T excitations of a Heisenberg model (localised moments)


Breaking a global continuous symmetry (Goldstone theorem): it is possible 
to produce long-wavelength excitations in the order parameter with a 

vanishingly small energy cost. Excitations are (massless) Goldstone bosons. 
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FM spin waves
Low T excitations of a Heisenberg model (localised moments)


In a FM: flip a single spin. The new eigenstate is a state with a wave of spins. 
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http://www.uni-muenster.de/

This excitation can be described as the formation of a bosonic quasiparticle called magnon 
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For a ferromagnetic Heisenberg model

H = −2J Si
i
∑ Si+1 = −2J Si

zSi+1
z +

1
2
Si
+Si+1

− + Si
−Si+1

+( )#

$%
&

'(i
∑

To create an excitation: flip spin j

j

j = Sj
− φ
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FM spin waves
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|j> is not an eigenstate of H: diagonalize 
the Hamiltonian by looking for plane-
wave solutions

q =
1
N

eiqRj
j
∑ j

E(q) = −2NJS2 + 4JS(1− cosqa)

For a ferromagnetic Heisenberg model

To create an excitation: flip spin j

H = −2J Si
i
∑ Si+1 = −2J Si

zSi+1
z +

1
2
Si
+Si+1

− + Si
−Si+1

+( )#

$%
&

'(i
∑

j = Sj
− φ
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FM spin waves
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Gapless 
Goldstone modes

small q

Goldstone theorem: if a continuous symmetry is spontaneously 
broken and the forces are sufficiently short ranged, there must 
be a branch of excitations with the property that the energy 
vanishes for q 0. →

E(q) = −2NJS2 + 4JS(1− cosqa) ω ≈ 2JSq2a2
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FM spin waves
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In 3dim the density of 
states is 

Gapless 
Goldstone modes

ρ(q)dq∝q2dq

nmagnon =
ρ(ω)dω

exp(ω / kBT )−10

∞

∫ ∝T 3/2

small qE(q) = −2NJS2 + 4JS(1− cosqa) ω ≈ 2JSq2a2

At low T: M(T) ≈ 1-aT3/2 

Bloch T3/2 law
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FM spin waves
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Blundell’s book

At low T: M(T) ≈ 1-aT3/2 

Bloch T3/2 law
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FM spin waves
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In 2dim and 1dim nmagnon diverges  spontaneous FM is 
not possible for isotropic 1dim and 2dim Heisenberg 

models (Mermin-Wagner-Berezinskii theorem)

→

small qE(q) = −2NJS2 + 4JS(1− cosqa) ω ≈ 2JSq2a2
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FM spin waves
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But note: Anisotropies stabilize FM in low dimensional 
systems and the spin-wave spectrum acquires a gap 

(isotropic)

GAP

A>1 (easy axes)

There can also be a gap due to dipole-dipole interactions (which can 
be important for f-systems)

Spin waves
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Quantum AF
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Antiferromagnetic Heisenberg model

(classical Néel state)

The ground state has two sublattices: one with all spins up and the other with all spins down with E=NzS2J 
(N is the number of spins, z is the number of neighbors). Here we are only considering the longitudinal part 
of the exchange. 

J<0

Yosida

This energy can be lowered by allowing quantum fluctuations (transverse part of the exchange 
interaction) leading to  

NzJS2 > Eg > NzJS
2 1+ 1

zS
!
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AF spin waves
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Spin waves have to be defined in the two sublattices. These spin waves are interdependent. 
The spin wave spectrum is twofold degenerate (±1 excitations are degenerate)

Antiferromagnons

(gapless Goldstone mode)
ω ≈ JzS | q | aE 
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Antiferromagnetic Heisenberg model (J<0) 



Excitations in the electron gas
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Δ: exchange splitting

Spin wave

• Also spin waves

• Stoner excitations

Blundell’s book

ω = Ek+q −Ek +Δ

EF

q=0

Δ

kF↓

kF↑
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Spin waves in a double exchange system: 
localized +itinerant
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Composite spin waves

PRB 64, 140403
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• Free magnetic moments 


• Environment


• Magnetic order and susceptibility


• Interactions


• Between localized moments


• Localized moments + itinerant electrons


• Itinerant electrons


• Excitations.
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