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Broken symmetry in the phase diagram

full of CPT&QPT



Classical phase transitions

Phase 1 Phase 2

Diverging

thermal

fluctuations

Control parameter: temperature…

Ground state 1 Ground state 2

Control parameter: pressure, magnetic field…

Diverging

quantum 

fluctuations

Quantum phase transitions
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Hamiltonian description (micro scale, 

high energy, lattice…)

H (x1,..., xN )y1(x1) = Ey1(x1)

.

.

.

H (x1,..., xN )yN (x1) = EyN (x1)

H (x1,..., xN ) = Heleckinetic (x1)+Helec,ion(x1,..., xN )+Helec,elec (x1,..., xN )+H ion(x1,..., xN )

Too many degrees of freedom! Even more for phase transitions

Simplification: Ising model (Spin)…, Hubbard model (spin and charge)… still

complicated, even more for phase transitions

In principle we get ground state and excitations



Effective theory (macro scale, low

energy, continuum)

S[F] = dxd
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Example for effective action

In the effective theory there are just the relevant degrees of freedom ϕ 

close to the phase transition

How to chose the relevant degrees of freedom?



Symmetry

Symmetry in Physics is the invariance of a physical law under 

transformations. 

Symmetries form a group (O(n), SU(n)…)

 

 For example, for the group O(3), the rotational group

R is orthogonal if RRT =1

If R1, R2 Î O(3)    R1R2 Î O(3)

(R1R2 )T R1R2 = R2

TR1

TR1R2 =1® R forms a group



Symmetries in condensed matter

Time-reversal symmetry: broken in ferromagnets, Chern insulator…

And more…can you think of an example?

Discrete

Continous

Internal: 

gauge symmetries
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Landau theory

Lower symmetry (order), Correlation

dominates over kinetic energy,

Lower entropy, higher order

High symmetry (isotropic, homogeneous…),

Kinetic dominates over correlation, higher entropy

T 

Phase 1 Phase 2

Diverging

thermal

fluctuations

Control parameter: temperature

At Tc 

Symmetry

breaking

Emergence

of FM phase



Landau Theory

  

Using these facts Landau proposed a theory (assumptions): 

1. Order parameter ϕ, <ϕ>=0 in the high symmetry phase and 

<ϕ>≠0 in the ordered phase with lower symmetry. Symmetry 

breaking. Ex magnetization (broken symmetry: spin rotation)

2. Free energy determined minimizing the following functional:  F 

=F0(T)+FL(T,Φ) ϕ controls the thermodynamic.

3. Building of FL(T,Φ): Φ small close to the phase transition, 

expand FL(T,Φ) in powers of Φ respecting symmetries (Ex: Φ -

>-Φ discrete broken symmetry)       

High symmetryLow symmetry

Phase 1 Phase 2

Diverging

thermal

fluctuations

T Phase transition



Landau Theory

4. Non-trivial T dependence is in the lowest order signifying the 

competition between minimizing energy and increasing entropy,   

F=E-TS.

 5. Minimizing the Landau functional over Φ we obtain the mean 

field theory. 

¶F

¶F
= 0® r0(T -Tc )F+ 4g(T )F3 = 0®F=

Landau 

Functional
F F,T( ) = F0(T )+V
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



Contact with experiments:  

susceptibility

F[T,m] =
r0(T -Tc )

2
m2 + g(T )m4 -hm...

Small (magnetic) perturbation

Linear response

 Susceptibility:

c = ¶m
¶h

= ¶2F
¶h2

c0

-1 =
¶h

¶m
= r0(T -Tc ) 

For example: magnetization:

¶F[T,m]

¶m
= 0 ® r0(T -Tc )m+ 4g(T )m3 = h

It diverges! Second order 

phase transition

∝



Contact with experiments: Lineal 

response theory 

Response to one particle: thermodynamic quantities

(specific heat, compressibility, magnetic susceptibility…), 

ARPES, STM, 

Response to two particles: transport (electric current, spin 

current, Hall current->Kubo formalism), spectroscopic
techniques (Raman, X-ray, optical conductivity, neutron

scattering…)

Small (electromagnetic) 

perturbation
Lineal response (Ex. m=H) 



1st Order phase transitions

• The order parameter is not a continuous function of T but it has a jump. 

Susceptibility also with a jump.

• There can be phase separation (negative compressibility)

     and may exhibit hysteresis.  

• Described by a Landau functional with more terms: cubic, sixth with 

negative fourth…

E

P



Ginzburg-Landau 

Long-wavelengths fluctuations can be added in Landau theory fluctuations: ϕ(x) is 

slowly varying and one just keeps the gradient term

                                                                             local order parameter 

FGL[T,F] = dxd
1

2
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Ginzburg-Landau Functional: 

include fluctuations

A scale is introduced: 

Correlation length at T>Tc

F(x)®

x 2 =
c

r0(T -Tc )
®  Diverges at T->Tc as ½ 

in mean field

Fluctuations around the mean field solution-> Getting closer to Criticality

For second order phase transitions the correlation length diverges as a power 

law at the critical point. At the transition point is infinite, implying that the 

thermodynamic properties  Cv, , … also diverge
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Spontaneous symmetry breaking in the 

Ising model

Ex: Consider the Ising model (S=±1)

The hamiltonian possess a discrete symmetry-> Z2 invariant (+1->-1) but in the 
ordered phase the ground state is not invariant-> Spontaneous symmetry 

breaking!

 Solution -> Thermodynamic limit & extra field (h) in the Hamiltonian

                                                      Limits cannot be interchanged!

   

H = -J Si S j
ij

å

   

Z = e-bH

Si{ }

å

lim
h®0

lim
N®¥

m =m ¹ 0

m = m Si
i

å =
1

Z
Sie

-bH

Si{ }

å
i

å = 0!!!! In fact it is impossible to observe a 

phase transition in a finite system

Emergence of the FM phase



Definitions: Correlation function

   

H = -J Si S j
ij

å - m Bi
i

å Si

c =
¶m

¶B
=

1

b

¶ 2 lnZ

¶Bj¶Biij

å = bm2 SiS j - Si S j
ij

å

Si =
1

Z
e-bHSi

Si{ }

å =
1

bm( )

¶ lnZ

¶Bi
B=0

Bi -> fictitious (conjugate) field

   

Gij = SiS j - Si S j =
1

bm( )
2

¶2 lnZ

¶Bi¶B j
B =0

Fluctuation-dissipation theorem:

 -> response function Correlations 

can be measure!

At a phase transition χ diverges -

> infinite fluctuations

m = m Si
i

å
Correlation function: measure how 

correlated is the system over a 

certain range of space

Z = e-bH

Si{ }

å ® Z = e-b  F ® F = -
1

b
lnZGenerating function

In Statistical Physics all the information is encoded in the partition function

The probability of finding the system in the microstate i with energy Ei is given

in thermal equilibrium by the Boltzmann factor: exp(- Ei/kBT)/Z



In general: Spontaneous Symmetry 

Breaking SSB

G a symmetry group of the Hamiltonian H

Then SSB occurs if in the ground state (T=0) at the 

thermodynamic limit                        

When |i-j|->∞ (long wavelengths),          

                 

 

observable not G-inv.-> The ground state is not invariant 

under G

       : order parameter (of the new phase)

lim
h®0

lim
N®¥

m =m ¹ 0

Gij =m2

m

-> long-range ordered
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Definition: Continuum limit 

N->∞, V->∞ N/V-> finite

xi=ai->x

®
1

a
dx

0

L

ò
i=1

N

å

fi+1 -fi
a

®
¶f

¶x

Φ(x) is a smooth function (field): relative fluctuations on atomic scales 

are weak-> Field theory
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Macro-Micro bridge

Z = e-b  F = e
-b  H m[ ]

m{ }

å » e-b  F0 DF e
-FGL T ,F[ ]/kBTò

Z = e-b  F » e-b  F0e
-min F{ } b  FL T ,F[ ]

Emergence of macroscopic patterns 

from microscopic degrees of freedom:

a
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Intuition:

Formal theory

Saddle point approach:

Microstate



Formal connection with Landau Theory:
It can be shown that after a Hubbard-Stratonovich transformation the Ising 

model close to the phase transition transforms to the f4 theory (Φ<<1) in the 

continuum limit

  

Z = DFò  e-S[F]

S[F] = dxd
1

2
¶F( )
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For 1D:                                              Macro parameters in function of micro!

r will change sign at Tc-> kBTc=2J  The same result is obtained using mean field 

kTc=q J with q-> number of nearest neighbors. Mean field is equivalent to the 

saddle point approach:

To study fluctuations one must go beyond the saddle point approximation

dS[F]

dF
= 0 ®  FMF

Landau-Ginzburg functional or 

effective action (continuum)

   

Z = e-bH

Si{ }

å

Ising model (discrete)

   

H = -J Si S j
ij

å
Close to Tc

Hubb-Strat

Transform.

Book: Atland&Simons



Fluctuations around mean field: 

approaching criticality

✓ Thermal fluctuations will tend to decrease Tc

✓ Validity of mean field: The amplitude of the fluctuations is

small if the dimension of the system is larger than a critical

dimension (dc=4 for the Ising Universality class). This is stated

by the Ginzburg criterion. 

✓ Beyond mean field →renormalization group (a procedure to

eliminate high energy states keeping only what affects the low

energy physics). 

Dm2

m2
=
g

6
r0
D/2-2 Tc -T( )

D/2-2
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Criticality 

G(x, 0) » e-x/x    x®¥

Criticality can be studied in the continuum limit: the correlation length is 

the only relevant length scale:

In the disordered phase at long distances the correlation function:

In the ordered phase:

lim
x®¥
G(x, 0) =m2 Ordered phase: Long range order

There must be a phase transition showing critical behavior. 

ξ diverges->

criticality

G-> power

law

Disorder phase

(Proper definition of ξ)



Critical exponents 

Using the fluctuation-dissipation theorem 

Experimentally, with scaling arguments, or with renormalization group it 

can be shown power law decay:

  and © … are critical exponents: set of different exponents 

characterizing  the transition. They are universal. 

Correlation length ->

At the critical point

the correlation function  ->

Book: Le Bellac

-> experimentally



3

1

Correlation length: 

Order parameter:

Susceptibility:

Specific heat:

Note that the Landau 

theory for an Ising

model (or 4 theory) 

gives

=1/2

=1/2

=1

=0

𝛿 = 3

Typical critical exponents:

𝜓 ∝ {
(𝑇𝑐 − 𝑇)𝛽

ℎ Τ1 𝛿

𝜉 ∝ (𝑇𝑐 − 𝑇)−𝜈

𝜒 ∝ (𝑇𝑐 − 𝑇)−𝛾

𝐶 ∝ (𝑇𝑐 − 𝑇)−𝛼

𝐺𝑐
(2)
(𝑟) ∼

1

𝑟𝑑−2+𝜂
r large and T=Tc

The exponents are related: 

(only 2 are independent)

2 − 𝛼 = 2𝛽 + 𝛾

2 − 𝛼 = 𝛽(𝛿 + 1)

(2 − 𝜂)𝜈 = 𝛾

𝜈𝑑 = 2 − 𝛼

Correlation function:



Universality 
At Tc -> criticality, scale invariance, cooperative phenomena-> the properties 

(critical exponents) depend on 

•Dimensionality of the space

•Dimensionality of the order parameter

•Symmetries of the local couplings
But not on the details of the interaction.

Ex: For the Ising model the square and the triangular lattice have the same 

critical exponents (at Tc the system is rotational invariance)

Ex: the solid and liquid or solid and gas transition (water, carbon dioxide…) 

belongs to the same universality class than the magnetic transition

Magnetic transition                   Solid liquid/gas transition

Fluctuation magnetization         fluctuating density
Order parameter m                    density

Neutron scattering                     light scattering

Better understood in the RG framework (fixed point)
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Continuous symmetry

Important theorems:

- Goldstone theorem

- Mermin-Wagner theorem 

- 2D->Korsterlitz-Thouless transition

F= (F1(x),F2(x),...,Fn(x))

F2 ® F
2

= Fi

2

i=1

N

å

(ÑF)2 ® ÑF
2

= (¶xFii )
2

i=1

N

å

hF® h×F Congugate field



Spontaneous symmetry breaking of a 

continuous symmetry: Goldstone Theorem

Low energy (long wavelength) excitations are possible in systems with 

continuous symmetry. The excitations are Goldstone Modes -> 

EMERGENT QUASIPARTICLES

Example: Heisenberg model with S

E ~ J(1-cosq) ~ Jq 2       (for small q)

Spin waves with wavelength  magnons

The cost of this energy can be 

vanishingly small



Other goldstone modes

✓In a crystalline solid: acoustic phonons

E ~|q|.

ϕ4 theory, Φ complex U(1) symmetry

F = ¶mf( ) ¶mf*( ) +m2f*f + l f*f( )
2

f ® eiLf                    -V (f)

✓ In a superfluid (neutral fluid), Bogoliubov modes.



No Goldstone modes

The Ising model has discrete symmetry:

E~J (domain wall) every excitation costs finite energy

A charged fluid (superconductor) develops a gapped spectrum: 

Anderson-Higgs mechanism due to the electromagnetic field. 



Mermin-Wagner theorem
(Phase transitions and dimensionality)

Mermin, N. D. & Wagner, H. Phys. Rev. Lett. 17, 1133–1136 (1966).

Goldstone modes gives rise to large fluctuation effects in low dimensions

In general if we have:

• Spontaneous symmetry of a continuous group (i.e. not applicable to 

Ising model)

• Short range forces 

Then there is no phase transition (associated with a long range order!) for 

dimension d≤2 (for T > 0). 



The special case of d=2 and D=2: the 

Kosterlitz-Thouless transition

The XY model (D=2) in 2dim (d=2) has continuous symmetry U(1)/O(2), 

hence it cannot have a phase transition to a long-range ordered state 

(Mermin-Wagner). 

Berezinskii (1970), Kosterlitz and Thouless (1972) demostrated that the

system undergoes a phase transition (though not long range ordered, 

there is not symmetry breaking). 

Si = (cosqi,sinqi )



The special case of d=2 and D=2: 

the Kosterlitz-Thouless transition

Solution: vortices (topological defects) that contribute to the entropy.

XY universality class: Topological defects (Coulomb charges in 2D, 

dislocations in 2D crystals, vortices in 2D superconductors (Y~eiq) or 

superfluids…) 

G(x, 0) » e-x/x    x®¥

HighT: Unbinding vorticesLow T:vortex-antivortex binding

Cuasi long range order

Algebraic 

decay!



Quantum phase transitions



Quantum phase transitions

QPT: T=0

Quantum fluctuations are driven by the Heisenberg uncertainty principle

 

Ground state 1 Ground state 2

Control parameter: pressure, magnetic field…

Diverging

quantum 

fluctuatios

g

• Transition at gc (a point of non-analyticity of 

the ground state).

• The nature of the correlations in the ground 

state changes qualitatively at gc.

Effect at T≠0



Non Fermi liquid behavior

P. Coleman & A. Schofield, Nat.’05



Quantum phase transitions

QPT: T=0

QPT have consequences at T≠0.                       2nd order QPT:

 z is the dynamical exponent,  is the gap 

 φ is the coherence time, time over which the wave function retains its 

memory of its phase: it diverges at a QPT

 

Non Fermi liquid!

New! φ, z

Ground state 1 Ground state 2

Control parameter: pressure, magnetic field…

Diverging

quantum 

fluctuations

g



Example: Quantum Ising model

Ising model in a transverse field

H = -Jg ŝ i

x - J ŝ i

z

ij

å
i

å ŝ j

z

ŝ i

x =
0 1

1 0
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y =
0 -i

i 0
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1 0

0 -1
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For g=0 -> Ising model    σi
z=1,-1   |>, |>  -> Ordered phase

For g≠0 σi
x-> off diagonal-> quantum mechanical tunneling |> -> |>

-> Disordered phase

This model can describe real systems such as LiHoF4 where it has 

been identified a QCP



Example: Quantum Ising model T=0, 

g>>1 limit
Ising model in a transverse field

H = -Jg ŝ i

x - J ŝ i

z

ij

å
i

å ŝ j

z

Limits:

g>>1 1st term dominates: quantum paramagnetic (QPM)

The system is totally uncorrelated. 1st excitations (gap=Δ)

0 = ®
i

i

Õ

®
i
= ­

i
+ ¯

i( ) / 2      (-1)

¬
i
= ­

i
- ¯

i( ) / 2       (1) i = ¬
i

®
j

j¹i

Õ

0


s i

z 
s j

z 0 » e
- xi-x j /x



Example: Quantum Ising model T=0, 

g<<1 limit
Ising model in a transverse field

H = -Jg ŝ i

x - J ŝ i

z

ij

å
i

å ŝ j

z

Limits:

g<<1    2nd  term dominates: Z2 symmetry: Magnetic long range order

(MLRO)

Excitations (gap=Δ): domain walls: turning on g will mix up and 

down spins but still Z2 symmetry.

Only in the thermodynamic limit:

­ = ­
i

i

Õ       or      ¯ = ¯
i

i

Õ    

­ ­ ¯ ¯ ¯ ­ ­

lim
xi-x j ®¥

0


s i

z 
s j

z 0 »M 2 M=1 if g=0



Example: Quantum Ising model 

T=0, Quantum phase transition
Ising model in a transverse field

H = -Jg ŝ i

x - J ŝ i

z

ij

å
i

å ŝ j

z

Limits:

g>>1

g<<1 lim
xi-x j ®¥

0


s i

z 
s j

z 0 »M 2

0


s i

z 
s j

z 0 » e
- xi-x j /x

At g=gc we have a QPT, we expect ξ 

diverges and G goes as a power law

It is possible to calculate the exact spectrum using a Jordan-Wigner 

transformation (mapping between spin ½ degrees of freedom and spinless 

fermions). The result is:

e(k® 0,g =1) = 2J(2 - 2(1+
1

2
k2 ))1/2 = 2J k ®

Δ=2J|1-g|-> g =1 QCP!!
g>1 exp. law

g<1 long range 

e(k) = 2J(1+g2 -2gcosk)1/2

Excitations without gap!



Example: Quantum Ising model 

Phase diagram: Exact solution
z=1

|Δ|,T~|g-gc|

Effective theory 

with DW QP 

Effective theory 

with 

flipped spins QP

T~J

T<Δ

T>Δ

-T>Δ

relaxational

(kBT)-1~τφ

Sachdeev: Quantum phase transitions



Quantum classical mapping

D (>1 dimensional classical )=d (dimensional quantum)+z 

These models belong to the same universality class

In a classical system [Hkin, Hpot]=0 thus Z=ZkinZpot and statics and dynamics 

are decoupled -> Effective time-independent theories in D dimensions.

In a quantum system [Hkin,Hpot]≠0 thus statics and dynamics are 

coupled. ϕ(x,τ). The operator e-H/kT looks like e-Hτ 

                          1/kT= τ=-it/ħ-> Mapping

z measures the

anisotropy between x-

dim and t-dim



Are QPT(d+z) different from CPT(D)?

• The Quantum-Classical mapping yields quantum correlation 

functions that are in imaginary time. The analytical 

continuation to real time is highly non-trivial.

• It emerges a new time scale: the coherence time τφ (not 

present in the classical analog)

• Berry physics

• Emergence of the quantum critical region



Classical Phase 

Transitions

Quantum Phase 

Transitions 

Quantum classical mapping:

D (>1 dimensional classical )=d (dimensional quantum)+z

(it has its limitations) 

• CPT are points or sets of points 

in the phase diagram which are 

singularities in the free energy as 

a function of T. SSB mechanism. 

1st and 2nd order.
•Thermal fluctuations arises from 

the competition between S and E

•Kinetic and Potential energy are 

decoupled. (z no special role)

•The critical exponents 
characterize the CPT

• At Tc the correlation length 

diverges

• QPT are points or sets of points 

non-analytic as a function of a 

non thermal parameter. SSB 

mechanism. 1st and 2nd order.

•Quantum fluctuations arises 
from the competition between 

different ground states. 

•Kinetic and Potential energy are 

coupled, 

•z characterized the transitions 
together with the other critical 

exponents.

•At Tc the coherent time and the 

correlation length diverges

•Quantum critical region (NFL)



dimensionality
+ InteractionsMany fermions

Effective action in the 

continuum limit 

Mean field solution 

Condensed Matter Field Theory 

(Hubbard-like, topology, non-eq), life systems

Using Path integral&relevant degrees 
of freedom (symmetries…)

δS/δΦ=0

M
ic
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M

a
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o

E
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ge

nc
e

Φ+δΦ

Beyond mean field: perturbation theory (Gaussian model), mapping 

to a known system, goldstone modes, defects, RG

M
e
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an
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Gaussian approximation

Solution: Renormalization group

dS[F]

dF
= 0 ®  FMF º 0  F=FMF +jS[F] = dxd

1

2
c ¶F( )

2
+
r

2
F2 + gF4æ
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ø
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SGaussian[F] = dxd
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2
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2
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r

2
j 2 -hj
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ø
÷ò  ®  G(k) = (r+ ck2 )-1 ® c0 =G(0) =1/ r

1 loop perturbative expansion:   c -1 = r - S = r+
g

2

dk 'd

(2p )d
ò

1

r+ k '2

Observation: 
• fluctuations make Tc smaller (r=r0(T-TcMF))
• UV divergence for d>3 (short distance)
• Infrared divergence for d≤2!!!! (small momenta or large distance!) We 

will speak more about this later.

We can do perturbation theory starting from the MF solution:

Gaussian approximation (T->Tc from above) perturbation



Renormalization group (Wilson)

S[F] = dxd
1

2
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Perturbative approach. 
Systematically eliminate the high energy modes of the system keeping only 
the low energy physics

  

Z = DFò  e-S[F]

F = FH + FL       

FH = F(k),      for   L s < k < L  (slow modes)

FL = F(k),       for   L< k < L/s    (high modes)

Z = DFLDFH  e
-S FL+FH[ ]ò = DFLò e

-S 'L FL[ ]

L®  cutoff

s <1    (eventually s® 0)

S 'L FL[ ] = dDx giqi FL[ ]
i

åò = dDx ò r 'FL

2 + g 'FL

4 ® effective action

qi[ ] = sdi   

di   
<0         grows -> relevant -> 
=0         marginal -> ?-> RG prescription
>0          decreases -> irrelevant

gi 'Scaling analysis

Renormalized values

gi '
gi '

Integration over high modes

Expanded in terms 
of local operators



Goldstone modes: phonons

Remark: order parameter (density) modulated with wave-vector Q
detG−1(Q) = 0 (before: special case Q = 0)

Consider ρ (q) ⇒ order parameter ρ (Q) (Q: reciprocal lattice vector)
Question: Are the sound waves Goldstone modes?
Lim q→0 ω(q) = 0: but at q=0! (usual sound waves that appear in liquids and 
solids)
Goldstone Modes: “Umklapp” or transverse phonons at q =Q

Goldstone modes are zero modes of G-1

But not all the zero modes of G-1 are Goldstone modes because
they do not correspond to a broken symmetry



Hubbard model



Broken symmetry in condensed 

matter systems: Hubbard model
Example: Hubbard model in path integral representation. Continuum.

                                                  fermionic coherent state

Introducing a bosonic field: 

To arrive to Seff (Landau functional) we do the Hubbard-Strat. 
transformation where the interacting term is decoupled at the 
expense of the introduction of a bosonic field

What channel should we use (FM, AF, SC, CDW, dDW…)? Hints from 
mean field, other techniques, experiments…

Z = DYDYe-S[Y,Y]ò     Y®  

S[Y, Y] = diò d

rYs (i,


r )(¶i -m )Ys (i,
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
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e
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2
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= DFò e
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
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+Y


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
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SDW in the Hubbard model
Let’s chose to study the AF phase
• Observation: Hubbard Hamiltonian->  SU(2) spin invariance 

(continuous symmetry) but the AF ground state breaks this 
symmetry->we expect Goldstone modes (SDW). 

• Integrating fermions out. 

• Effective action (Landau functional):

• Saddle point approximation and arrive to the AF mean field 
solution. The higher the spin the better for the mean field solution 
(semi-classical approximation)

• Gaussian fluctuations: the fluctuation δΦ(r,t) is small, slowly 
varying (compared with τ=1/Δ) and smooth (compared to ξ2=vF/Δ ).

• The 3D Hubbard model has two gapless transverse spin waves π 
and a massive (gapped) longitudinal amplitude mode σ.

Fradkin book

Seff [F] =
1

2uspin
F2 -Tr log(1-G0S(F2 ))

Z = DFe
-Seff [F]

ò    

Z = DYDYe
- YG-1Yò

ò = det(G-1)      G-1 =G0

-1 - S(F)

Tr log(1-G0S(F2 )) =
1

n
(Tr(G0S(F)))n

n

å

Dyson 
equation



Schematics of spin-wave excitations in two 

and three dimensions

C Gong et al. Nature 1–5 (2017) doi:10.1038/nature22060

• Cr2Ge2Te6

Cr2Ge2Te6



Example: Quantum Ising model 

Continuum limit
Continuum limit

H = E0 + dx
c
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D = 2J(1- g)       c = 2Ja      D>0 MLRO;  D < 0   QPM

Lagrangean path integral

Δ, c macroscopic parameters, J and g microscopic parameters

Z = Dò YDY+ exp - dt dxL
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This Lagrangean contain the 
required universal theory

The temporal term arises from the fact that different t slices do not 
commute-> term responsible of the quantum fluctuations
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Example: Quantum Ising model 

Scaling transformation->QCP

e(k) = (D2 +c2k2 )1/2
Δ is the gap and c the velocity of the excitation

Scaling transformation: a-> lattice spacing, Λ=π/a  k<<Λ: to get the long 
distance behavior we eliminate the short distances degrees of freedom,
Dimensionless rescaling factor e-l<1 ->Eliminate modes with k between Λ 
and Λe-l. We complete the rescaling with:

L= Y+ ¶Y

¶t
+
c

2
Y+ ¶Y

+

¶x
-Y

¶Y

¶x

æ

è
ç

ö

ø
÷+DY+Y
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ù

û
ú

x ' = xe-l

t ' = te-zl ®

Y ' = Yel/2

z determines the relative rescaling factor of space and time
In this case z=1

At the QCP, Δ=0, L is invariant under a scaling transformation-> all the 
correlators are invariant under the scaling transformation



Example: Quantum Ising model 

Scaling transformation: Temperature

If Δ ≠0 -> S not scale invariant unless Δ’=Δel scale-> invariant 

dD

dl
= D     dimD =1    D  Grows: relevant perturbation

Recall Δ~|g-gc|zν, since z=1 -> ν=1  and ξ~|g|-1 

~t dimT=z=1 relevant! ξ~|T|-1

The correlation function for g>1: information of space fluctuations 
and quantum fluctuations

G(x, 0)~e
- x /x

    x

G(0, t)~e
- t /tj     tj  ® From here we calculate the coherence 

time: time over which the wave function 
retains phase memory. 



Phase diagram in a Condensed Matter 

System

|Δ|~|g-gc|zν

T~|g-gc|z

T<Δ

Crossovers that 
separate regions 
with different 
scattering length 
and different 
coherent time

T>-Δ

T>Δ
Non Fermi liquid

In the Non Fermi liquid region quantum and thermal fluctuations 
are equally important 



The quantum critical behavior depends crucially on whether 
order parameter fluctuations can couple to the low energy 
fermionic excitations

• Gap≠0-> the order parameter fluctuations are the low energy 
excitations

• Gap=0-> there are order parameter fluctuations and low 
energy fermions that can be coupled. Integrating out fermions 
can lead to divergences. The theory is under construction. It 
also can happens for d-wave superconductors.

QPT and fermions



The non-Fermi liquid behavior can be understood with the 
quantum-classical mapping:
In classical systems:

In quantum systems:

   

G(k) ~
1

k2-h

Branch cut! Non-Fermi liquid behavior

Non Fermi liquid behavior



Candidates to Quantum Critical

points

BaFe2(As1-xPx)2 ; Analytis, Nat.Phys.’14

Sr3Ru2O7; Grigera, Science’01

YbRh2Si2 Custers, Lett to Nat.’03

CeRhIn5; Park, Nat’08



Summary and outlook

• Effective field theories for phase transitions are built to 
describe phase transitions and deal with fluctuations.

• Connection to statistical mechanics and field theory in high 
energies 

• It includes concepts of topology and geometry
• Functional-integral based approach that gets the most of mean 

field, mapping, perturbative methods and RG.
• It can be generalized to non-equilibrium systems in condensed 

matter
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