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PART I: Dirac Equation
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OUTLINE

The Dirac equation: Origins, definition and the
concept of spin.
Bloch theorem. Symmetries with and without spin.

Dirac equation on a lattice: graphene, Germanene
(Kane-Mele model), TMDC, the BHZ model,
Bi2Se3...

Conclusions to part |



Energy

|. The Dirac equation.

Fermi level _
Conduction band Boana(a'ca)
— BCB bttom
< .
S)’m metry % fs"”“li gap ‘Shace state
qc) Y band (SSBY
Surface states PrOteCt.ed § “S~~ Dirac point
Fermi level TOPOIOglca’I % Bulk valence
---------------------------------- Phases band (BVB)

0.05 0.1

0.1 -0.05

Valence band

0
k (1/A)

Momentum

Quantum spin Hall effect

Energy

2D surface %
states

(Twenty years ago...)

momentum



Energy

|. The Dirac equation.

Conduction band

Fermi leve
e
a) b)

Energy

Topological
magneto-electric
effect

Binding energy (eV)

Fermi level
Bulk conduction

band (BCB)

B ECB bttom

Band gap \ -
. Surface state

lv band (SSBY

. Dirac point

Bulk valence
band (BVB)

§

2D surface
states

momentum

(Twenty years ago...)



Energy

|. The Dirac equation.

Conduction band

LR anded Lt

|
) 0‘.‘.'
n’..o

|
1
G\

~

Fermi |

2D surface
states

chiral anomaly

momentum

.
Se. o’
arttan, % stoerntan,

st avtena %
i Tl

effect

(Twenty years ago...)




Energy

|. The Dirac equation.
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|. The Dirac equation.

e =V k2 +m?
i(?t < £
G Galilei (1564-1642) k < —10, A Einstein (1879-1955)
k2
eY = 5~
o 26— (k2 +m?)o

E. Schrodi . |
(18%7?52?? Klein-Gordon equation

Troublesome

O Klein (1894-1977)



|. The Dirac equation.

szgw i@tHe
k < —10,
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eY = o - kY

We need more matrices as we have a mass

PAM Dirac (1902-1984)

VEk2+m2 ok +ym

(% ) (o) =2 (%)
—o-k m P Db Dirac equation



|. The Dirac equation.
H=«- k+ mp
{ag, 050 =205 {a;, B} =0 p*=1
Pauli matrices almost do the job
{oi,0;} =20,
(i, B) are 4x4 matrices

In 3D or if the particle is massless, with the Pauli matrices is enough



|. The Dirac equation.

B2 _ k2 — 2

(E— o k) (E+o-k)=m?
W Pauli (1900-1958)

(E—0o-k)p1 = mep2

T E—I—O’k ¢1 — 0
EF—o-k m Oa |



|. The Dirac equation.

E+m —o-m Dq _ 0
—o-® E-—m o |

=k —cA

E=m+FEng W Pauli (1900-1958)

ENR¢b — O - 7T¢a

1

ba = Engp +2m

o - Ty



|. The Dirac equation.

E+m —o-m Dq _ 0
—o-® E-—m o |

=k —cA

E=m+FEng W Pauli (1900-1958)

ENR¢b — O - 7T¢a

1 1 E
o mhy ~——(1—

ba = Engp +2m 2m




|. The Dirac equation.

E+m —o-m Dq _ 0
—o-® E-—m o |

=k —cA

E=m+FEng W Pauli (1900-1958)

ENR¢b — O - 7T¢a

1 5 1
— O T ~N) —
Engp +2m ’ 2m

Pa




|. The Dirac equation.

E+m —o-m Dq _ 0
—o-® E-—m o |

=k —cA

E=m+FEng W Pauli (1900-1958)

ENR¢b — O - 7T¢a

1 5 1
— O T ~N) —
Engp +2m ’ 2m

Pa




|. The Dirac equation.
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|. The Dirac equation.
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3. Dirac equation on a lattice.

EFE+o-k m D1 _ 0
m E—oc-k o )

multi-component
wave function

E (ev)
f. X #H. A
mhum-‘-o—muhmm

In Condensed Matter Physics, any particular form of the Hamiltonian possibly
comes from symmetries of the lattice (through the Bloch theorem) and the
constraints of inversion and time reversal invariance, not from Lorentz
(relativistic) invariance

SPOILER: Single band systems are always Ho® am =0
topologically trivial




2. The Bloch theorem.

H=Hg+V
Vir)=V(r + a)

F Bloch (1905-1983)

) =" ur(r))  |u(r + a)) = €™ fug(r))



2. The Bloch theorem.

H=Hp,+V Vir)=V(r+a)

Ek — Ek+-G

G-a=2mn

Not only the Bloch state is periodic
but the band structure is as well




2. The Bloch theorem.
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Discrete symmetries control this spaghetti

But sometimes bands go close or intersect
around the Fermi level:

Multicomponent wave functions




2. The Bloch theorem. Symmetries

1 1 1
H=—k+V oc-B+—0o-(VV xk)+ ..

2m 2m 4m

Time reversal operation: [ : ¢t — —t T@D(t) — w(—t)
T—'kT = -k T—'oT=-0 T 'rT=r

r, k] =i T )T =T '[r kT = —[r k] = —i

T'=UK (Kf=T")



2. The Bloch theorem. Symmetries

T =UK For spinless particles U=1

T? = UKUK = U*K?* =1

For spinful particles 7T lgT = —c spin is also reversed

T_10'1T — U_llCalU/C — U_10'1U — —01
T_l()'QT — U_lKO'QU/C — —U_l()'QU — —09

T_10'3T — U_lKO'gU/C — U_10'3U — —03



2. The Bloch theorem. Symmetries

T =UK For spinless particles U=1

T2 — UKUK = U2]C2 — Unitary operator

For spinful particle —1 _ (but there is at least one Pauli
or spinful particies I O-T g matrix that is pure complex)

U =109 U1 = —1079

T? = 05K (i02)K = (i03)* = —1 anti-unitary
operator



2. The Bloch theorem. Symmetries
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2. The Bloch theorem. Symmetries

T? = 09K (io2)K = (i09)? = —1 anti-unitary
operator

T = —y

Kramer’s theorem: T, H| =0 H ) = E |1)

ezoz ‘w>
T2 ) = Te' |) = e 7T [1h) = |¢))

assume 1’ [1)) #

(Iplh) =0

The spectrum is

doubly degenerate



2. The Bloch theorem. Symmetries

Now, with the presence of the momentum

I kT = —k T|k,s) = |~k,—s)
Hy |—k,—s) =¢c_; |-k, —s)

€k = €_p,

The spectrum is doubly degenerate, but the degeneracy occurs for
different spins and momenta

‘k7T> ‘_kv\w ‘ka\w ‘_ka/w



2. The Bloch theorem. Symmetries

Now, with the presence of the momentum

‘k7T> |—k,\l,> 82 — 8:2 |k,\l,> |_k7/]\>




2. The Bloch theorem. Symmetries

Now, with the presence of the momentum
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2. The Bloch theorem. Symmetries

. S _ —S
time reversal symmetry Cr — € _L
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2. The Bloch theorem. Symmetries

Ck

Just imposing time reversal symmetry, we conclude
that the system is always a metal

two ways out: breaking T (can or not open)
adding extra degrees of freedom: extra bands and
extra symmetries



2. The Bloch theorem. Symmetries

Inversion operation:
P'rP=-r plgp—=—_k P loP=¢

P? =7

for inversion symmetric systems: [P, H] —



2. The Bloch theorem. Symmetries

for time reversal and inversion symmetric systemes:

P, H| =0 T,H] =0
6"]8{:—58_]c 82—8:}2
€n = €1

The two bands are totally degenerated
not only at TRIMs



2. The Bloch theorem. Symmetries

P H]=0 T,H] =0
5,34 a €S_k 5% s 8:2
€p = €1

for time reversal and inversion symmetric systems,
we cannot scape from being a metal
but inversion can be implemented in several ways:



3. Dirac equation on a lattice.

massless Dirac fermions in 2D:
Ty Two atoms per unit cell: two triangular
interpenetrating sub lattices

“Diracness’ comes from the fact that each
atom couples to its neighbours that belong
to the other sub lattice

I

o e e

Hexagonal lattice

| _t(e—’ik'(sl _I_ e—ik'dg _|_ 6—ik-53)¢b — 5¢a



3. Dirac equation on a lattice.

massless Dirac fermions in 2D: graphene

Twovalleys (i and K’ are NOT
TRIMs!)

(nT1k1 + Tok2)y, (k) = By, (k)



3. Dirac equation on a lattice.

massless Dirac fermions: Graphene is inversion symmetric and
time reversal invariant (no spin-orbit)

pz orbital are real

T? =1 T =K

but inversion operation sends the pz
orbital to the other



3. Dirac equation on a lattice.

massless Dirac fermions:
inversion operation sends the pz orbital to
the other

Graphene is inversion symmetric and
time reversal invariant (no spin-orbit)
pz orbital are real

HP - (—77)7'17'17'1(—]€1) —+ 7'17'27'1(—]{32)
HP(UK—F k‘,) = 7'1H(—77K — k)Tl = n1ik1 + Toko

HY = H



3. Dirac equation on a lattice.
giving a mass to massless Dirac fermions in graphene:

H = 777'1]61 —I—Tgkz -+ T3M

H = 777'1:1{31 _I_TQkQ —|—777'3m

inversion:

HP - (—77)7'17'1’7'1(—]{71) - TlTQTl(—kQ) -+ T1737T11N

HP — 171 k‘l + To kg — 731N breaks inversion

HP T (—77)7'17'17'1(—]{31) —|—7'17'27'1(—]{32) | ( 77)7'17'37'1771

opposite masses for each
valley preserves inversion

HY = Nt k1 + 10 ko +n1m3m



3. Dirac equation on a lattice.

giving a mass to massless Dirac fermions in graphene:

TR inversion:

H = 77le1 —|—7'2]~C2 -+ T3M
H = 777'1]61 —|—7'2]€2 —|—777'3m
HT — (—77)7'1(—]{1) — 7'2(-/62) —I—Tgm — H

preserves TR inversion

H" = (—n)11(=k1) — 12(—k2) + (—n)3m

opposite masses for each
valley breaks TR inversion



3. Dirac equation on a lattice.

giving a mass to massless Dirac fermions in graphene:

H=777'1]€1 —I—TQkQ—I—Tgm H:n71k1—|—7'2k2—|—777'3m

preserves TR inversion breaks TR inversion
breaks inversion preserves inversion
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Quantum (spin) Hall effect

K v. Klitzing (1943-)

the Hall conductivity is quantized (times the
quantum of conductance)



3. Dirac equation on a lattice.

Experimental Observation of the
Quantum Anomalous Hall Effect
in a Magnetic Topological Insulator
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3. Dirac equation on a lattice.

giving a mass to massless Dirac fermions in graphene with spin orbit:

=1 P = T1
H 127741Bl(E><)1VE
NE™ om 8m3  2m 4m? 8m?
10V
E=——r U-(TXW)NS-L
r Or
1 .
many orbital degrees of
freedom
more bands




3. Dirac equation on a lattice.
giving a mass to massless Dirac fermions in graphene with spin orbit:
T°=-1 T=iosk P*=1  P=m
k — —k Min et al PRB 74, 165310 (2006)

H = noot1k1 + o0oT2ks

Inversion is the same as before, since it jumps over spin
T HK+E)T = (—ios)H (- K — k)(—ioy) =
— 7'1/61 -+ 7'2]62 -+ 03T3M

Inversion symmetric AND time reversal symmetric



3. Dirac equation on a lattice.

giving a mass to massless Dirac fermions in graphene with spin orbit:

€k

T )




3. Dirac equation on a lattice.

giving a mass to massless Dirac fermions in graphene with spin orbit:

€k

T )

there are band crossing as dictated by TRS, but we have
doubled the spectrum and placed the Fermi level
in the gap!



3. Dirac equation on a lattice.

giving a mass to massless Dirac fermions in graphene with spin orbit:

1
E/t}
0 1
X ]
E. Mele, C. Kane -
-1
0 n/a K 21t/a

there are band crossing as dictated by TRS, but we have
doubled the spectrum and placed the Fermi level
in the gap!



3. Dirac equation on a lattice.

the story now is to find microscopic ways of breaking inversion

| breaks inversion: buckled
structure
&’ Germanene

Stanene (Actually at the [ point)




3. Dirac equation on a lattice.

Transition metal dichalcogenides: ) = ( | J3 = 0} )
| J3 = £2)
1
H(k) — 7'0'1]€1 -+ 0'2]{2 -+ AO’g —+ )\7'5(0'3 — 0'())83

K’

Energy [a.u.]

Wave vector [a.u.]



3. Dirac equation on a lattice.

BHZ mOdeI: |¢> = Qo ‘lg — O> + aq ‘lg — 1> +a_q ’13 == —1>

Spin-orbit breaks the
|=1 degeneracy

But everything happens around
T = isoC the [ point

H = 0'3’7'1161 —+ 0'07'2/62 + 7'30'3(m —+ 5’62)
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3. Dirac equation on a lattice.

giving a mass to massless Dirac fermions in graphene with spin orbit:

Conductance
channel with
up-spin charge
carriers

- = Conductance
channel with
Quantum down-spin
well charge carriers

spin Hall insulator phase!




3. Dirac equation on a lattice.

B
.

A magnetization is the same:
Anomalous HE

The presence of the magnetic field
Induces the QHE phase:
Finite (quantized) Hall
conductivity and the presence
of edge states




3. Dirac equation on a lattice.

B




3. Dirac equation on a lattice.




3. Dirac equation on a lattice.

angular momentum plays the same role

t — —t1




3. Dirac equation on a lattice.

spin orbit term is time reversal invariant

—

Now Time reversal symmetric with the phenomenology
Of the Q(A)HE:
Quantum Spin Hall effect



Dirac equation on a lattice.

spin orbit term is time reversal invariant
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3. Physics of QHE with T: QSHE
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3. Dirac equation on a lattice: 3D

All we have discussed about
symmetries applies to 3D as well ( E—vo -k m(k) ) ( Pa ) =4

m(k) E+vo -k o)
Pb,.Sni_,Te
PbTe Pb,Sn;_,Te SnTe
Lo \/ o
D
= .
E, = 0.18eV E, = 0.3eV A [ Ls )
I insulator |
La/ E i i 1__——_‘7'_“‘-—»—___
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4 79 18 22
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m(k) = mo + 5\k|2



3. Dirac equation on a lattice: 3D

All we have discussed about
symmetries applies to 3D as well (
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4. Conclusions

Dirac equation appears in the context of High Energy Physics to describe
relativistic particles of semi-integer spin.

In Condensed Matter Physics, Bloch theorem together with time reversal and
inversion symmetries allow for the same structure, both in 2D and in 3D, being
the Dirac equation an emergent phenomenon.

The Dirac equation allows for the presence of edge states. The presence of
these states is due to topological reasons linked to the bandstructure.
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