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Magnetism is a cooperative phenomenon
in which many spins interact and order.

Important theoretical developments in the
context of magnetism have been relevant for
other fields of physics.

Many applications.



Microscopic description (MODELS)

Macroscopic description (phase transitions)




Magnetism originates from:

v The magnetic moment of electrons
v Electron's kinetic energy
v Pauli exclusion principle

v Coulomb repulsion between electrons




Magnetic atoms/ions
electrons in incomplete shells (d or f orbitals)

s and P electrons overlap Periodic Table of the Elements
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Pauli matrices _ (V1! i 0 —¢ 10
7= 100 v =i 0 270 1

: A 1
Spin angular momentum operator S — 57

Eigenvalues of S,;: m_=+1/2 11 . 1 /1 oy 1 ( 1 )
Eigenvectors: 10 =5 ( 0 ) | T2} = 2 ( 1 ) NG R
: : . 170 | :
Spinor representation Uy = __( - ) L1 | v L ( 1 )
| \LJ' 2 | | ~L;L',/' - \/5 1 | \LU'J \/§ -1

Raising and lowering operators

Sy =8, +i8,

§?=82+82+8  SY) =s(s+1)|y) g1 (508 +5.8,)+852
A A . I~ A ) 2 i i )
1Sz, Sy =185, [S%.5.] =
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Magnetic moment of electrons

Spin magnetic moment: U, = — g,uBS
, eh
The Bohr magnetonis Uz;=——
2mc
For free electrons: g=2.0023
Orbital magnetic moment:
e e
p,=——(@XV)=~— (rxp)=—ugl
2C 2mc

Magnetic moment for the nucleus is much smaller:

“’N<< H.B (due to the much larger mass of the proton)



OUTLINE

e Free magnetic moments
e Environment
e Magnetic order and susceptibility

¢ Interactions

e Between localized moments
e Localized moments + itinerant electrons

¢ |[tinerant electrons

e Excitations.
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IONS

FREE MAGNETIC

Magnetic atoms/ions
electrons in incomplete shells (d or f orbitals)

Electrons move in the effective potential created by the nucleus plus an average
potential from the other electrons (Hartree approx)

Vnim (1,0, 0) = Ry (r)Y," (0, ¢)

An ion/atom has a net magnetic moment if it has an incomplete atomic shell
(characterized by the atomic numbers nand |). L and S are zero for complete shells.

L = E my, S = E M,
i

(25+1)(2L+1) possible multiplets. L and S are constants of motion in the absence of spin-
orbit coupling. The degeneracy is lifted by the correlation energy (deviation of the electron-
electron interaction with respect to Hartree): maximize S and maximize L (Hund’s rules).
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IONS

FREE MAGNETIC

Spin orbit coupling

Interaction between the electron and the magnetic field created by the orbiting nucleus

I i =  rdV(r)
B = > E=-VV(r)= —n
1 - eh* dV(r) = = S o
H,=———m-B= S-L=)\NS-L
2m 2m.c?r  dr
ldV(T) = Zefte Hgo ~ eff<r_3>§' E
r dr Amers

Spin orbit is more important for small r (f-electrons)
For a Hydrogen like atom, <f,«—3> ~ 73
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IONS
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Spin orbit coupling

Periodic Table of the Elements
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IONS

FREE MAGNETIC

Magnetic atoms/ions

Total angular momentum: J=L+S o P
N 27 +1=(2L+1)(25+1)
|L-S| <J < L+S I

With spin-orbit coupling (ALS), L and S are not constants of motion —define J.

For Russel-Saunders coupling (SO as a weak perturbation):

e The (2S+1)(2L+1)-fold degenerate level splits into (2J+1) degenerate (25+1) [for L>S]
or (2L+1) [for L<S] levels.

e The lowest energy state is J=L+S if the shell is more than half filled or J=]|L-S|
otherwise (3rd Hund’s rule)

3 S(S+D)-L(L+1
B -t LrD

2 2J(J +1)




IONS

FREE MAGNETIC

Example di:L=2,S=1/2

L>S—2S5+1=2 states with degeneracy 2J+1

(x6) J=L+5=5/2

(x10)
(2L+1)(2S+1)

(x4) J=|L-S|=3/2

fine structure
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IONS

FREE MAGNETIC

Electrons tend to avoid each other to

Ground state (GS) selection: Hund'’s rules
decrease Coulomb repulsion

Maximize S

Maximize L
Minimize spin-orbit energy:
J=|L-S| if shell is less than half-full
J=L+S if shell is more than half full

25+1 |_J

) Fors=0,g=1
- 1 - R
o g ugJ(J +1) 8y 7 H 2J(J +1) For L=0, gJ=2
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IONS

FREE MAGNETIC

Ground state (GS) selection: Hund'’s rules

Mn3+ (3d)4

Maximize S
Maximize L
Minimize spin-orbit energy:
J=|L-S| if shell is less than half-full
J=L+S if shell is more than half full
m =2 4
0 5=2 3Dy
0) —
1 ! s Hef=
14

-2 J=|L-S|=0

25+1|_J
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IONS

FREE MAGNETIC

Ground state (GS) selection: Hund'’s rules

Dy3+ (4f)9

Maximize S

Maximize L
Minimize spin-orbit energy:
J=|L-S| if shell is less than half-full
J=L+S if shell is more than half full

25+1 |_J

m, =3
2 1 i S=5/2
(1) 1 L=5
-1 4 J=5+5/2=15/2
-2 ,T\
34

°H 15/2
U.=10.63,
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IONS

FREE MAGNETIC

Ground state (GS) selection: Hund'’s rules

Maximize S

Maximize L
Minimize spin-orbit energy:
J=|L-S| if shell is less than half-full
J=L+S if shell is more than half full

For (3d)4, we got p_4=0.
But experimentally (in a solid) Mexp=4-8215

In contrast, for (4f)9, P« = Mexp

19



IONS

FREE MAGNETIC

Ground state (GS) selection: Hund'’s rules

Maximize S
Maximize L

J=|L-S| if shell is less than half-full
J=L+S if shell is more than half full

Minimize spin-orbit energy:

Why Lg%l for (3d)4in a solid?

Environment: crystal field

20



OUTLINE

e Free magnetic moments

e Environment

e Magnetic order and susceptibility

¢ Interactions

e Between localized moments
e Localized moments + itinerant electrons

¢ |[tinerant electrons

e Excitations.
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Environment (breaking orbital degeneracy)

Crystal field (CF):

> Electrostatic interaction with electrons in surrounding ions.
The medium is not isotropic: it has the symmetry of the
crystal or magnetic molecule. It can be affected at surfaces
and interfaces.

>More important for less confined electrons.



Periodic Table of the Elements
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Crystal field

d-electrons in cubic symmetry

(perovskite structure) /
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Crystal field

d-electrons in cubic symmetry

— (perovskite structure)
Z
(N
> % ¢
- e, ¢ /
Z
° T
o " /
- <
Z
2.y2> | 372-r2
" " (1x2-y2>, |322-r2>) @ Magnetic ion
_________ @ Anion
20/5

(xy,yz,zx)




Crystal field

d-electrons in cubic symmetry
(perovskite structure)

In many cases (manganites, titanates) the splitting A is large
compared to the bandwidth W.
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WI — (|x2-y2>, |322-r2>) ~ Manganites La, Sr; MnO;
A i e, orbitals at E;

_ (xy,yz,2x) (t,g localized)




Crystal field

d-electrons in cubic symmetry
(perovskite structure)

In many cases (manganites, titanates) the splitting A is large
compared to the bandwidth W.
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Doped SrTiO,

WI — (| X2-y2>, |322-r2>)
JAY .
t,, orbitals at E;

r (xy,yz,zx)




Crystal field

d-electrons in cubic symmetry

- (perovskite structure)

Z

LLl

i If the splitting A is small compared to the bandwidth W.

@)

(a'et

> WA

e A i | x2-y2>, |322-r2>) All d-orbitals at E,
Ll (Xylyzlzx)

=
v(




Crystal field

d-electrons in tetragonal symmetry

— (perovskite structure)

=

Z ®

= ;

= Z

2 T
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Ll 37212 @ Magnetic ion
_________ @ Anion

Xy
(yz,2x)




Which orbitals are at E; is important to determine the bands in the model.

Hoppings are determined by

— the symmetry of the orbitals and the lattice

=

L

S Eey zs 312m? (ddo) + (FP4m?— 42m®) (ddm) + (04 Pm?) (4d3)
By, ye 3im*n(dde)+In(1 —4m?) (ddx)+In(m*—1) (dds)

= Ery o 32mn (dde) +mn(1 —4F) (ddx)+mn (E—1)(dds)

@) Eey 2ty $lm (B —n2) (ddo) - 2m (m*—F) (ddx) + 3lm (2—m2) (dd8)

o Eyaty? 3mn(B—m?) (dda) —mn[ 142 (2—m?) ](ddx)+mn[ 143 (B —m?) ] (dd8)

— Eor ety ni(B—m?) (dde)+nl[1—2(R —m?) | (ddx) —ni[1 —} (I —m?) )(dd5)

> E.y 2 s V3im[n?— 3 (P+m?) )(ddo) —2V3lmn2(ddx)+ V3 Im(1+n2) (dd8)

= Eys 22t VEmn[n?— 4 (F4+m® ](dde) +\3mn (P4 m? —n?) (ddr) — 3V3mn (B+m2) (dd5)

L Eoe 2201 V3In[#2—3 (B4 m?) ] (ddo) +V3ln (B4-m? —n?) (ddr) — W3ln (@+m2) (dds)
JORERIEI 3 (22— m?)? (dda)+ [P+ m2— (B —m2)?] (ddm) -+ 0241 (82— m2)?] (dd5)
Fat 21,0 2 V3 (2 —m2) [n2— 3(B+m?) ) (ddo) +VEn2 (m2 — I2) (dd) +3VE (14-n2) (2 —m2) (3d3)
it 3,30 2 12— 3 (24-m?) P(dda)+ 302 (24-m2) (ddw) + 3 (124-m2)2 (dd8)

Slater and Koster, Phys. Rev. 94, 1498 (1954)




For t,, orbitals:

..», | r ta,ﬁ — O

Nature 469, 189 (2011)

|_

f In a cubic lattice (I,m,n): (1,0,0), (0,1,0), (0,0,1)

> b :

p ‘

@ s ‘"ﬂ | t))ccy,xy — t)%}y,xy — tzzx X — t?x X — t)};z,yz — t)gz,yz
o o' ’ ’

>

Z

Ll

t,, orbitals don’t mix: three 2dim bands

If only one the orbital (as for a low crystal symmetry): 2dim model




For e, orbitals: f N

. . ;" -
.".-. -
o,

|_
5 In a cubic lattice (I,m,n): (1,0,0), (0,1,0), (0,0,1)
i 52 _p2 352 __p2 o 1/4t ti-’zy_y-g :I.'z_J-z - 3/4t t;‘.zy_y;’ 2,22 = i\/§/4t bt | .
o | ’ e_ orbitals mix.
g
@ t§z2—r2,3z'2—r2 =1 t;2—3/2,:r2—y2 =0 tiz—y2’322-7‘2 =0
o
> Xz_ 2 . .
- y For cuprates, further splitting (tetragonal)
" 3ze-re Cu (91x) electrons.
Xy

(yz,2x) Carriers on x2-y2: 2dim band




Crystal field

d-electrons in a tetrahedral symmetry
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Crystal field

d-electrons in a tetrahedral symmetry
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Crystal field

d-electrons in a tetrahedral symmetry

In iron superconductors, the splitting A is ./ '
small compared to the bandwidth so all ® ‘
five orbitals contribute at E. , /.
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d-bands for iron superconductors

energy (eV)
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PRB 87, 075136
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Also change the crystal field and lead to orbital splittings:

e strain in thin films

e the presence of interfaces
e surfaces

® pressure
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Environment

Orbital “selection”

anisotropies
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Crystal field. Calculation (sketch)

Treat surrounding ions as point charges Vcryst = | qu |
“Ir-R.
l l

...expand for r<R l |
‘/Cryst — E E Klml"lPllml (Cosg)elm(,v

[ m=-I

(l |”l |)' q 1771 Imo:
K = E L_P"™(cosB.)e"

l
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and rewrite as a function of spherical harmonics.




Crystal field. Calculation (sketch)

all Treat surrounding ions as point charges Vcryst = 9i

< ~|r-R, |

L

>

=4 Calculate expected values of atomic orbitals

2 (also expressed in spherical harmonics) <‘le (r) | Hcryst(ri) | II’lm'(r»
=

5 The calculations involve averages over radial wave-functions <rn>

The results depend on the number of electrons

Yosida, Chapter 3.




Jahn-Teller distortion

when the orbital ground state is

; degenerate, a distortion in the lattice

Lt splits the orbitals to minimize energy.

=

= . . . .

O For a cubic perovskite lattice. Crystal field:

a'e

; (x2-y2, 372-r2)

Z

o (xy,yZ,2X) @ Magnetic ion

‘ Anion
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Jahn-Teller distortion

when the orbital ground state is
degenerate, a distortion in the lattice

splits the orbitals to minimize energy.

For a cubic perovskite lattice: Crystal field:

X2-y2
(x2-y2, 372-r2) 3z%-r2
Xy
(xy,yz,zx)
Yz, ZX

@ Magnetic ion

‘ Anion
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Jahn-Teller distortion

when the orbital ground state is
degenerate, a distortion in the lattice
splits the orbitals to minimize energy.

X2-y2

(x2-y2 322-r2) e ‘ B

Xy

(xy,yz,2x)

yz, ZX

Q,



Jahn-Teller distortion

when the orbital ground state is
degenerate, a distortion in the lattice
splits the orbitals to minimize energy.

Electronic energy

X2-y2

A 3z2-r2 ‘
(X2_y2, 322_r2) | E Q + )
,r Mn3+ 2 _

| X
(xy,yz,zx) A A
| ]
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Elastic energy

yz, ZX

However, for Mn2*or Mn4* —no energy gain by the splitting — no distortion.




Jahn-Teller distortions are cooperative.
They may lead to structural phase transitions
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Jahn-Teller distortions are cooperative.
They may lead to structural phase transitions

Cubic to tetragonal transitions:
LaMnO, (T,=800K). Perovskite.

CuFe,0, (T,=713K). Spinel.
Mn,0, (T,=1443K). Spinel.

Q
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Spinel structure
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Jahn-Teller distortions are cooperative.
They may lead to structural phase transitions
and orbital order

<
NIZA\
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Jahn-Teller distortions are cooperative.
They may lead to structural phase transitions
and orbital order

/
e N
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Jahn-Teller distortions are cooperative.
They may lead to structural phase transitions
and orbital order

Orbital order in manganites
(0.5 e- per Mn)

Salafranca et al, PRB (2008)
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Jahn-Teller distortions are cooperative.
They may lead to structural phase transitions
and orbital order

At high temperatures:
dynamic Jahn-Teller effect
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Pending question: Why p «#,, for (3d)#4in a solid?
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IONS

FREE MAGNETIC

Ground state (GS) selection: Hund’s rules

Maximize S
Maximize L

3. Minimize spin-orbit energy:
J=|L-S| if shell is less than half-full
J=L+S if shell is more than half full

=2 4
Mn3+ (3d)4 1 4
o 4
14
-2

But experimentally Mexp=4-8215

L=2

3DO

Heff=

52
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Orbital quenching

If we considered L=0 for (3d) ions

3 S(S+1)=L(L+1)
= NEIGER! =—+
ey = 85t T +1) 8175 2J(J +1)

U = & 1pS(S+1) g, =2

With L=0, for (3d)4 we would get p_=4.89 p,
(experimentally Mexp=4-82 Hg)

(diff between pand w,,, due to finite orbital angular momentum)
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Orbital quenching

Experimental observation: When crystal field effects are
larger than spin-orbit coupling (as for 3d ions), the ground
state is non degenerate and L=0. Why?

<GS|L|GS> must be real

Lis purely Non-degenerate

imaginary GS is real

(is an eigenfunction of the crystal field)
<GS|L|GS> =0
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Orbital quenching

NOTE

For degenerate levels, you can define the d-levels in different basis
involving any combination of angular momenta.

When the e, and t,, levels are split by crystal field, you can only

make combinations within the restricted set of degenerate levels. In
the e, sector, any combination leads to zero L. In the t,, sector, you

can choose a combination with L*=1. Therefore, 1 electroninat,,
level has a partially quenched orbital.
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Spin-orbit coupling for d-atoms

e Partially restores the quenched orbital momentum

e |Induces magnetic anisotropy (the spin feels, through the orbital, the
orientation of the crystal axes).
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Spin-orbit coupling for d-atoms

Start from a quenched orbital (L=0) and introduce LS and magnetic

field within second order perturbation theory
Van Vleck

orbital PM
V=AL-S+uH-(2S+L)

Hg= ) 2uzH/[5,, - IA,)S, = A*S,A,,S, — uH A, H

P Sy Py
7%
8u!? \ _Z<0|Lﬂ|n><n|L,,|0>
Induced orbital moment a " E, — kg

Anisotropy spin Hamiltonian



Spin-orbit coupling for d-atoms

The anisotropy spin Hamiltonian can be written:
—_ 2 2 2
H = DS? + E(S? - S2)

H lifts the (25+1) degeneracy.
The first term:
e ForintegersS, splitting into doubly degenerate S =15, +(S-1)... 1, and non-degenerate O.

e For half-integer S, splitting into doubly degenerate S =15, +(S-1)... £1/2.
S.2and S 2 produce transitions AS,=12. Therefore the second term further splits the levels

for integer S.
For half integers (AS,=+2 can’t connect =S): Kramers doublet.

Kramers degeneracy holds as long as the Hamiltonian is invariant under time reversal (and
liftted by, for instance, Zeeman energy).
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Crystal field for f-atoms

Crystal field is weak so you have to start from the total angular momentum
predicted by third Hund’s rule: (2J+1) degeneracy. This degeneracy is
usually lifted by the weak crystal field as a (2J+1) degeneracy is too large.

We have to work with total angular momentum J rather than L. In principle
J could be quenched but in practice the crystal field is so small that an
external magnetic field or an exchange field can change the relative
position of the levels.
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Three energy scales to determine local
moments in a solid

Hund'’s coupling (local exchange)
Crystal field (environment)
Spin-orbit coupling
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Crystal field vs
Hund'’s coupling

Low spin state High spin state
3ds | —
cf | ———— Ty
e ” J,
F==1g E———a
Crystal field > J, Crystal field < J,
S=0 S=2

Crystal fields may be changed with pressure
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Crystal field vs
spin-orbit coupling

3d ions: crystal-field >> spin-orbit coupling
4f and 5f ions: crystal-field << spin-orbit coupling

m,=+3/2
Ce 3+ (41:1) mj=i5/2, +7/2
1=7/2 (x8) m=+1/2
m,=%5/2, +7/2
L=3 0.3eV
5=1/2 m,=+3/2
(x14)
J=5/2 (x6) m,=%1/2
m=45/2 SmeV
SO

CF
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Crystal field vs
spin-orbit coupling

3d ions: crystal-field >> spin-orbit coupling

4f and 5f ions: crystal-field << spin-orbit coupling

4d-5d: crystal-field = spin-orbit coupling

(e) g - Sr21r04
. Jqp
S5d R 5d
= | _ e T
t eff ICSO =Jy,
2 Jor=2312 ‘

5d>

(d)

AB ) -12UHB

U
e ‘ J o= VU2 LIIB
‘:so% Ton
J = 3/2 band

JqLI: 1/2 Molt ground state

Crystal Field SO coupling Crystal Field SO coupling

Kim et al, PRL 101, 076402
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Three energy scales to determine local moments

— Hund’s coupling (local exchange)

— Crystal field (environment)

— Spin-orbit coupling
3d ions:
e Crystal field >> spin-orbit coupling

e orbital quenching (L=0)

e Crystal field vs Hund’s coupling: low spin-high spin
4f-5f:
e Crystal field << spin-orbit coupling

e |arge total magnetic moments )

4d-5d: All scales relevant. U competes with LS




OUTLINE

Free magnetic moments

Environment

Magnetic order and susceptibility

Interactions

e Between localized moments

e Localized moments + itinerant electrons

¢ |[tinerant electrons

Excitations.
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Susceptibility

Response to a perturbation (e.g. external field).

In general %(r,t) [or % (q,w)]

Here: magnetic susceptibility Y = %
oH
A measure of correlations
(gMB)2

B
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An atom in a magnetic field (non-interacting moments)

_)--l-eX?- 2 — =

2m,

p2 — - 62 —
4V L +0S)- B} — B X 7)?
; 2m, 8me;( )

Paramagnetic term. ¥ >0
A magnetic field aligns local magnetic moments J

—

— BX_) — N N




oc
L
O
oc
O
O
|_
L
P
O
<<
=

Paramagnetic susceptibility

-\ 2m,
l
Partition function

Free energy

Magnetization M = _(E)
B ).

Magnetic susceptibility

oM 1

— o
X oH T

Curie’s Law

F=-k,TInZ

p2 — > 62 —
—+ V. L +9S)- By — B X 7,)?
2. ) +us(L + g5) Smezik )

1=1/2 i1/
E:
m=-1/2

In 2nd order perturbation theory
there is another contribution to the
paramagnetic susceptibility (van
Vleck). Relevant when J=0. Small and
independent of T.
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An atom in a magnetic field (non-interacting moments)

p2 — - —
Z —+V; | +pug(L +gS)- B
2m

i e

Diamagnetic term. Y < 0

e Orbital effect
e Usually weak: relevant when there are no unpaired
electrons.
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Diamagnetic susceptibility

2
Z(zp,,; +Vi)+uB(L + gS) - B+—Z(B><r)2

i e

Apply B,. For a spherically symmetric atom

H10) =

e’B?
3m, 12m,

M:——: —
oB V 0B om,V l

oF N 0AE, Ne’B Z
= (r7)

e risthe ionic radius
X X — Lol e Independent of T
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Now let the magnetic moments interact...

Broken symmetry: rotational symmetry

But note: there can be a magnetocrystalline
anisotropy (easy axes/hard axes), originated by
spin-orbit coupling, that would reduce the
rotational symmetry.



Now let the magnetic moments interact...

Given a pair of magnetic moments, they can interact
ferromagnetically (FM) or antiferromagnetically (AF).
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Different orders

o
'-S Ferromagnetism FM Antiferromagnetism AF
A A i A
oc Helical (J,, J,) l Néel order
@)
A A T
8 T /1 AT—> \ v
|_
s Ferrimagnetism ,
=z > Spin glass
O T 8 Frustration izr‘
< (AF exchange in a "ﬁ.) ,&:,4
E ¢, T non-bipartite lattice) : ._:'."'S "

: ﬁ
-F-_-
¢ . o
PR
. L -

I ; 2 S
I




Frustration

Anderson proposed quantum spin-liquid

(resonating valence bond) ‘1'

Pairs of spins correlated in singlets with
no long range magnetic order and no spontaneously broken
symmetry.

NN -

Materials Research Bulleting 8, 153 (1973)
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Spin glasses

o Due to randomness:

'S e Site randomness

o e Bond randomness (between 2 different magnetic ions which
O are distributed randomly)

O e Random magnetic anisotropies in amorphous materials.

-

L

= Cooperative freezing transition: P
S: the system freezes in one of its kg'J'
o~ many possible ground states ?t‘ﬁ




Order parameter

o'
UJ . .
'a Ferromagnetism FM Antiferromagnetism AF
o'
A A A
O !
@ AA
- V1
Ll . .
= Magnetization Staggered magnetization
O :
< Mz=lim,,_, ,<5> M, =<3,52>-<3 52>
=

Sublattices A,B
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Order parameter

Ferromagnetism FM Antiferromagnetism AF
Magnetization Staggered magnetization
Mz=lim,_, ,<52> M, =<3, S15-<5 St >

Spin glass
'tp( - 4= hml‘—>oo<<Sl(0)Sl(t)>> freezing
e

_}'-_;_-.,:F-;_,,»g ; Order parameter —0 at phase transitions



The different orders can be characterized by a wave-vector

FM Q=(0,0) AF Q=(mt/a,t/a)
«—> «—>
A 9 A
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The different orders can be characterized by a wave-vector

FM Q=(0,0) AF Q=(mt/a,it/a)

Q=T[/za l P — A
Q=n/4a | v — N

Q can be incommensurate with the lattice
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Susceptibility: FM

In mean field, the magnetization of a FM system

E produces an effective molecular field B_=AM (typically
- much larger than any applied field)

o

= For T>Tc p T \

(@) 1 1 C \\

= X —_— \

= T T-T \ FM

Ll ¢ \\

< PM \

O Curie-Weiss law \

< \\

: b -

T T




Susceptibility: AF

o For an AF there is a different molecular field for

LLl

a) each sublattice, B, and B_

o

O For T>T, X T ‘\

@) C \‘

—_ |

— X \ FM

LUl I'+T, \

=z PM \\

O \

< R

> TS~
Lt AP




Susceptibility: AF

A A /
/

/

/

Lrit L

o For an AF there is a different molecular field for
Ll

a) each sublattice, B, and B_

o

= For T>T, X Y

O ¥ depends on the cpetp 1

— direction of the 2
L applied field. ,/

prd

O

<

>




OUTLINE

e Free magnetic moments
e Environment

e Magnetic order and susceptibility

e Interactions

e Between localized moments
e Localized moments + itinerant electrons

¢ |[tinerant electrons

e Excitations



Different mechanisms

(Vg

Z

e 1. Localized moments. Heisenberg model.
Z 2. Localized moments + itinerant electrons.
<

E 3. Itinerant electrons. Fermi surface instability.
|_

Z




Interaction between localized moments

Magnetic dipolar interactions too weak to explain
typical magnetic critical temperatures
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Interaction between localized moments

EXCHANGE
Heisenberg model 2,JS; S,

e Jis the exchange parameter.

e J>0, AF. J<0O, FM.

e Strong interaction: it arises from Coulomb
interactions between electrons.
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e Intra-atomic exchange: Hund'’s coupling J,




Direct exchange

e Basic idea: electron-electron repulsion energy is
minimized when two electrons have the same spin
(due to Pauli exclusion principle the electrons are as
further away as possible).

e Therefore, direct exchange is ferromagnetic.

e Between orthogonal orbitals.
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e Hund’s coupling is an onsite direct exchange.

* Proposed by Heisenberg, 1928.
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Direct Exchange

ff\y (rH¥ (r) ‘P(r YW (r,)dt,dT,

2

Expand W(r) in terms of orthogonal wave functions localized
at the magnetic ions ¢_(r). No double occupancy is allowed (U>>t).

Two kinds of terms arise:

C, Coulomb int. IEXQIXE ) 6,(r), () d,

between electrons at n h2

and n’ ions

J, v Exchange int.

Due to Fermi statistics —ff¢ (I’l)gb (rz) ¢ ¢ (r,)¢ (r)drdrt,

12



Direct exchange

Alternatively, the exchange term can be written Ea+ a ,a;,s,an,s

ns ns
Vg 5,8’
= 1
9 SZ=§(aTaT—a¢a¢)
— L,
O s, +is, =aja, ;s —is, =aa,
<
ac 1
L) Heisenberg model: -J |—+25 ‘s,
— n.n " n “n
pd

J, v is always positive: Ferromagnetism

For n and n’ two orbitals on the same site, this is the Hund’s coupling.
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Direct exchange

But note: The same mechanism gives antiferromagnetism if the orbitals
involved are non-orthogonal !

The simplest example: The H, molecule ground state is a spin-singlet (Wigner’s
theorem for the 2-electron problem: the ground state does not have a node)

20 . —
Exchange = 2overlap Cab = Jav overlap=0 for orthogonal orbitals

1 — overlap*

Wigner’s theorem does not apply to our magnetic ions because a shell in a
3d2 configuration is not a 2-electron problem!



Kinetic exchange

e Basic idea: due to virtual electron transfers. Consider hopping as a
perturbation and go to second order perturbation theory.

e Kramers 1934. Formalized by Anderson 1950.
e Kinetic exchange is antiferromagnetic.

e Start from single band Hubbard Hamiltonian (on-site interactions) with
U>>t. (The strong interacting limit of the Hubbard model is an AF
Heisenberg model)
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- _EtlJ (CZG JU JO 10) + UE”JT”N

ijo




Kinetic exchange

Treat kinetic energy in second-order perturbation (one band model)

= —Etu(cmcja +CJG lg)+UEnﬂnN

[jo

J
C 27, I°
AEZ = _E alGajaajo‘ alG
@ i),'J,O"
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For this process to take place you need antiparallel
moments (Pauli principle)




Kinetic exchange

~ e, P, Lo
AE2 = —E aiaajaajg,aia. S, = E(GT ad,—da, Cl¢)
® T Y
— 0.0 s, +is, =aya ;s —is, =aa,
@
<
oc 2
Ll _ |z |
— Heisenberg model: AE, = E Y (_l_,_ 2s, ‘Sj)
— U 2

Antiferromagnetic




Hubbard model

H ==Y 1,(ch,c,y +C, la>+UEnﬂnN

N ijo
CZD l U>>t
— 2
- AF Heisenberg model . J=4[t|"/U
L<.E) At half-filling J ) 55
(1 electron per site) -
o' Yy
Ll
— _
= t-J model _Zti' Tb0+bTbm)+Jz
— Away from - R
half-filling g

Hopping only between an empty and a filled site.
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Superexchange

Exchange mediated by an anion: E

O ® ©
DO @

Note that we are assuming half-filling (1 electron per site)

Ekin'

direct

From this, SE is antiferromagnetic but...



Goodenough-Kanamori rule

Superexchange is AF when the virtual hopping involves
overlapping half-filled orbitals while it can be FM when:

V)
zZ
O o overlap is zero: t,=0 1z, I*
— E,. = _E ioc™ jo ]O"ai()"
— (note that t; depends on the
O orientation of the M-O-M bonds . 0.9
< ) Only direct FM exchange
m 1 ? 2
L <o 4 .:T:":.x 1"/’ f—'\"/\w
~ | / \
= ( _\\\, ) “;'v\ '//"‘\\ —\ _' ,{f (~.\ /,."
E ——-\\‘{({T: N ; ’<\ = .}'( i\\: 4’;‘1( 5 '; \r/ ”
[+ /| \— x‘ / \_/ ,:/ _') :/ — | ) Kanamori, J. Phys. Chem. Solids 10, 87 (1959)
"’ R e Goodenough, PR 100, 564 (1955)

http://www.scholarpedia.org/article/Goodenough-Kanamori_rule
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Goodenough-Kanamori rule

Superexchange is AF when the virtual hopping involves
overlapping half-filled orbitals while it can be FM when:

o overlapis zero: t;=0

e it involves transfers between a half-filled and an empty
orbital. Kinetic exchange can be FM because it is not
restricted by Pauli principle. (Related to double
exchange — see later)

http://www.scholarpedia.org/article/Goodenough-Kanamori_rule
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Goodenough-Kanamori rule

Superexchange is AF when the virtual hopping involves
overlapping half-filled orbitals while it can be FM when:

o overlapis zero: t;=0

e it involves transfers between a half-filled and an empty
orbital.
e *in multiorbital systems:

http://www.scholarpedia.org/article/Goodenough-Kanamori_rule

uollezi|eauayn ,



For multiorbital systems, the model for electron-electron
interaction includes more terms:

H = I, + U E NipNigp + U’ E 10T

1 4 f

2 2 (,(g 2(; 1Cia! Cip' o

v 0 <t ool
T/ ,
+J 2 : z(T(z{¢( if" L Cipry
(WA D4

Spin rotational invariance:
U'=U-2J, =],
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Goodenough-Kanamori rule

Superexchange is AF when the virtual hopping involves
overlapping half-filled orbitals while it can be FM when:

o overlapis zero: t;=0

e it involves transfers between a half-filled and an empty
orbital.

e *in multiorbital systems : the onsite interaction for
electrons in different orbitals is U’ —J,, (and U’=U-2J,),

Jo; = -t2/(U-3),,)

D DO O D

http://www.scholarpedia.org/article/Goodenough-Kanamori_rule

uollezi|eauayn ,



For multiorbital iron
superconductors, the sign of
exchange depends on the
parameters (J,, U, crystal field.

The anisotropies in the
hoppings are included).

Sy

| : : ¢ T l Physical Review B 86, 104514 (2012).
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Goodenough-Kanamori rule:
consequences

e Superexchange can be of different strengths
and signs in the different directions of the
crystal. The crystal symmetry and the orbitals
symmetry has to be taken into account (Slater-

KOSter)‘ Slater and Koster, Phys. Rev. 94, 1498 (1954)

e Associated to orbital order (competing
sometimes with Jahn-Teller distortions)
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Millis, PRB 55, 6405 (1997).




INTERACTIONS

Example:
Manganites

A

<
S
-
2
©
T
o0

¢
A

—
0

)!.
./\ d (j:

Interplay of spin, orbital and lattice

0 0.2 0.4 0.6
hole concentraticn
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i
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INTERACTIONS

Example:
Manganites

Type C: Q=(m, m,0)

sandwidth W

T
Q.
T

¢
A

b /P)'Y
( .
d

N

Interplay of spin, orbital and lattice

-U
T

0.2 0.4 0.6
hole concentraticn

0

2P
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Anisotropic exchange
(for d-orbitals)

Superexchange in which the excited intermediate state is not due to an
interceding anion but to an excited state produced by spin-orbit interaction in

one of the magnetic ions. H'= AL -S)+ AL, S,)+V
1 1 2 2 e

xch

Dzyaloshinskii-Moriya H,, =D-(S,x8S,)

D=0 with inversion symmetry between the 2 ions

D direction depends on symmetry

Causes AF spins to cant by a small angle: weak ferromagnetism.

Examples: a-Fe,0,, MnCoO,, RFeO, (R: rare-earth).

1004 S,BPISOA



Different mechanisms

(Vg

Z

o 1. Localized moments. Heisenberg model.
Z 2. Localized moments + itinerant electrons.
<

E 3. Itinerant electrons. Fermi surface instability.
|_

Z
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Itinerant electrons coupled to localized moments

Kondo model: coupling to an impurity

H=— Z tzj(cizcja T C;;Cid) —J locals " S

10 JO Jjo 10

Kondo lattice g = — Ztlf(c c. +cle. )—Jlocalzs S;

jo
for f—electrons S —J

See next lecture on Kondo effect. Here we are focusing on
the regime in which this term gives rise to magnetic order.



Itinerant electrons coupled to localized moments

Kondo model: coupling to an impurity

H —_ = Z tlj(cizcjd ~+ C]TGCiG) — JlOC&ls S
ljo

Basic idea: the local exchange with an impurity polarizes the surrounding
Fermi sea which carries this information to other magnetic impurities.
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How effective is this process of the magnetic polarization
of the Fermi sea? — susceptibility




Paramagnetic susceptibility of conduction electrons

Without magnetic field ny=n, In a uniform magnetic field nT;énl

% 8 p(Ep)ugH

pl(E)=‘/zp(E)
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1, , Pauli PM only affects
Xpauli = Eg UsP(Er)  electrons close to E

Constant with T.




PM susceptibility in a non-uniform magnetic field

Consider the perturbative effect of H,
on the electron spin

H(r) = Equ-"‘”
q

Within first order perturbation theory on a plane wave state
1 [ . guogH, | el .y i@y
elk-l‘ i q +
\VV 4  Eriq— Bk Ex—q— EBi |
M(r)=pg(| W\ (r)[2-1W, (r)]2)

l X=X Paulif
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PM susceptibility in a non-uniform magnetic field

_ia- Consider the perturbative effect of H
V) H(l’) — EH e qr p . q
= 9 on the electron spin
®) q
B 1 (3dim)
< Linhard function
" 9
— ;@0 5 (in momentum space)
Z
q
O 035 1 15 2 X = Xpari | =
q/2k 2k,
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RKKY exchange

Rudderman-Kittel-Kasuya-Yosida

For Kondo model: A magnetic impurity with local exchange amounts to

having a local external field: H(r) ~ &(r) 2J, ..
Jiocal - dy OF s-d Or s-f exchange. o Nguy >
_ g
Xq XPauhf( 2kF ) Béa{;r}‘

Real space susceptibility: Friedel
oscillations A=2rt/k.

x(r)=

}00( S,uewa|od
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RKKY exchange

The conduction electron interacting with the single magnetic
impurity acquires a spin polarization that depends on distance

‘wT‘z B ‘I/}&‘z o J et k1)

Now this polarized cloud interacts with another magnetic impurity
2
JRKKY X JlocalF(ZkFr)

(The sign of J,__ does not matter)

local

Jrkiy OScillates with distance: A local magnetic moment produces a
wave-like local perturbation, similar to throwing a stone into water.



RKKY exchange

JRKKY X leocalF(ZkFr)

(The sign of J

ocal dO€S NOt matter)
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Jaky OScillates with distance: A local magnetic moment produces a
wave-like local perturbation, similar to throwing a stone into water.




RKKY exchange

Fe atoms on Cu(111)

m C.2 1 T T
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Pair separation (rm)

Nature Physics 8, 497-503 (2012)
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RKKY exchange

Note that if k.r is small, Jz .y IS FM.




RKKY exchange

e Spin glass in CuMn (Mn is random in Cu lattice).

e FM in diluted magnetic semiconductors, like (Ga,Mn)As
or diluted magnetic oxides as (Ti,Co)O,

203

(Important for spintronics,
where you need carriers to be
spin polarized).
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RKKY competes with Kondo effect (R. Aguado’s Lectures)




Other effects of local exchange:
Bound magnetic polarons

Carriers are bound (not-itinerant!) electrostatically by the Coulomb

n . . L
— potential and the spin-polarization is a secondary phenomenon.
@8 Polaron: FM cloud.
=8 Proposed for diluted magnetic semiconductors. Percolation —Tc
O
< —
oc Due to the local exchange, the size ey
L Y “\l A 4 ST
— of the bound electron wave- S8 o, G
. \\_/‘l——\\ " / \ Y \ \‘ .
function R_dependson T as o Uty Sy
Z P \ l\\f . P
= T _ 0 ; s
kpT = |J ](ao/'an)35'.s* exp(—2R,/ap) ; ; (: : l\)\ N

Annals of Physics 322, 2618 (2007)




Other effects of local exchange:
Free magnetic polarons

Carriers are self-trapped by a FM cloud they have formed themselves in a
background of disordered spins (above the FM T ). Low carrier density is

required. Can also form in an AF background.
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PRB 62, 3368 (2000)
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Double exchange
(J,,coy—2° limit of Kondo lattice)

2 rap Z c;(;ciﬂa + JHZ Ss. 75 o Z 2 taﬁd;; i3

J,— = implies the spin of the conduction electrons is
always parallel to the localized spin

This model was proposed for manganites
Al-xA’xlvI n3-I_l-xlvI n4+XO3

C. Zener, Phys. Rev. 82, 403, (1951)
P. W. Anderson and A. Hasegawa , Phys Rev 100, 675 (1955)



Double exchange

n op gt 4
93 - S

< Z d Z CiacCibo + JHZ Sisi Jy = o0 ia WP

O af ijo ]

— /

@ o e

< Note: spinless Hamiltonian

a'e — . : :

LLJ S S, = Kinetic exchange with real

— /l *® H/S (not virtual) electron hopping

- AR

— ‘ . ) Promotes FM with metallicit
Mn* O Mn* W Ity

(as observed in manganites)

C. Zener, Phys. Rev. 82, 403, (1951)
P. W. Anderson and A. Hasegawa , Phys Rev 100, 675 (1955)




Double exchange

A A Mn3+ Mn4+ O;  (x20 or 1 — mixed valency)

V)

Z

O 02} 1 N =)

— P et T. proportional to the

U VAL "',/"g ’_4’___’«;{———"'* .

< - A /-/x/‘"' number of carriers

o - 00 - /’? A |

L 7 :

— ml 5.2 ST . (actually, manganites are governed by a

— e et ADEE e much more complex Hamiltonian and

— T . T TADEER-E DE competes with AF superexchange)
0.00 0.10 0.20 03¢ ¢.30 0.50

X

C. Zener, Phys. Rev. 82, 403, (1951)
P. W. Anderson and A. Hasegawa , Phys Rev 100, 675 (1955)




Double exchange

Half-metal: metallic conduction for one spin electrons but
insulator for the other spin electrons.

Useful for spintronics.
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Different mechanisms

(Vg

Z

o 1. Localized moments. Heisenberg model.
Z 2. Localized moments + itinerant electrons.
<

S 3. Itinerant electrons. Fermi surface instability.
|_

Z




INTERACTIONS

Itinerant ferromagnetism:
spontaneously spin-split bands

Question: Is it energetically favourable to have a spin imbalance for the
itinerant electrons?

In mean-field, a polarized electron gas produces a molecular field (similar to an
external field) which magnetizes the electron gas - Pauli PM.

Spin imbalance is
e non favoured in terms of kinetic energy

e favoured by the interaction with the molecular
field.

126



INTERACTIONS

Itinerant ferromagnetism

Hubbard model in i _guzH i
a magnetic field - kzgkn’«f i Uznﬂnn ) 2@7? n;,)

Energy ut ul .
density E(m) = fgp(g)dg +f5,0(5)d6 W(Z—mz)—guBHm

At some value of U, -m2U will favour a finite magnetization m
(polarizing the spins makes them less likely to meet)

127
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INTERACTIONS

ltinerant ferromagnetism

Hubbard model in
a magnetic field

Stoner
X Pauli

T,O(EF) enhancement

(Pauli susceptibility is enhanced by electron-electron interaction)

Calculate susceptibility B —

U p(E;) =1 (Stoner criterium for itinerant FM)

Band narrowing and high density of electrons at E. promote FM

128



INTERACTIONS

Itinerant magnetism

Itinerant FM: Fe, Co, Ni, and alloys YCo,, La,Fe,,B

If Stoner criterium is marginally satisfied:

e Nearly FM metals (very large susceptibility)
Example: Pd
U p(E;) ~0.9.
Alloying with 0.1% Fe or Co, turns Pd FM

e Weak (m<<n) itinerant ferromagnetism
Example: ZrZn, (neither Zr nor Zn is magnetic)

129



INTERACTIONS

Instabilities with wave-vector g#0 (non FM order)

Generalized susceptibility: Stoner criterium for finite g. For a non-uniform

magnetic field we calculated a g dependent susceptibility

XZO) 0 XPaulif(q

2k,

In the presence of Coulomb interactions

S. Blundell, OUP



INTERACTIONS

Instabilities with wave-vector g#0. Spin density
waves. Nesting

If X,(0) diverges, you can have a collective mode even for very weak electron-electron
interaction U. The instability that sets in is the one corresponding to the lowest U.

V@)= DV (e

\ %0 q=0 Reminder: a metal is in the

Coleman’s book

degenerate limit T<<E_
Excitations around E_

131



INTERACTIONS

Instabilities with wave-vector g#0. Spin density
waves. Nesting

For a parabolic band you can have qz0 q=0
excitations at all possible . g=0 is
going to dominate (max x at g=0)

However, if there are sectors of the Fermi surface that are
connected by the same q, the maximum of the susceptibility
can be at that particular g: nesting.

132



Nesting in 1d

In 1d there is always nesting at g=2k; leading to AF order (q=m/a).

A periodic modulation of the magnetization opens a gap, lowering the total energy:

V)
P ( €
= . & Wi Fii) f Kohn anomaly
— '\ . LD /) \

\ Vi ' E 5ot
LIT) "." "" o § - = \/,/2/3 \ \ \

\;“ l \"-.\j .," Y \;'\' :\\ N \\‘\
oc / \/ ‘ ﬁ
w _ s N\ -
. ’ 1

H vl ;
prd

In 1d, the AF order competes with a Peierls instability: dimerization and charge
density wave.
-9 69 e -0

For d>1, the nesting condition is more restrictive




INTERACTIONS

Nesting in a 2D square lattice

e(k)=-2t(coskx+cosky)
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INTERACTIONS

Nesting in a 2D square lattice

e(k)=-2t(coskx+cosky)

For an incommensurate filling: The Fermi surface is similar
to the parabolic bands and there is no nesting
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Nesting in a 2D square lattice

s(k)=-2t(coskx+cosky)

For half filling (1 e- per site)

n/a

k

y

/3 There is perfect nesting with g=(rt/a,i/a)

-1t/a m/a

X
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INTERACTIONS

Instabilities with wave-vector g#0. Spin density
waves. Nesting

<4 AF: Doubling of
® & o unit cell T T
® o O
Folding of Brillouin zone
® ©® O

in the reciprocal space T T

A gap opens at the zone boundary: the system is
insulating at half-filling even in the weak coupling
regime if there is perfect nesting.

(Slater insulator)

Note that we have used U=0!!
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INTERACTIONS

Instabilities with wave-vector g#0. Spin density
waves. Nesting

In general, g can be an incommensurate vector

S. Blundell’s book
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INTERACTIONS

Instabilities with wave-vector g#0. Spin density
waves. Nesting

Example: SDW in Cr

Q=(0,0,1-6) 2r/a (0.037 < 6 < 0.048)

RMP 60, 209 (1988)

Note in this case the SDW does not open
a gap over the entire Fermi surface: the
system is metallic

139



INTERACTIONS

e Nesting can lead to different Fermi surface instabilities (charge
density wave, superconducting pairing) that would compete
with the spin-density wave.

The one with the largest Tc would set in.

e |ncommensurate instabilities sometimes suffer “lock-in”
transitions becoming commensurate at low temperatures.

Example: CaFe,As,

20 40 60
Temperature (K)

PRB 81, 184402 (2010)
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INTERACTIONS

Lock in transitions

Ginzburg-Landau formalism

Complex order parameter

Free energy

Elastic term

Umklapp term

141



INTERACTIONS

Lock in transitions

Loy cos[no
nF IS 1o

q, is the incommensurate nesting vector.

n is the period of the lattice

Elastic term favours v¢ = q(

Umklapp term favours
COMMENSURABILITY

INCOMMENSURABILITY
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INTERACTIONS

Lock in transitions

Lpo™c os|no
n 7/‘ adad '("‘_

For n>2, at high T, p is small and the elastic term wins. At
lower T, p is large and the Umklapp term wins.

Discommensurations

0=k
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~ |
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OUTLINE

e Free magnetic moments
e Environment
e Magnetic order and susceptibility

¢ Interactions

e Between localized moments
e Localized moments + itinerant electrons

¢ |[tinerant electrons

e Excitations.




Spin waves

Low T excitations of a Heisenberg model (localised moments)

Breaking a global continuous symmetry (Goldstone theorem): it is possible
to produce long-wavelength excitations in the order parameter with a
vanishingly small energy cost. Excitations are (massless) Goldstone bosons.
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FM spin waves

Low T excitations of a Heisenberg model (localised moments)
In a FM: flip a single spin. The new eigenstate is a state with a wave of spins.

http://www.uni-muenster.de/

This excitation can be described as the formation of a bosonic quasiparticle called magnon

146




FM spin waves

For a ferromagnetic Heisenberg model

2

L —2]2 SS. = —2]2 S:So+ l(S;-Si:-l T Si_Sizl) 9t — S, +

To create an excitation: flip spin j )=S7|¢)

L 2 B A A A

19y



FM spin waves

For a ferromagnetic Heisenberg model

I M+l I ~Mi+l

=_2JZS, l+1=-212 SS%, +— (S Sy + 878

To create an excitation: flip spin j

|j> is not an eigenstate of H: diagonalize
the Hamiltonian by looking for plane-
wave solutions

) =5;19)

E(q)=-2NJS® +4JS(1-cosqa)
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FM spin waves

(q)=-2NJS* +4JS(1 - cosga) [EUEl

Gapless
Goldstone modes

Goldstone theorem: if a continuous symmetry is spontaneously
broken and the forces are sufficiently short ranged, there must
be a branch of excitations with the property that the energy
vanishes for g —0.

149




FM spin waves

small q hw ~2JSq’a’

Gapless
Goldstone modes

(g)=-2NJS* +4JS(1-cosqga)

In 3dim the density of

states is -
p(q)dg < q~dg

At low T: M(T) = 1-aT%?

nmagnon N fM X T3/2

) exp(how / k,T)-1 Bloch T3/ law
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FM spin waves

At low T: M(T) = 1-aT3/2

Blundell’s book Bloch T3/2 law
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FM spin waves

(q)=-2NJS* +4JS(1-cosqga) RELEIR

/ - g(w)dw
Nmagnon —
: o explhw/kgT)—1

In 2dim and 1dim n ..., diverges — spontaneous FM is

not possible for isotropic 1dim and 2dim Heisenberg
models (Mermin-Wagner-Berezinskii theorem)
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Spin waves

But note: Anisotropies stabilize FM in low dimensional
systems and the spin-wave spectrum acquires a gap

H=7Y (5757 + SYSY +(AS?S7)
i A>1 (easy axes)
AE = 4JS5(1 — cosqa) ~ g*a®  (isotropic)

N\

AFE =4JS(A — cosqa) ~ (@+ ¢*a?)
GAP

There can also be a gap due to dipole-dipole interactions (which can
be important for f-systems)
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Quantum AF

Antiferromagnetic Heisenberg model  J<0

— — 12 Q% Y+ (O — y— 1+

[do) = | T ...y (classical Néel state)

The ground state has two sublattices: one with all spins up and the other with all spins down with E=NzS2)
(N is the number of spins, z is the number of neighbors). Here we are only considering the longitudinal part
of the exchange.

This energy can be lowered by allowing quantum fluctuations (transverse part of the exchange
interaction) leading to

ePISOA

NzJS® > E, > NzJSZ(
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AF spin waves

Antiferromagnetic Heisenberg model (J<0)

1

i+ o— y— Q-+
(8185 +578))

{i,7) (i)

Spin waves have to be defined in the two sublattices. These spin waves are interdependent.
The spin wave spectrum is twofold degenerate (1 excitations are degenerate)

Antiferromagnons
w = -]ZS | { | ¢W (gapless Goldstone mode)
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Excitations in the electron gas

e Also spin waves
e Stoner excitations ho = Ek+q L, + A

A: exchange splitting
\ A

Spin wave

kF@

4
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Spin waves in a double exchange system:
localized +itinerant

Composite spin waves

NEE R

PRB 64, 140403
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OUTLINE

e Free magnetic moments
e Environment
e Magnetic order and susceptibility

¢ Interactions

e Between localized moments
e Localized moments + itinerant electrons

¢ |[tinerant electrons

e Excitations.



