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Outline

❑ The Fermi gas

❑ Why does band theory work? Concepts: Adiabaticity and quasiparticles

•    Definition of adiabaticity and quasiparticles

•    Electronic distribution function

•    Quasiparticle decay 

•    Quasiparticle weight and spectral function

❑  Energy as a functional of the number of quasiparticles.  Measurable quantities. 

•  Renormalized mass: Specific heat and mass in ARPES

•  Interaction parameters : Spin susceptibility, resistivity

❑Fermi liquid behavior  and instabilities of the Fermi liquid



leni.bascones@csic.es

Some references

o Introduction to many body physics. Piers Coleman. Cambridge University Press.

o Theory of Quantum Liquids. Phillipe Nozieres, David Pines. Advanced Books Classics. 

o A guide to Feynmann Diagrams in the Many Body problem. E.D. Mattuck. Dover Books on 
Physics

o Metal-insulator transitions. M. Imada, A. Fujimori, Y. Tokura. Rev. Mod. Phys. 70, 1039 (1998) 
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Interactions:

Electrons interact between them (and with the lattice)

Interaction not  small vs kinetic energy

Why is band theory so successful?

We cannot solve the interacting problem exactly
   

Approximations
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Band theory: 

   Basis of our understanding of solids

   - Successful description

   - Metals and insulators

   - Dependence on temperature of 
     measurable quantities (Cv, c, ..)

Band theory: The basis of our understanding of solids
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Band theory: 

   Basis of our understanding of solids

   - Successful description

   - Metals and insulators

   - Dependence on temperature of 
     measurable quantities (Cv, c, ..)

Interactions:

Electrons interact between them (and with the lattice)

Interaction not  small vs kinetic energy

Why is band theory so successful?

“Independent” electron model

Interactions  not  included in the band picture 
beyond simple mean field
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Band theory: 

   Basis of our understanding of solids

   - Successful description

   - Metals and insulators

   - Dependence on temperature of 
     measurable quantities (Cv, c, ..)

Interactions:

Electrons interact between them (and with the lattice)

Interaction not  small vs kinetic energy

Interactions  not  included in the band picture beyond 
simple mean field

Why is band theory so successful?

Why does band theory work?

Does it always work?

Fermi liquid theory

NO (Mott physics, Luttinger liquids …)
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What do we mean with “independent” electron model?

o Well defined eigenstates with momentum k  E(k)

o E(k) filled following Fermi-Dirac. Fermi surface.

o If we add or remove an electron with momentum k to the ground state. The new electron 

occupies an eigenstate E(k).

o Energy levels are not modified, just filled.  Rigid Band shift
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❑ Non interacting system

Distribution of excitations created when

an electron (a real electron) with momentum k
is added or removed from the system

Eigenstate, well defined energy 
for a given momentum.

Infinite lifetime

Fermi level

E(k)

In an independent electron system 

the spectral function A(k, w) is a delta function and “determines the bands”

In an independent electron system, if  we add or remove 

an electron with momentum k to the ground state 

the new electron occupies an Eigenstate E(k)

The Spectral function

A(k,w)=(=E(k))
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❑ Non interacting system

Distribution of excitations created when

an electron (a real electron) with momentum k
is added or removed from the system

Eigenstate, well defined energy 
for a given momentum.

Infinite lifetime

Fermi level

E(k)

In an independent electron system, if  we add or remove 

an electron with momentum k to the ground state 

the new electron occupies an Eigenstate E(k)

The Spectral function

In an independent electron system 

the spectral function A(k, w) is a delta function and “determines the bands”

A(k,w)=(=E(k))
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What does it mean that the “independent” electron model works?

Independent electron model (Band theory):
  

o Well defined “single particle states” E(k) 

o Rigid band shift. 

 Electronic state E(k) expected to decay in excitations of the system

Interacting system:

o If we add electron with momentum k to ground state of a Fermi sea we expect 

the energy levels E(k) to be modified due the interactions, not just filled

Non rigid band shift expected

Description in terms of single particle states “does not seem possible”.
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What does it mean that the “independent” electron model works?

Independent electron model (Band theory):
  

o Rigid band shift. Single particle states E(k)

Interacting system:

o Description in terms of single particle states does not seem possible.

o Electronic state expected to decay in excitations of the system.

• Pauli principle restricts the phase space for decay of excitations

• Description based on elementary excitations not on ground state

Fermi liquid theory
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❑ It justifies the success of band theory

❑ Focus not in ground state but in low energy excitations. Introduces the concept of 
quasiparticles. Valid only at low energies and temperatures. 

❑ Theory written in terms of parameters. It goes beyond particular models

❑ Phenomenological theory, but it can be justified with perturbation theory

❑  Perturbative theory, but not restricted to weak interactions. 

❑ Proposed for 3-He: isotropic, no charge, short range interactions, in the continuum limit but it 
can be  generalized to describe electrons in a metal

❑ Sometimes it fails. Strongly correlated electron systems. Non-Fermi liquid behavior

Fermi liquid theory: general idea
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Adiabaticity and quasiparticles

H Interacting electronic 
Hamiltonian  

H0 : Non interacting electronic 
Hamiltonian 

See Coleman’s book

(we do not know how to solve it)

H=H0 + V 

Ground state |
g> (we know how to solve it)

Ground state |g> 

Interactions

Assume N interacting fermions
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Adiabaticity

H Interacting electronic 
Hamiltonian  

H0 : Non interacting electronic 
Hamiltonian 

See Coleman’s book

(we do not know how to solve it)

H=H0 + V 

Ground state |
g> (we know how to solve it)

Ground state |g> 

Interactions

Assume adiabaticity

Effect of interactions V
is perturbative

(No phase transition)
|

g>  and g> 
adiabatically connected

Assume N interacting fermions
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Introducing quasiparticles

o Assuming adiabaticity (perturbative effect of interactions) we will see that the system has elementary 

excitations with momentum k, spin ½ and charge e called quasiparticles a+
k 

o The quasiparticles a+
k follow a Fermi-Dirac distribution at T=0 (step). Fermi surface

o  The quasiparticle energies *(K) are well defined at small T and small energy (with respect to Fermi level) 

  *(K)  in 3D and 2D  (But not in 1D)

Jump=1

Away from T=0 and/or from the Fermi Surface -1= is finite (excitation decay)   

nk

kF k

See Coleman’s book

(Assume there 
is no spin-orbit 

interaction)
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Introducing quasiparticles

o Assuming adiabaticity (perturbative effect of interactions) we will see that the system has elementary 

excitations with momentum k, spin ½ and charge e called quasiparticles a+
k 

Distinguish: Real electron

Quasiparticle a+
k 

c+
k c+

k ≠ a+
k 

Not equal, but one to one
correspondence when Fermi liquid works

c+
k |g> ck |g>

STM ARPESreal electron

o In an experiment (STM, ARPES) we add or remove a real electron

The quasiparticles follow a Fermi-Dirac distribution and have well defined energy at small T and small energy   

We probe the spectral function
of the real electrons

nk
< 1

kkFSee Coleman’s book
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From adiabaticity to quasiparticles

H Interacting electronic 
Hamiltonian  

H0 : Non interacting electronic 
Hamiltonian 

See Coleman’s book

(we do not know how to solve it)

H=H0 + V 

Ground state |
g> (we know how to solve it)

Ground state |g> 

Interactions

Assume adiabaticity

Effect of interactions V
is perturbative

(No phase transition)
|

g>  and g> 
adiabatically connected

Assume N interacting fermions
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From adiabaticity to quasiparticles

|
g>  ground state of N-particles of interacting system 

|g> ground state of N-particles of non-interacting system 

H=H0 + V 
H0

H0 H=H0 + V 

t=- t
Imagine that we
switch on the
interactions
very slowly in
time starting
from H0 at t=- 
 

H(t)=H0+ (t)V 

with (t)=e-t|  arbitrarily 
small

Interaction 
completely 
switched on at t=0

t=0 

|g> |
g> 

See Coleman’s book
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From adiabaticity to quasiparticles

|
g>  ground state of N-particles of interacting system 

|g> ground state of N-particles of non-interacting system 

H=H0 + V 
H0

H0 H=H0 + V 

t=- t

H(t)=H0+ (t)V 

with (t)=e-t|  arbitrarily 
small

Interaction 
completely 
switched on at t=0

t=0 

Follow the evolution of the ground state from  |g> to |
g> 

|g
*

 (t)>= Vev |g> 
Adiabaticity: |

g> and |g>
are perturbatively connected 

|g> |
g> 

Imagine that we
switch on the
interactions
very slowly in
time starting
from H0 at t=- 
 

See Coleman’s book
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From adiabaticity to quasiparticles

H0 H=H0 + V 

t=- t

|g> 

t=0 

We add an electron 

N particles

The new particle added 
to an excited state with 
momentum k charge e 
and spin  

|k>=C+
k |g>

Ground state 
non-interacting 
system with N particles

Eigenstate
(Clean system)

(N+1particles (fermions))  

|
g>= Vev |g> 

See Coleman’s book
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From adiabaticity to quasiparticles

H0 H=H0 + V 

t=- t

|g> |
g>= Vev 

t=0 

We add an electron 

N particles

The new particle added 
to an excited state with 
momentum k charge e 
and spin  

|k>=C+
k |g>

Ground state 
non-interacting 
system with N particles

Eigenstate

(N+1particles (fermions))  Switch on interactions and let the system evolve

|g> 

|k>=Vev|k>= Vev C+
k |g>

State which results from 
the evolution of |k> 

See Coleman’s book
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From adiabaticity to quasiparticles

H0 H=H0 + V 

t=- t

|g> |
g>= Vev 

t=0 

We add an electron 

N particles

The new particle added 
to an excited state with 
momentum k charge e 
and spin  

|k>=C+
k |g>

(N+1particles (fermions))  Switch on interactions and let the system evolve

|g> 

|k> = Vev|k>= Vev C+
k |g>

|k>  C+
k |g>≠

Vevc†kVev†

|k> = Vev C+
k (Vev)-1 |

g>

See Coleman’s book
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From adiabaticity to quasiparticles

H0 H=H0 + V 

t=- t

|g> |
g>= Vev 

t=0 

We add an electron 

N particles

|k>=C+
k |g>

(N+1particles (fermions))  Switch on interactions and let the system evolve

|g> 

|k> = Vev|k>= Vev C+
k |g>

|k>  C+
k |g>≠

Vevc†kVev†

|k> = Vev C+
k (Vev)-1 |

g>
Same spin, momentum and charge

(Adiabaticity)

Interactions conserve charge, momentum and spin
(Assume there is no spin-orbit interaction)

See Coleman’s book
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From adiabaticity to quasiparticles

H0 H=H0 + V 

t=- t

|g> |
g>= Vev 

t=0 

We add an electron 

N particles

|k>=C+
k |g>

(N+1particles (fermions))  Switch on interactions and let the system evolve

|g> 

|k> = Vev|k>= Vev C+
k |g>

|k>  C+
k |g>≠

Vevc†kVev†

|k> = Vev C+
k (Vev)-1 |

g>

|k>=a+
k |g>Create an excitation with charge e, 

momentum k and spin 

Same spin, momentum and charge
(Adiabaticity)

See Coleman’s book
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From adiabaticity to quasiparticles

We add an electron 

with momentum k and spin 
  

|k>=a+
k |g>C+

k 

Create an excitation with 
momentum k and spin 
in the interacting state 

|k>  C+
k |g>≠

Quasiparticle

Quasiparticles and real electrons are not the 
same but they have a one to one connection

Quasiparticle: Elementary excitation of the 
interacting system with momentum k,  
spin 1/2, and charge 

See Coleman’s book



leni.bascones@csic.es

From adiabaticity to quasiparticles

We add an electron 

with momentum k and spin 
  

|k>=a+
k |g>C+

k 

Create an excitation with 
momentum k and spin 
in the interacting state 

|k>  C+
k |g>≠

Quasiparticle

Quasiparticles and real electrons are not the 
same but they have a one to one connection

Quasiparticle: Elementary excitation of the 
interacting system with momentum k,  
spin 1/2, and charge 

Mattuck’s
book See Coleman’s book

Remember adiabaticity
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Quasiparticles: Fermi Surface

C†
k|g >

Ck|g >

Quasiparticlea†
k

ak Quasihole

Fermionic excitations

Fermi-Dirac distribution

Fermi surface

|k>=a+
k |g>

Elementary excitation 
of the interacting system 
with momentum k,  
spin 1/2, and charge 

Quasiparticles and real electrons 
are not the same

Existence and definition of quasiparticles

Jump=1

nk

kF k

See Coleman’s book
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Quasiparticles: Fermi Surface and decay

|k>=a+
k |g> Finite lifetime   = -1

(width level)

Non-interacting system

|k>=C+
k |g> Eigenstate (Infinite lifetime) 

Interacting system

Not an Eigenstate 

Stability of the quasiparticle 
requires

 << 
Decay rate of the quasiparticle
Much smaller than its energy 

See Coleman’s book



leni.bascones@csic.es

Quasiparticle decay

Decay of quasiparticles conserves momentum, charge & spin

a†
k

2 particles and 1 hole

3 particles and 2 holes

a†
k1a†

k2ak3

Decay of one quasiparticle
3-body process

A quasiparticle with k>kF cannot decay into an occupied state below the FS with k<kF

…
a†

k1a†
k2a†

k4ak3ak3

See Coleman’s book
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Quasiparticle decay

Decay of quasiparticles conserves momentum, charge & spin

a†
k

2 particles and 1 hole

3 particles and 2 holes

a†
k1a†

k2ak3

Decay of one quasiparticle
3-body process

A quasiparticle with k>kF cannot decay into an occupied state below the FS with k<kF

…
a†

k1a†
k2a†

k4ak3ak3

Estimate in 3D based 

on phase space considerations 
(Pauli principle) & 3 body decay

-1=
*2+2T2

E*F

*=E*-E*F

Energy from Fermi Surface

E*F Fermi energy of the quasiparticles

See Coleman’s book
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Quasiparticle decay

Decay of quasiparticles conserves momentum, charge & spin

a†
k

2 particles and 1 hole

3 particles and 2 holes

a†
k1a†

k2ak3

Decay of one quasiparticle
3-body process

A quasiparticle with k>kF cannot decay into an occupied state below the FS with k<kF

…
a†

k1a†
k2a†

k4ak3ak3

Estimate in 3D based 

on phase space considerations 
(Pauli principle) & 3 body decay

-1=
*2+2T2

E*F

*=E*-E*F

Energy from Fermi Surface

E*F  Energy which control the range of temperature and energy at which the 
quasiparticle is well defined  It can be very small!
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Quasiparticle decay

Decay of one quasiparticle
3-body process

Quasiparticles well defined at low energies & temperatura with infinite lifetime 

at the Fermi surface at zero temperature in 3D and 2D but not 1D. 

Fermi liquid theory fails in 1D

Estimate in 3D

=E-E*F

Energy from 

Fermi Surface


 ~ 

Estimate in 2D
 ~  Ln E*F /

Estimate in 1D
 ~ const

Giuliani and Quinn 
PRB 26, 4421 (1982)
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Quasiparticle decay

2 dimensions 1 dimension3 dimensions

©Michael Paraskevas ©Carlos Valenzuela©Sebastian Dubiel

Interactions are never perturbative
in 1 dimensión

The quasiparticles are not well defined 
even at very low temperature and energy
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Adiabaticity and quasiparticles. Summary

o Provided that the interacting and non-interacting ground states are adiabatically connected 

    (Perturbative effect of interactions. No phase transition):  

• The interacting system has elementary excitations with

momentum k, spin ½ and charge e called quasiparticles a+
k 

Jump=1

nk

kF k
• The quasiparticles a+

ks follow Fermi Dirac statistics 

and we can define a Fermi surface

• The quasiparticles a+
ks are not eigenstates of the interacting system. They are expected to decay and 

have a finite lifetime. But this decay is restricted by Pauli’s principle.  Quasiparticles are well defined in 2D 

and 3D at low temperatures and energies.

in 3D-1=
2 + 2T2

EF
For simplicity we drop the *
to refer to the energies

Interactions are not perturbative in 1D
Non-Fermi liquid behavior
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Connecting quasiparticles and real electrons

c+
k ≠ a+

k 

Real electron Quasiparticle

Adding an electron (hole) and creating a quasiparticle is not the same thing, but there is a one to one 
correspondence between them. 

Mattuck’s 
book

In an experiment: 

c+
k |g> ck |g>

STM ARPESreal electron

Write c+
k in terms of a+

k   Quasiparticle weight

Experimentally it is posible 
to measure the electron 
spectral function A(k,)
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❑ Write the electron operator c†k in terms of the elementary excitations of the interacting system, 

the quasiparticles a†
k

higher order 
decay processes

Generic expression 
which conserves   
charge, momentum 
& spin

If different from zero the electron 
decays into particle-hole quasiparticle 
excitations

See Coleman’s book

Decay of the electron into electron-hole quasiparticles excitations
(not to be confused with the decay of the quasiparticle)

Connecting quasiparticles and real electrons
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❑ Write the electron operator c†k in terms of the elementary excitations of the interacting system, 

the quasiparticles a†
k

Connecting quasiparticles and real electrons

A single particle description 

of C†
k|g> 

will “make sense” if Zk is finite
Zk  Quasiparticle weight Measurable

Mattuck’s 
book

The one-to-one connection
can be defined only if Zk is finite
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❑ Write the electron operator c†k in terms of the elementary excitations of the interacting system, 

the quasiparticles a†
k

Connecting quasiparticles and real electrons

A single particle description 

of C†
k|g> 

will “make sense” if Zk is finite

Zk  Quasiparticle weight

See Coleman’s book

Zk=|<g|akc†k|g>|2 >  0

Overlap between the state reached 
adding an electron to the 
interacting system and the state
which results from adding an elementary 
excitation to the interacting system
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❑ Write the electron operator c†k in terms of the elementary excitations of the interacting system, 

the quasiparticles a†
k

Connecting quasiparticles and real electrons

See Coleman’s book

0 ≤ Zk ≤ 1

Quasiparticle weight

Zk Measures the strength of correlations & the validity of Fermi liquid description

• Zk=1 non interacting system

• Zk>0 ensures one to one correspondence between electron and 

quasiparticle.

• Zk=0 Fermi liquid theory not applicable

Zk=|<g|akc†k|g>|2 
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Electronic distribution. Jump at Fermi Surface

nk=
g|C†

kCk|
g> = Zk 

g|a†
kak|

g> + continuum 

Continuum or incoherent part: 
Electronic excitations  which 
are not in the quasiparticle stateDistribution of

real electrons

Do not confuse this 

continuum with the 
continuum limit vs lattice

Electronic excitations
which are in the 
quasiparticle state

See Coleman’s book
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Electronic distribution. Jump at Fermi Surface

nk=
g|C†

kCk|
g> = Zk 

g|a†
kak|

g> + continuum 

(−k)
At T=0 the distribution of 
quasiparticles has jump of 

height 1 at the Fermi surface

The quasiparticles 
follow  Fermi Dirac 
statistics

Continuum or incoherent part: 
Electronic excitations  which 
are not in the quasiparticle stateDistribution of

real electrons

Jump=1

nk

kF k

Distribution of quasiparticles

See Coleman’s book
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Electronic distribution. Jump at Fermi Surface

nk=
g|C†

kCk|
g> = Zk 

g|a†
kak|

g> + continuum 

Zk (−k)
Jump of Height 1
at Fermi surface

Multiplied by Zk

Zk 

Leakage of electrons away from the Fermi surface 

(stronger correlations larger leakage)

See Coleman’s book

At T=0 the distribution of 
electrons has a jump of 

height Zk  (not 1) at the 

Fermi level
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The spectral function A(k,): Distribution of excitations created 

when an electron (a real electron) with momentum k
is added or removed from the system

The Spectral Function  A(k,)
ARPES

In an experiment: c+
k |g>ck |g>

STM (sum of all K)
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❑ Non interacting system
The spectral function A(k,): Distribution of excitations created 

when an electron (a real electron) with momentum k
is added or removed from the system

Eigenstate, well defined energy 
for a given momentum.

Infinite lifetime

Fermi level

E(k)

In an independent electron system 

the spectral function A(k, w) is a delta function and “measures the bands”

The Spectral function  A(k,)

A(k,)=(=E(k))

ARPES

In an experiment: c+
k |g>ck |g>

STM (sum of all K)

E(k)
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See Coleman’s book

The Interacting Spectral Function  A(k,)

❑ Non interacting 
system

Fermi level

Distribution of excitations created when an electron (a real electron) 

with momentum k is added or removed from the system

Figs. Coleman’s book

Incoherent part:
Amount of the
Electronic excitation 
which is not in the 
quasiparticle state

Quasiparticle peak:
Part of the electronic 
excitation which is in
the quasiparticle state
Coherent part

E*(k)Not the same energy
as in the non-interacting limit

(also called continuum)❑ Interacting system (Fermi liquid)
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See Coleman’s book

The Interacting Spectral Function  A(k,)

Figs. Coleman’s book

Incoherent part:
Amount of the
Electronic excitation 
which is not in the 
quasiparticle state

Quasiparticle peak:
Part of the electronic 
excitation which is in
the quasiparticle state
Coherent part

E*(k)Not the same energy
as in the non-interacting limit

(also called continuum)❑ Interacting system (Fermi liquid)
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See Coleman’s book

The Interacting Spectral Function  A(k,)

Distribution of excitations created when an electron (a real electron) 

with momentum k is added or removed from the system

Figs. Coleman’s book

Quasiparticle peak: Part of the electronic 
excitation which is in the quasiparticle state
Coherent part

Peak width: 
Decay of 
the quasiparticle

Fermi surface
Away from Fermi surface

E*(k)

E*F

At the Fermi Surface the quasiparticle 
peak is infinitely narrow (at T=0)

 ∝  ( E*(k))2 +  T2
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The Interacting Spectral Function  A(k,)

Non interacting

Larger interaction

Quasiparticle
(peak with finite width)

Energy of the quasiparticle peak

different from non-interacting E(K)
(much narrower band)

Continuum or incoherent

part of the spectrum
(non-quasiparticle like)Calderón, Camjayi & EB, 

PRB 106, L081123 (2022)

Calculated spectrum for a 
2-orbital Hubbard model 
at half-filling 

Finite temperature
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The Spectral Function  A(k,) and ARPES
(angle resolved photoemission)

Figs: Damascelli et al, RMP 2003 
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The Spectral Function  A(k,) and ARPES

Possibility to map the bands

Well defined 
Quasiparticle
peaks

Figs: Damascelli et al, RMP 2003 
       Zhang et al, Nat Phys. 2010 

Bi2Se3

(angle resolved photoemission)

Weakly correlated system
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The Spectral Function  A(k,) and ARPES

Spe

Possibility to map the bands

Well defined 
Quasiparticle
peaks

Badly defined 
quasiparticle
peak

Figs: Damascelli et al, RMP 2003 
       Zhang et al, Nat Phys. 2010 

Cuprate

Bi2Se3

Very strongly 
correlated system

(angle resolved photoemission)

Weakly correlated system
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The Spectral Function A(k,) and ARPES

Weakly correlated system

Fig. : Evtushinksy lectures

EXPERIMENT

PRL 110, 067003 (2013)

Iron chalcogenide

Strongly correlated system

Well defined bands Blurred spectrum and 
anomalous temperature behavior
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Summary: Connecting quasiparticles and electrons. The spectral function

c+
k ≠ a+

k Electron Quasiparticle:  Elementary excitation

Quasiparticle weight
(overlap) 

Decay of the electron (continuum)

0 <Z ≤ 1

Zk 

E*(k)

reduced
jump

leakage

Quasiparticle
peak (finite
width away from
EF or T=0)

Spectral function

Continuum

measures 
correlations

Coleman’s book
Damascelli, RMP 2003 
Zhang et al, N Phys. 2010 
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Fermi Liquid Theory

❑ Assume adiabaticity: the interacting ground state is perturbatively connected 

❑Quasiparticles in a metal: fermionic excitations with spin ½ and charge e. Well defined Fermi surface

❑ Quasiparticle decay rate in 3D: 

❑Quasiparticles: elementary excitations of the interacting system have a one to one correspondence 

with elementary excitations of the non-interacting one. Implies quasiparticle weight Zk finite.

❑ Description of the system in terms not of the ground state of the system but in terms of the low 

energy excitations→ deviation from equilibrium np.

❑ Energy functional F[np] in terms of parameters which can be measured experimentally (specific 

heat, mass, susceptibilities …)

-1=
(*)2+2T2

E*F
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Description of the energy in terms of excitations (quasiparticles)

❑ Consider non-interacting ground state  

Excitations 

❑ Define the transformation 

❑ Rewrite the hamiltonian  

Deviation from 
equilibrium occupation

Fermionic excitations
Charge e
Spin 

0

0

dd

d

Ground state
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Description in terms of excitations (quasiparticles)

nk=d†
kdk

Excitations (the occupation of the states 

in equilibrium is included in Fg) 

0 dd

Density of excitations

H0-N=Fg+ kknk 
= F [nk] 

Energy of the excitation measured 
with respect to the ground state

Energy written as a 
functional of the 
density of excitations
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Fermi liquid theory: Description in terms of excitations (quasiparticles)

nk=d†
kdk

Excitations (the occupation of the states 

in equilibrium is included in Fg) 

0 dd

Density of excitations

H0-N=Fg+ kknk 
= F [nk] 

Energy of the excitation measured 
with respect to the ground state

Energy written as a 
functional of the 
density of excitations

❑ Landau’s idea: Energy of interacting system is a functional of the density of excitations, the 

quasiparticles, F[nk] and do an expansion around equilibrium assuming small 

nk=a†
kak

nk
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Fermi liquid theory: Description in terms of excitations (quasiparticles)

F [nk] =Fg+ kknk 
+kk’’fkk’’nknk’’ + O(n3)

First order
in the 
expansion

second order
in the 
expansion

k =
F

(nk)
nk= F

(nk)(nk)
nk=

fkk’’ =

❑ Landau’s idea: Energy of interacting system is a functional of the density of quasiparticles F[nk] 

Expansion around equilibrium. Small nk=a†
kak

nk
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Fermi liquid theory: Description in terms of excitations (quasiparticles)

F [nk] =Fg+ kknk 
+kk’’fkk’’nknk’’ + O(n3)

❑ Landau’s idea: Energy of interacting system is a functional of the density of quasiparticles F[nk] 

Expansion around equilibrium. Small nk=a†
kak

nk

First order: Energy of a quasiparticle 
in the absence of other quasiparticles

Second order: Residual interactions between the quasiparticles
(responsable for quasiparticle decay and instabilities) 
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Fermi liquid theory: Description in terms of excitations (quasiparticles)

F [nk] =Fg+ kknk 
+kk’’fkk’’nknk’’ + O(n3)

❑ Landau’s idea: Energy of interacting system is a functional of the density of quasiparticles F[nk] 

Expansion around equilibrium. Small nk=a†
kak

nk

Comparison with non-interacting case

H0-N= F [nk] =Fg+ kknk 

Renormalized energy of

the quasiparticle k 

No second order term 
in the non-interacting case
(no interactions)
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Fermi liquid theory: Description in terms of excitations (quasiparticles)

F [nk] =Fg+ kknk 
+kk’’fkk’’nknk’’ + O(n3)

❑ Landau’s idea: Energy of interacting system is a functional of the density of quasiparticles F[nk] 

Expansion around equilibrium. Small nk=a†
kak

nk

F [nk] =Fg+ k (k + k’’fkk’’nk’’) nk
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Fermi liquid theory: Description in terms of excitations (quasiparticles)

F [nk] =Fg+ kknk 
+kk’’fkk’’nknk’’ + O(n3)

❑ Landau’s idea: Energy of interacting system is a functional of the density of quasiparticles F[nk] 

Expansion around equilibrium. Small nk=a†
kak

nk

’k= k + k’’fkk’’nk’’©

F [nk] =Fg+ k (k + k’’fkk’’nk’’) nk = Fg+ kknk

The energy of a quasiparticle
is modified by the presence
of other excitations nk=nk()−nk()

Non-rigid band shift
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Fermi liquid theory: Parameters of the model. The renormalized mass

❑ To first order:

F [nk] =Fg+ kknk 

Energy of a quasiparticle in the absence of other quasiparticles
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Fermi liquid theory: Parameters of the model. The renormalized mass

❑ To first order:

F [nk] =Fg+ kknk 

Energy of a quasiparticle in the absence of other quasiparticles

In a non-interacting state (continuum)

F [nk] =Fg+ kknk 

k= k2/2m – = (k2– kF
2)/2m

close to kF we can linearize the spectrum 
(first order expansion in k-kF)

k= (k-kF) kF

kF

m
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Fermi liquid theory: Parameters of the model. The renormalized mass

❑ To first order:

F [nk] =Fg+ kknk 

Energy of a quasiparticle in the absence of other quasiparticles

In a non-interacting state (continuum)

F [nk] =Fg+ kknk 

k= k2/2m – = (k2– kF
2)/2m

close to kF we can linearize the spectrum 
(first order expansion in k-kF)

k= (k-kF) kF

kF

m

By analogy, in the interacting
system, we linearize the 
spectrum close to kF and define m*

k= (k-kF)
kF

m*

Renormalized mass or
quasiparticle mass
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Fermi liquid theory: Parameters of the model. The renormalized mass

❑ Non-interacting system:

m-1= |2/k2|

Band mass different to the  free electron mass
Modification due to ionic potential

k= (k-kF)
kF

m

❑ Interacting system:

k= (k-kF)
m*

Quasiparticle mass different from the band mass m 
due to the electronic interactions

(also v*F in Dirac materials) 

kF
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Fermi liquid theory: Parameters of the model. The renormalized mass

Mass/bandwidth renormalization

k= (k-kF)
kF

m
k= (k-kF)

kF

m*
m*>m   always

The backflow of the surrounding 
fluid enhances the mass

In simple 
models Z

m
m* =

Quasiparticle
weight
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Fermi liquid theory: Parameters of the model. The renormalized mass

Mass/bandwidth renormalization

k= (k-kF)
kF

m
k= (k-kF)

kF

m*
m*>m   always

The backflow of the surrounding 
fluid enhances the mass

Fig. : Evtushinksy lectures

How large is m*/m?

LDA or similarExperimental
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Fermi liquid theory: Measurable quantities

Non-interacting Fermi gas:  

o Specific heat

Cv= T Linear in 
temperature

o Spin susceptibility 

s= B
2N(F)   m

Assumed 

KBT << 

independent of T

From Fermi-Dirac statistics

=()
(F)  m 

s=
M

H

Cv=
F

T


n() =
1

e(−)/KBT+1
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Fermi liquid theory: Measurable quantities

See Pines & Nozieres’ and Coleman’s  books for details on the derivation 

Interacting Fermi liquid:  

nk =
1

e-(k’−)/KBT+1

’k= k + k’’fkk’’nk’’©

Fermi-Dirac distribution for
“interacting” quasiparticle energies 
 

Quasiparticle weight Zk 

not present because
this is the distribution
for the quasiparticle energies

o Specific heat Cv=
F

T


o Spin susceptibility s=
M

H
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Fermi liquid theory: Parameters of the model. The renormalized mass

Specific heat Cv=
F

T


F [nk] =Fg+ kknk + kk’’fkk’’nknk’’ + O(n3)

T2  T4F(T)

Same  temperature dependence
as in Fermi gas but with a 

renormalized proportionality 
constant 

C*v= T =()
(

F)  m* 
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Fermi liquid theory: Parameters of the model. The renormalized mass

Specific heat Cv=
F

T


F [nk] =Fg+ kknk + kk’’fkk’’nknk’’ + O(n3)

T2  T4F(T)

Same  temperature dependence
as in Fermi gas but with a 

renormalized proportionality 
constant 

C*v= T =()
(

F)  m* 

Check experimental 
dependence and measure g
Can be also compared with
Model calculations

C*v=
m*

m
Cv

Interacting Non-Interacting

Comparison with 
LDA like calculations
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Fermi liquid theory: Parameters of the model. The renormalized mass

Cv= T =()
(

F)  m* 


Au,Ag=  mJ mol− − (vs 0.63 mJ mol-1 K-1  in absence of interaction) 


CeCu6=  J mol− − Heavy fermion

Specific heat
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Fermi liquid theory: Parameters of the model. The renormalized mass

Cv= T =()
(

F)  m* 


Au,Ag=  mJ mol− − (vs 0.63 mJ mol-1 K-1  in absence of interaction) 


CeCu6=  J mol− − Heavy fermion

Specific heat

(note phonon contribution
can dominate Cv  T3 )

T2(K2)

C
v/

T 
(m

J 
m

o
l-1

 K
-2

)
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Fermi liquid theory: Parameters of the model. Comparing to experiment

Non-interacting electrons 

Specific heat

Cv= T =()
(F)  m 

Fermi liquid

Cv=* T   m* 

de Medici et al

SS=Slave Spin

Experiment

Iron superconductors

Doping

The mass is highly enhanced
with hole doping

Hole doping
(with K)

Doping with
Cs, Rb

Electron 
doping

Electron doping

Temperature

BaFe2As2

Hole doping
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Fermi liquid theory: Interactions between quasiparticles

F [nk] =Fg+ kknk + kk’’fkk’’nknk’’ + O(n3)

Focus on the Fermi surface |k|=|k’|=KF

Time-reversal invariance (no magnetic field) fk,k’’=f-k--k’-’

Fermi surface invariant under reflection k → -k fk,k’’=fk-k’-’

If spin is conserved in general the dependence on spin enters only  via  their relative orientation

Spin symmetric Spin antisymmetric
(exchange)

fk,k’’=fkk’
s+fkk’

a’ 

Pines & Nozieres and Coleman’s books

Remember assumption 
of isotropic system
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Fermi liquid theory: Interactions between quasiparticles

F [nk] =Fg+ kknk + kk’’fkk’’nknk’’ + O(n3)

fkk’
s fkk’

a

Focus on the Fermi surface |k|=|k’|=KF. Isotropic system

fkk’
s,a : dependence only on the 

              angle  between k and k’ 

Expansion in 
Legendre Polynomials

fkk’
s,a= l=0

fl
s,aPl(cos )

Dimensionless parameters N*(E*
F) fl

s,a=Fl
s,a

Density of quasiparticle

states at the Fermi level
In the interacting system

Interaction parameters

F0
s, F0

a, F1
s, F1

a …
Can be extracted from experiment

and model calculations
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Fermi liquid theory: Interactions and parameters. Summary

F [nk] =Fg+ kknk + kk’’fkk’’nknk’’ + O(n3)

Energy of a quasiparticle 
in the absence of other quasiparticles

k= (k-kF)
kF

m*

Renormalized mass or
quasiparticle mass

Linearized dispersion around KF

Residual interactions 
between the quasiparticles

Expansion of the free energy in terms of the quasiparticle density

fkk’
s,a= l=0

fl
s,aPl(cos )

N*(E*
F) fl

s,a=Fl
s,a

Small number of parameters l=0,1 …
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Fermi liquid theory: Measurable quantities. Spin susceptibility

Susceptibility
Spin dependent
Isotropic response

o Spin susceptibility 


s= independent of T 

as in Fermi gas

B
2N*(F)

=  

1 + F0
a

(m*/m)

1 + F0
a

s

interacting
Non-interacting

s=
M

H
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Fermi liquid theory: Measurable quantities. Spin susceptibility

Susceptibility
Spin dependent
Isotropic response

o Spin susceptibility 


s= independent of T 

as in Fermi gas

B
2N*(F)

=  

1 + F0
a

(m*/m)

1 + F0
a

s

interacting
Non-interacting

s=
M

H

Wilson ratio or Stoner enhancement factor

W=
(

s)

(s)
=  

1 + F0
a

1
Cv= T  m* 

Deviation from unity, 
signature of electronic correlations

Constant
A way to obtain F0

aLDA

experiment
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Band theory: classification into metals and insulators

Not changed by interactions in a Fermi liquid
Metal  

increases with T

Insulator  

decreases with T

Fermi liquid theory: Measurable quantities. Resistivity
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Band theory: classification into metals and insulators

Not changed by interactions in a Fermi liquid

Drude conductivity -1=
2T2

E*F
=ne2/m*  m*T2

Metal  

increases with T

Insulator  

decreases with T

Fermi liquid theory: Measurable quantities. Resistivity
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Band theory: classification into metals and insulators

Not changed by interactions in a Fermi liquid

Drude conductivity -1=
2T2

E*F
=ne2/m*  m*T2

Metal  

increases with T

Insulator  

decreases with T

Fermi liquid theory: Measurable quantities. Resistivity

=0 + AT2 A  (m*)2

Quadratic 
dependence
on T

Constant strongly 
dependent on 
interactions

disorder

Phonon resistivity  T5 can dominate in simple metals

High resistivity 
due to interactions

Many materials show a resistivity which
shows a T2 behavior
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Fermi liquid theory: Measurable quantities. 

C*v= T m*

=0 + AT2 A  (m*)2

A
()

~ constant

Kadowaki –Woods ratio
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Fermi liquid theory: Measurable quantities. 

C*v= T m*

=0 + AT2 A  (m*)2

A
()

~ constant

Kadowaki –Woods ratio

A and  
corrected by
degeneracy

Fig: Tsuji et al, 
PRL 94, 057201 
(2005)
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Fermi liquid theory: Measurable quantities. Resistivity

=0 + AT2 A  (m*)2

Strange metal 

Observed in many correlated systems. Not the 
behavior expected from quasiparticles

Key whether this behavior reaches T     0

  T

High-Tc superconducting cuprates

Fig: cme.physics.ucdavis.edu

In cuprates the resistivity does 

not seem to saturate

Fig: Dagotto, 
RMP 66, 763 (1993)

Linear in T resistivity also observed in iron superconductors, heavy fermions, Twisted Bilayer Graphene, Twisted dichalcogenides … 

Non-Fermi liquid behavior



leni.bascones@csic.es

Fermi liquid theory: Measurable quantities. 

Mass renormalization

Looking at the quasiparticle current

m*=m (1+ F1
s) =

m

1- N(EF)f
1

s

Spin independent
But directional response

Coleman’s book
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❑  Bands observed in photoemission 
Reduction in bandwidth as compared to LDA estimate of m*/m 

❑ Specific heat linear in temperature. 

Enhancement of g estimate of  m*/m

Careful in materials with multiple Fermi pockets

❑ Temperature independent spin susceptibility

Enhancement: mass renormalization + Stoner enhancement

❑ Resistivity quadratic in temperature

Interactions enhance resistivity as (m*)2 

C*v= T

=0 + AT2

Correlated electrons: frequently non-Fermi liquid behavior

Fermi liquid behavior

The notion of 
Quantum Materials
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Remember: Fermi liquid behavior does not mean simple band theory

Band theory: 

   Basis of our understanding of solids

   - Successful description

   - Metals and insulators

   - Dependence on temperature of 
     measurable quantities (Cv, c, ..)

m*/m can be large 

Larger deviations of ”standard” behavior at large energies 
and temperatures

=0 + AT2

Enhancement of susceptibility and specific heat

Due to decay 
of quasiparticles

Renormalized parameters tell us about the strength 
of interactions
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