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More Is Different

Broken symmetry and the nature of
the hierarchical structure of science.

P. W. Anderson

P. Anderson, Science'72

X Y

solid state or elementary particle
many-body physics physics

chemistry many-body physics

molecular biology chemistry

cell biology molecular biology

psychology physiclogy

social sciences psychology

But this hierarchy does not imply
that science X is “just applied Y." At

each stage entirely new laws, concepis,
and generalizations are necessary, re-
quiring inspiration and creativity to just
as great a degree as in the previous one.
Psychology is not applied biology, nor
is biology applied chemistry.

In my own field of many-body phys-
ics, we are, perhaps, closer to our fun-
damental, intensive underpinnings than
in any other science in which non-
trivial complexities occur, and as a re-
sult we have begun to formulate a
general theory of just how this shift
from gquantitative to qualitative differ-

entiation takes place. This formulation,
called the theory of “broken sym-
metry,” may be of help in making more

generally clear the breakdown of the
constructionist converse of reduction-
ism. I will give an elementary and in-




Broken symmetry in the phase diagram
full of CPT&QPT

Temperature

ferromagnetism
(AF)

Antiferromagnetic insulator

Charge order
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Classical phase transitions
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Control parameter: temperature...

Quantum phase transitions

i+ *quantum
Ground state 1 o UL SRS Ground state 2

Control parameter: pressure, magnetic field...
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Hamiltonian description (micro scale,
high energy, lattice...)

H(x,yeoey X)W, (x;) = E (x;)

H(xpye 00 )y () = Ery ()
H(xl’ " N) eleckznetzc( )+Heleczon(xl’ " N)+ elecelec(xl"’ )+Hzon(x1’ " N)

In principle we get ground state and excitations

Too many degrees of freedom! Even more for phase transitions
Simplification: Ising model (Spin)..., Hubbard model (spin and charge)... still
complicated, even more for phase transitions



Effective theory (macro scale, low
energy, continuum)

In the effective theory there are just the relevant degrees of freedom ¢
close to the phase transition

Example for effective action

| 2 T L
S[D]= [ Ux? = (/D) +—D* +oD*[
[@]=[4 %5( ) , gCD[

How to chose the relevant degrees of freedom?



Symmetry

Symmetry in Physics is the invariance of a physical law under
transformations.

Symmetries form a group (O(n), SU(n)...)

For example, for the group O(3), the rotational group
R is orthogonal if RR" =1
IfR,R,10@3) RR,1I0OA3)
(RR,)RR,=R;R/RR,=1] Rformsagroup



Symmetries in condensed matter

Symmetry  System Order Conjugate  Physical
Discrete parameter field example
Z,/Ising uniaxial FM {m,) h,
uniaxial AF {mz_,; — mz,g) h,,,l — hzj szNiF4,
K,;MnF,
order-disorder {(ng — ng) Ha — U B-brass
displacive {1, ) 1. BaTiO;
Continous lduid-gas {np — ng) 7 many
0,/U(1) easy-plane FM {m) h
easy-plane AF (m4 —mpg) h, —h;z
] superfluid (y) hy, He,
Internal: smectic-C Fig. 2.7.1
gauge symmetries  hexatic-B (e516) Fig. 2.7.7
0; Heisenberg FM  (m) h EuS, EuQ,
Fe, Ni
Oo Heisenberg AF {my4 — mg) hy —hz RbMnF;
SAW polymer

Time-reversal symmetry: broken in ferromagnets, Chern insulator...

And more...can you think of an example?

Chaikin & Lubensky
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Landau theory

«’!.«
verging:
Phase 1 %,eﬂﬁw oFe »
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Control parameter: temperature

High symmetry (isotropic, homogeneous...),
Kinetic dominates over correlation, higher entropy

At Tc
Symmetry TV Emergence
breaking of FM phase

v

Lower symmetry (order), Correlation
dominates over Kinetic energy,
Lower entropy, higher order




Landau Theory

Low symmetry TA Phase transition High symmetry
Af-ﬂ*Pi'VerélﬁQ :
Phase 1 < hermal Phase 2
: wfluetgat;lans

>
Using these facts Landau proposed a theory (assumptions):

1. Order parameter ¢, <¢>=0 in the high symmetry phase and
<¢>#0 in the ordered phase with lower symmetry. Symmetry
breaking. Ex magnetization (broken symmetry: spin rotation)

2. Free energy determined minimizing the following functional: F
=Fy(T)+F_(T,®) ¢ controls the thermodynamic.

3. Building of F|(T,®): ® small close to the phase transition,
expand F (T,®) in powers of ® respecting symmetries (Ex: O -
>-Q discrete broken symmetry)



Landau Theory

4. Non-trivial T dependence is in the lowest order signifying the
competition between minimizing energy and increasing entropy,
F=E-TS.

1 2 4| Land
F(O,T)=F,(T —rn(I'-T)D 7)o andau
( ’ ) o )+V(2r0( )P +e(l) j Functional

5. Minimizing the Landau functional over ® we obtain the mean
field theory.

0 T'>T,
OF 3 — 1/2
L 0 r(T=T)D+49o(TYD =0 - D=4(_,. (7_
oy (T —T,)D+4g(T) ( (T Tc)j .
T E A g
T=T:
T<T \%

T

C



Contact with experiments:
susceptibility

For example: magnetization:
Small (magnetic) perturbation
7 (T— Tc) , (mag ) p

FIT,m]= 5 m +g(T)Wl4 —hm... Linear response

v Susceptibility:

Z:Dméhzmz%z

DF[T’m]:OD r(T—=T)m+4g(T)m’ = h |
o It diverges! Second order
o Lh phase transition
X' =— 1 (T=T))

_m



Contact with experiments: Lineal
response theory

Small (electrqmagnetlc) > Lineal response (Ex. m=yH)
perturbation

Response to one particle: thermodynamic quantities
(specific heat, compressibility, magnetic susceptibility...),
ARPES, STM,

Response to two particles: transport (electric current, spin
current, Hall current->Kubo formalism), spectroscopic
techniques (Raman, X-ray, optical conductivity, neutron

scattering...)




1t Order phase transitions

The order parameter is not a continuous function of T but it has a iump.
Susceptibility also with a jump. e w7
There can be phase separation (negative compressibility)
and may exhibit hysteresis. L/ P

Described by a Landau functional with more terms: cubic, sixth with
negative fourth...

a':ﬁ(T_To)

1st Order (y<0)

éP‘S-EP
6

U=2p +%P“ "




Ginzburg-Landau

Fluctuations around the mean field solution-> Getting closer to Criticality

Long-wavelengths fluctuations can be added in Landau theory fluctuations: ¢(x) is
slowly varying and one just keeps the gradient term

Ginzburg-Landau Functional:

d 1 2 r .- 4
FGL[Taq)]:Idx (EC(V(D) +§® +g(T)P _hq)'"j_) include fluctuations

N ®(x)—>  local order parameter
A scale is introduced: § £ = ¢ _ ] £ Diverges at T->Tc as %
Correlation length at T>Tc %w(T-T.) in mean field

For second order phase transitions the correlation length diverges as a power
law at the critical point. At the transition point is infinite, implying that the
thermodynamic properties Cyv, y, ... also diverge
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Spontaneous symmetry breaking in the

Ising model JF A
Ex: Consider the Ising model (S=x1) //////////
= — D Y —_ e P
B = A

The hamiltonian possess a discrete symmetry-> Z, invariant (+1->-1) but in the
ordered phase the ground state is not invariant-> Spontaneous symmetry

breaking!

| ) Y .
<m>=,UD <Sl->=—D ] Se PH _ o Infactitis |r_n.pos_S|bIe.t9 observe a
. zZ () phase transition in a finite system

Solution -> Thermodynamic limit & extra field (h) in the Hamiltonian

H=_‘]ESi Sj_hESi hmhm<m>=n_szO
) ,. 10 N[
Emergence of the FM phase

Limits cannot be interchanged!



Definitions: Correlation function

In Statistical Physics all the information is encoded in the partition function
The probability of finding the system in the microstate i with energy E; is given
in thermal equilibrium by the Boltzmann factor: exp(- Ei/kgT)/Z

Z=[1]e" 1 Generating function 7= F:_lan

{Si}
=—J | \Y S. - ,UD B.S, B, -> fictitious (conjugate) field
< )

g 5
(8:)= Deﬁz 1z m=p (S,

2 is) (Bu) (B, | ,.
1 gz InZ Correlation function: measure how

Gy =(S8;)=(Si\S;) = lated is the syst
(505K )= (7 35 coroaes v smover

Fluctuation-dissipation theorem:
Lm :lD FInZ —,B,Uzm <SS > < ><S> ¥ -> response function Correlations
'B p ;BB '/ can be measure!

At a phase transition x diverges -
> infinite fluctuations



In general: Spontaneous Symmetry
Breaking SSB *

G a symmetry group of the Hamiltonian H*
Then SSB occurs if in the ground state (T= O) at the
thermodynamic limit

lim lim<m> =ml[10

h10 NI

When |i-j|->< (long wavelengths),

)
G, =m" -> long-range ordered

observable not G-inv.-> The ground state is not invariant
under G
m : order parameter (of the new phase)
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Atland & Simons: Condensed Matter Field

Definition: Continuum limit

' * ot () ,
E— ] 2 - — N->c V-> N/V-> finite
x=ai->x
.' 5. _‘.l'"'. o L) V N 1 L
——— K — |0 —[ &
L St i=1 a
¢1+1 o ¢i D D¢
a s

®(x) is a smooth function (field): relative fluctuations on atomic scales
are weak-> Field theory



arXiv:2507.06041

Macro-Micro bridge

Microscopic Model Continuos Model

Each site is a vital norm, the
spin configuration is the Local perception ¢(x)
internal evaluation of the norm

Emergence of macroscopic patterns
from microscopic degrees of freedom:

Intuition:

if S5
10'4 N\

7 — e—,B F ] e—ﬂ Foe_min{qn}ﬂ F[T.9]

Formal theory
Saddle point approach:

Z=e¢Pf=[]e"" [ e PR P o FalTOVksT
)




Formal connection with Landau Theory:

It can be shown that after a Hubbard-Stratonovich transformation the Ising
model close to the phase transition transforms to the f* theory (®<<1) in the

continuum limit _ _
Landau-Ginzburg functional or

Ising model (discrete) effective action (continuum)
o 2 T L
H — _JD S S = d — 2 4
. 7 ClosetoTc S[®]= [ dx %@(@) i 2 ©red %
(i) >
B Hubb-Strat —S[®
Z=le™ Transform. Z=|Doe™™

{5}

For1D: ro (1-2B8J) g J*> Macro parameters in function of micro!

r will change sign at T.-> kgT.=2J The same result is obtained using mean field
kTc=q J with g-> number of nearest neighbors. Mean field is equivalent to the

saddle point approach:

oS[ D
%:O —> (DMF

To study fluctuations one must go beyond the saddle point approximation
Book: Atland&Simons



Fluctuations around mean field:
approaching criticality

v Thermal fluctuations will tend to decrease Tc

v Validity of mean field: The amplitude of the fluctuations is
small if the dimension of the system is larger than a critical
dimension (d.=4 for the Ising Universality class). This is stated
by the Ginzburg criterion.

Am’

2

)D/ 2-2
m

:gl/bl)/zz (T; _T

v' Beyond mean field 2> renormalization group (a procedure to
eliminate high energy states keeping only what affects the low
energy physics).
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Criticality

Criticality can be studied in the continuum limit: the correlation length is
the only relevant length scale:

e Disorder phase
G(x,0)Je x L (Proper definition of €)

In the ordered phase:
In the disordered phase at long distances the correlation function:
lim G(x,0)= m* Ordered phase: Long range order

x
There must be a phase transition showing critical behavior.

jeBesase B EHEDE!

G-> power
law
= ¢ diverges->
criticality




Critical exponents

Experimentally, with scaling arguments, or with renormalization group it
can be shown power law decay:

At the critical point 1 1
the correlation function ->  G(x) ~ —(55  G(k) ~
X

Correlation length -> E=1/r" r=r,(T-T)

Using the fluctuation-dissipation theorem

—V217

= -> experimentally

|,{ and © ... are critical exponents: set of different exponents
characterizing the transition. They are universal.

Book: Le Bellac



Typical critical exponents:

Order parameter:
Correlation length:
Susceptibility:
Specific heat:

Correlation function:

The exponents are related:
(only 2 are independent)

(T, —T)F Note that the Landau
Y o< { }1/6 theory for an Ising
model (or ¢* theory)
o (T, —=T)™" gives
—T)Y
x < (T, —T) B=1/2
Cx(T,—T)“ v=1/2
=1
Gc(z)(r) ~ i large and T=Tc 5(1:03
2—a=2F+y C-mv=y
2—a=B@+1) vd =2 -«



Universality

At T, -> criticality, scale invariance, cooperative phenomena-> the properties
(critical exponents) depend on

*Dimensionality of the space

*Dimensionality of the order parameter

*Symmetries of the local couplings

But not on the details of the interaction.

Ex: For the Ising model the square and the triangular lattice have the same
critical exponents (at Tc the system is rotational invariance)

Ex: the solid and liquid or solid and gas transition (water, carbon dioxide...)
belongs to the same universality class than the magnetic transition

Magnetic transition Solid liquid/gas transition
Fluctuation magnetization fluctuating density
Order parameter m density

Neutron scattering light scattering

M o (T, —T)° oL — pgl o |T. = T|°

Better understood in the RG framework (fixed point)
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Continuous symmetry o=(®,(x),®,(x),..., ® (x))

N
O |0 =D @’
i=1 N

(VD) — Ve[ =) (0,®,)

i=1
h® —> h- O Congugate field

Important theorems:

- Goldstone theorem

- Mermin-Wagner theorem
- 2D->Korsterlitz-Thouless transition



Spontaneous symmetry breaking of a
continuous symmetry: Goldstone Theorem

Low energy (long wavelength) excitations are possible in systems with
continuous symmetry. The excitations are Goldstone Modes ->
EMERGENT QUASIPARTICLES

Example: Heisenberg model with S
H = _ngi §j = —JECOSHU, §i6R3,
(if) (if)

§i:1

E~J(—-cosf)~ JG? (for small &) The cost of this energy can be

ishingl |
Spin waves with wavelength A: magnons vanishingly sma

D e ——
W

N

5 it



Other goldstone modes

v'In a crystalline solid: acoustic phonons
E ~|ql.

00%04
2699963064608
6005205340
0927201920469
Eo909¢g@¢&oQ§
OOOOO
v In a superfluid (neutral fluid), Bogoliubov modes.

¢+ theory, ® complex U(1) symmetry

F=(0,0)(0"0")+m*¢ p+A(¢'¢)
p—>e'p —V(9)




No Goldstone modes

The Ising model has discrete symmetry:
E~J (domain wall) every excitation costs finite energy

I O O O N A R O

A charged fluid (superconductor) develops a gapped spectrum:
Anderson-Higgs mechanism due to the electromagnetic field.



Mermin-Wagner theorem

(Phase transitions and dimensionality)
Mermin, N. D. & Wagner, H. Phys. Rev. Lett. 17, 1133—-1136 (1966).

Goldstone modes gives rise to large fluctuation effects in low dimensions

In general if we have:

« Spontaneous symmetry of a continuous group (i.e. not applicable to
Ising model)

« Short range forces

Then there is no phase transition (associated with a long range order!) for
dimension d<2 (for T > 0).



The special case of d=2 and D=2: the
Kosterlitz-Thouless transition

The XY model (D=2) in 2dim (d=2) has continuous symmetry U(1)/O(2),
hence it cannot have a phase transition to a long-range ordered state

(Mermin-Wagner).
| e e
S. =(cosl,sindb) N
Hz—JZSi.Sj:—JZCDs(ﬂi—{%) E .oy %&_
(4.7) (2.7) ﬁ‘\ 4/ \F
Berezinskii (1970), Kosterlitz and Thouless (1972) demostrated that the

system undergoes a phase transition (though not long range ordered,
there is not symmetry breaking).




2

the Kosterlitz-Thouless transition

2 and D

The special case of d

vortices (topological defects) that contribute to the entropy.

Solution
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2D,

dislocations in 2D crystals, vortices in 2D superconductors (Y~e'9) or

superfluids...)

IN

Topological defects (Coulomb charges

XY universality class



Quantum phase transitions



Quantum phase transitions

QPT: T=0
3 Bive‘:;’ging :
Ground state1 i 'J ﬁagi':um '*"‘-&‘_._ Ground state 2
" fiuctuatios

>
Control parameter: pressure, magnetic field...

Quantum fluctuations are driven by the Heisenberg uncertainty principle

.
L

H(g) = Hy+ gH;

W
3 Effect at T#0
m . N
Iﬂ_.'l' Y (.uf
" _ . =l s quantum
 Transition at g. (a point of non-analyticity of o B2 \ critical

!

the ground state).

» The nature of the correlations in the ground
state changes qualitatively at ge.

control parameter



Non Fermi liquid behavior

a :
Quantum critical
matter
o
g
—
D s
o %5
- 2
2 F
@ ;
= o
SN
@ —
Tuning parameter
b
Antiferromagnet Quantum critical Heavy fermion metal

matter

P. Coleman & A. Schofield, Nat.'05



Quantum phase transitions

QPT: T=0
Q’lvbr,gm’g g
Ground state 1 1. T .,.t antum- - " . Ground state 2
‘ \ﬂu\q,fuft;ons '
>
Control parameter: pressure, magnetic field...
QPT have consequences at T#O. 2nd order QPT:
— 4 ﬂn._‘]' Fy 0 o . '
1 ‘g —g. E Non Fermi Ilqu]d.
Ell_.'l' \\ xi
~E =lo—o | = s quantum
T(p g ‘g 8¢ Now! | E >  critical
2 ew! , Z /
A~ ‘g — gc[v ? 1
’ Fermi
liquid
z is the dynamical exponent, A is the gap 0 T T—— g
|(p is the coherence time, time over which the wave function retains its

memory of its phase: it diverges at a QPT



Example: Quantum Ising model

Ising model in a transverse field

=—Jgl | o/ -Jl Jo]o;
i (i)
[ N O0g ;0 O C
=0 L=V 70l 0
01l 0 01 0 00 -1

For g=0 -> Ising model 027=1,-1 |A\>, |¥> -> Ordered phase

For g#0 o-> off diagonal-> quantum mechanical tunneling |[g\> -> [\>
-> Disordered phase

This model can describe real systems such as LiHoF, where it has
been identified a QCP



Example: Quantum Ising model T=0,
g>>1 limit
Ising model in a transverse field

H=-Jg| o' -J | &fJAJZ.
i ()
Limits:
g>>1 18t term dominates: quantum paramagnetic (QPM)

0)=0110),
D>I,=(\D>l_+v>l,)/\/§ (-1)
D=0V =)0 1),

The system is totally uncorrelated. 1st excitations (gap—A)

(Ofier]o) et




Example: Quantum Ising model T=0,
g<<1 limit
Ising model in a transverse field
H=—Jo |65 —J[] 66
i (i)

Limits:
g<<1 2" term dominates: Z, symmetry: Magnetic long range order

(MLRO)
=00, o V)=001}),

Exc:ltatlons (gap=A): domain walls: turning on g will mix up and
down spins but still Z, symmetry. DDWWWDD

Only in the thermodynamic limit:

\xilif\lml 0 <O

>DM2 M=1 if g=0



Example: Quantum Ising model
T=0, Quantum phase transition

Ising model in a transverse field

H=-Jg |o'-J |oio;
i i)

Limits: sfal . -
9>>1 O‘Gz O, 0> - At g=g. we have a QPT, we expect ¢

1 lim (0lo M2 — diverges and G goes as a power law
g<< ‘x-—x-‘D 0 l

It is possible to calculate the exact spectrum using a Jordan-Wigner
transformation (mapping between spin %2 degrees of freedom and spinless
fermions). The result is:

2 12 g>1 exp. law
gk)=2J(1+g —2gcosk)” A=2J[1-g|-> g =1 QCP!
g<1 long range

|
gk 0,g=1)=2J12-201 +5k2 N = 2J‘k‘ 1 Excitations without gap!



Example: Quantum Ising model
Phase diagram: Exact solution

z=1
LATTICE
ALT~g-g T T~
o e _ —
Ay
o T>A conmivuum KeT) 1o
Effective theory T<A N HIGH T 7 TsA Effective theory
i A or p ;
with DW QP—_, ~  QUANTUM - /wlth |
LOW T N CRITICAL , LOW T flipped spins QP
Magnetic long-range order ~ » Quantum paramagnet
] s
9 g
Low T Low T
(magnetically ordered) T (quantum paramagnetic),
quasi-classical particles  Continuum high  quasi-classical particles
—domain walls (guantum critical) —flipped spins
1/2
¢ 7c? ) AT de £
relaxational AT T 1A
T —e e —e
2T 2T 2T

Sachdeev: Quantum phase transitions



Quantum classical mapping

Z=Ye™ H=H,+H,
15: }
In a classical system [H,,, H,,]=0 thus Z=2,;,Z,: and statics and dynamics
are decoupled -> Effective time-independent theories in D dimensions.
In a quantum system [Hy,,H,0:]#0 thus statics and dynamics are
coupled. ¢(x,T). The operator ekT |ooks like e

1/kT= 1=-it/h-> Mapping

D (>1 dimensional classical )=d (dimensional quantum)+z
These models belong to the same universality class

T
IR A T I R I Z measures the

T T T 1T 11770 a anisotropy between x-
":':‘:"""" 4 dim and t-dim




Are QPT(d+z) different from CPT(D)?

The Quantum-Classical mapping yields quantum correlation
functions that are in imaginary time. The analytical
continuation to real time is highly non-trivial.

It emerges a new time scale: the coherence time 71, (not
present in the classical analog)

Berry physics

Emergence of the quantum critical region



Classical Phase
Transitions

« CPT are points or sets of points
in the phase diagram which are
singularities in the free energy as
a function of T. SSB mechanism.
1st and 2"d order.

*Thermal fluctuations arises from
the competition between S and E
*Kinetic and Potential energy are
decoupled. (z no special role)
*The critical exponents
characterize the CPT

« At Tc the correlation length
diverges

Quantum Phase
Transitions

* QPT are points or sets of points
non-analytic as a function of a
non thermal parameter. SSB
mechanism. 1st and 2" order.
*Quantum fluctuations arises
from the competition between
different ground states.

*Kinetic and Potential energy are
coupled,

z characterized the transitions
together with the other critical
exponents.

At Tc the coherent time and the
correlation length diverges
*Quantum critical region (NFL)

Quantum classical mapping:
D (>1 dimensional classical )=d (dimensional quantum)+z
(it has its limitations)




Condensed Matter Field Theory
Hubbard-like, topology, non-eq), life systems

4
Many fermions + Interactions o
imensionality g
Using Path integral&relevant degrees ¥
of freedom (symmeftries...)
X c Eﬁectlvg actloq |n_ the
Q 'w continuum limit
0 | <
o 2 §5/50=0 )
Q O <
€ v S
W= Mean field solution =
D+6D
Beyond mean field: perturbation theory (Gaussian model), mapping v

to a known system, goldstone modes, defects, RG
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Gaussian approximation

We can do perturbation theory starting from the MF solution:

OS[ D
S[D] = j dxdgc(gzp)2 +§cp2 +g(D4j % =0 > ©,,=0 =0, +¢
Gaussian approximation (T->Tc from above) perturbation
S 1= | Gc(ﬂw)z 9 _zwj - Gh)=(r+ck*Y" = £,=G(0)=1/r

vd
1 loop perturbative expansion: y ' =r—X = rts ] dk y 1 :
2 Q2n) r+k'
Observation: 2
 fluctuations make Tc smaller (r=ro(T-Tue))
« UV divergence for d>3 (short distance)
* Infrared divergence for d<2llll (small momenta or large distance!) We
will speak more about this later.

== - ﬂ—ﬂ"-——

Solution: Renormalization group



Renormalization group (Wilson)

Perturbative approach.

Systematically eliminate the high energy modes of the system keeping only
the low energy physics

| 2 T L
S[®]= [ @x‘ = (/D) +=D° +gd* _ -S[@]
[]Bz’x%( ) 5 gq)% Z=| DDe
O=0, +®,
®, =D(k), for As<k<A (slowmodes) A — cutoff
®, =d(k), for A<k<A/s (highmodes) s<1 (eventuallys— 0)

Z=[ Do, DD, 1" = DD e

L
\In’regr'a’rion over high modes

S [P, ]= _[ d"x) g0.[®,]= J. d’x '@ +g'®, — effective action
6] _ (0 é’xpanded in terms f

; Renormalized values
of local operators

1

. . <0 g, 'grows -> relevant ->
Scaling analysis 6.4 -0 o' marginal -> 2-> RG prescription

>0 gl.' decreases -> irrelevant




Goldstone modes: phonons

Remark: order parameter (density) modulated with wave-vector Q
detG(Q) = O (before: special case Q = 0)

Consider p (q) = order parameter p (Q) (Q: reciprocal lattice vector)
Question: Are the sound waves Goldstone modes?

Lim o w(q) = O: but at ¢=0! (usual sound waves that appear in liquids and
solids)

Goldstone Modes: "Umklapp” or transverse phonons at q =Q

o (q)

A BZ-Grenze

Goldstone modes are zero modes of G
But not all the zero modes of 6! are Goldstone modes because
they do not correspond to a broken symmetry



Hubbard model

— Z Ce(P)ce () +he) + U Y ny(F)n (7

i)

S(.“") lf (-’ )r{r{r 1Co! (."")

:—chT(r)Cg(f Y+ h.c. — UZ(E(F))E

(F.F") r

ol | 2



Broken symmetry in condensed
matter systems: Hubbard model

Example: Hubbard model in path integral representation. Continuum.

7 — J.D‘?D‘Pe‘s[qj’l{'] Y fepmionic coherent state
S, ¥]= [ Widr®, (,r) (0 —u )P, (1,7)+ H[P, ¥]
H [V, ¥]= ]izd#@g(z,%ag.‘{’a.(z,ﬁ Su(z,H

nt

Introducing a bosonic field: (E(l, r% —> Su(z, H

To arrive to Seff (Landau functional) we do the Hubbard-Strat.
transformation where the interacting term is decoupled at the
expense of the introduction of a pzosonic[field

”s_gm(q,;},)z —2;D . +‘¥’;PCD

D®e

e

What channel should we use (FM, AF, SC, CODW, dDW...)? Hints from
mean field, other technigues, experiments...



SDW in the Hubbard model

Let’s chose to study the AF phase

« Observation: Hubbard Hamiltonian-> SU(2) spin invariance
(continuous symmetry) but the AF ground state breaks this
symmetry->we expect Goldstone modes (SDW).

 Integrating fermions out.

-Gy

=det(G™") G '=G,'-Z(d) Drson

equation

7= D¥YDW¥e

. Effective action (Landau functional): Z = [ DDe "
Sl P]= 1 @’ —Trlog(1- G Z(®")) Trlog(l—- G, (@)= | l(Tr(GOZ(CD)))”
n

spin "

 Saddle point approximation and arrive to the AF mean field
solution. The higher the spin the better for the mean field solution
(semi-classical approximation)

 Gaussian fluctuations: the fluctuation 3®(r,t) is small, slowly
varying (compared with t=1/A) and smooth (compared to &=vg/A ).

« The 3D Hubbard model has two gapless transverse spin waves «

and a massive (gapped) longitudinal amplitude mode o.
Fradkin book



Schematics of spin-wave excitations in two
and three dimensions
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Example: Quantum Ising model
Continuum limit

Continuum limit

H=E,+ [ dx 5(?* o —Ta—qj}mw
2 Ox Ox
A=2J(1-g) c¢=2Ja A>0MLRO; A<0 QPM

A, ¢ macroscopic parameters, J and g microscopic parameters

Lagrangean path inte I"Cll/|
z= | DYDY expi— I drdx[]
0

[:\P+6_LP+ < gt b _\Pﬁ_\P AP This Lagrangean contain the
or |2 Ox Ox required universal theory

The temporal term arises from the fact that different t slices do not
commute-> ferm responsible of the quantum fluctuations
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Example: Quantum Ising model
Scaling transformation->QCP

L c[ o 8‘1’] A
or |2 ox Ox

gk)=(A*+c*k*)"?  Ais the gap and ¢ the velocity of the excitation

Scaling transformation: a-> lattice spacing, A=1t/a k<«A: to get the long
distance behavior we eliminate the short distances degrees of freedom,
Dimensionless rescaling factor e’k1 ->Eliminate modes with k between A
and NAe”. We complete the rescaling with:

—1
x'=xe

r'= re ' — z determines the relative rescaling factor of space and time

LN TE In this case z=1
= Ye

At the QCP, A=0, Lisinvariant under a scaling transformation-> all the
correlators are invariant under the scaling transformation



Example: Quantum Ising model
Scaling transformation: Temperature

If A 20 -> S not scale invariant unless A'=Ae! scale-> invariant

d_A —A dimA=1 A Grows: relevant perturbation

dl
Recall A~|g-g.|#, since z=1 -> v=1 and &~|g|!

B~t dimT=z=1 relevant! &~| T|-!

The correlation function for g>1: information of space fluctuations
and quantum fluctuations

G(x,0)~e* &

G(0. )~ e—ltl% r [ F.r'om here we calgulate the coherer!ce
(0,2) ¢ time: time over which the wave function
retains phase memory.



Phase diagram in a Condensed Matter
System

Non Fermi liquid

|Al~[g-g.|? S Crossovers that
T~|g-g.|? he — separate regions
T with dif ferent
QC scattering length
T<A Ts-A and different

coherent time

—_—

g 9

In the Non Fermi liquid region quantum and thermal fluctuations
are equally important



QPT and fermions

The quantum critical behavior depends crucially on whether
order parameter fluctuations can couple to the low energy
fermionic excitations

* Gapz0-> the order parameter fluctuations are the low energy
excitations

* Gap=0-> there are order parameter fluctuations and low
energy fermions that can be coupled. Integrating out fermions
can lead to divergences. The theory is under construction. It
also can happens for d-wave superconductors.



Non Fermi liquid behavior

The non-Fermi liquid behavior can be understood with the
quantum-classical mapping:
In classical systems:

1

Gk~

In quantum systems:
1

G(k,w) ~ — Branch cut! Non-Fermi liquid behavior

2-1m

(k> +(w +i6)%)
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Summary and outlook

Effective field theories for phase transitions are built to
describe phase transitions and deal with fluctuations.
Connection to statistical mechanics and field theory in high
energies

It includes concepts of topology and geometry
Functional-integral based approach that gets the most of mean
field, mapping, perturbative methods and RG.

It can be generalized to non-equilibrium systems in condensed
matter
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