Emergence of Quantum Phases in Novel Materials

VIII Edition ICMM School

Fermi Liquid Theory

Outline

- ☐ The Fermi gas
- ☐ Why does band theory work? Concepts: Adiabaticity and quasiparticles
- Definition of adiabaticity and quasiparticles
- Electronic distribution function
- Quasiparticle decay
- Quasiparticle weight and spectral function
- ☐ Energy as a functional of the number of quasiparticles. Measurable quantities.
- Renormalized mass: Specific heat and mass in ARPES
- Interaction parameters : Spin susceptibility, resistivity
- ☐ Fermi liquid behavior and instabilities of the Fermi liquid

Some references

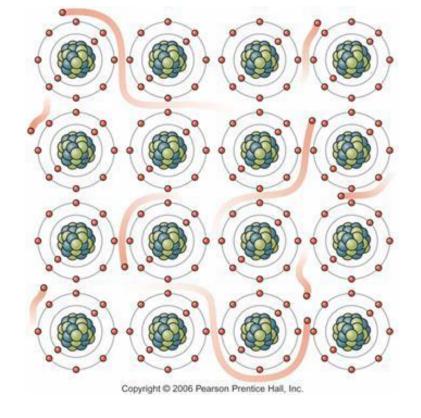
- Introduction to many body physics. Piers Coleman. Cambridge University Press.
- Theory of Quantum Liquids. Phillipe Nozieres, David Pines. Advanced Books Classics.
- A guide to Feynmann Diagrams in the Many Body problem. E.D. Mattuck. Dover Books on Physics
- Metal-insulator transitions. M. Imada, A. Fujimori, Y. Tokura. Rev. Mod. Phys. 70, 1039 (1998)

Why is band theory so successful?

Interactions:

Electrons interact between them (and with the lattice)

Interaction not small vs kinetic energy



We cannot solve the interacting problem exactly

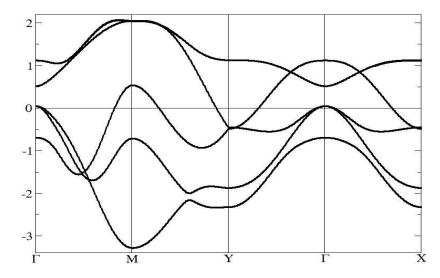
Approximations

Band theory: The basis of our understanding of solids

Band theory:

Basis of our understanding of solids

- Successful description
- Metals and insulators
- Dependence on temperature of measurable quantities (Cv, c, ..)

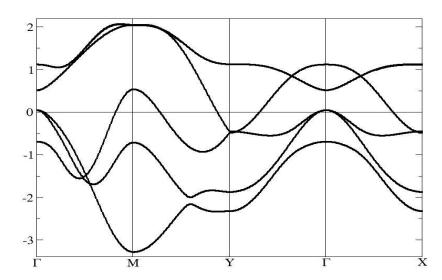


Why is band theory so successful?

Band theory:

Basis of our understanding of solids

- Successful description
- Metals and insulators
- Dependence on temperature of measurable quantities (Cv, c, ..)



Interactions:

Electrons interact between them (and with the lattice)

Interaction not small vs kinetic energy

Interactions not included in the band picture beyond simple mean field

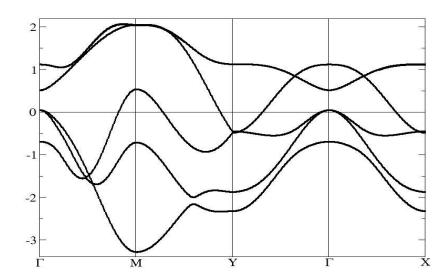
"Independent" electron model

Why is band theory so successful?

Band theory:

Basis of our understanding of solids

- Successful description
- Metals and insulators
- Dependence on temperature of measurable quantities (Cv, c, ..)



Interactions:

Electrons interact between them (and with the lattice)

Interaction not small vs kinetic energy

Interactions not included in the band picture beyond simple mean field

Why does band theory work?

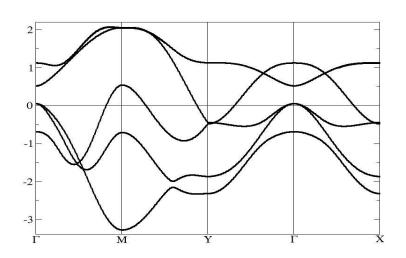
Fermi liquid theory

Does it always work?

NO (Mott physics, Luttinger liquids ...)

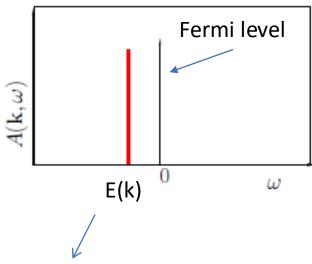
What do we mean with "independent" electron model?

- Well defined eigenstates with momentum k E(k)
- E(k) filled following Fermi-Dirac. Fermi surface.
- If we add or remove an electron with momentum k to the ground state. The new electron occupies an eigenstate E(k).
- Energy levels are not modified, just filled. Rigid Band shift



The Spectral function

■ Non interacting system



Eigenstate, well defined energy for a given momentum.

Infinite lifetime

Distribution of excitations created when an electron (a real electron) with momentum k is added or removed from the system

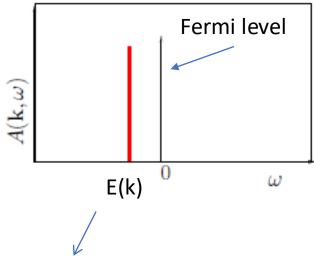
In an independent electron system, if we add or remove an electron with momentum k to the ground state the new electron occupies an Eigenstate E(k)

In an independent electron system the spectral function A(k, w) is a <u>delta function</u> and "determines the bands"

$$A(k,w)=\delta(\omega=E(k))$$

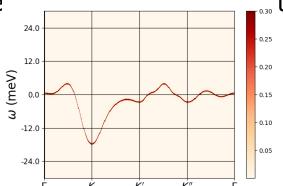
The Spectral function

■ Non interacting system



Eigenstate, well defined energy for a given momentum.

Infinite lifetime



Distribution of excitations created when an electron (a real electron) with momentum k is added or removed from the system

In an independent electron system, if we add or remove an electron with momentum k to the ground state the new electron occupies an Eigenstate E(k)

In an independent electron system

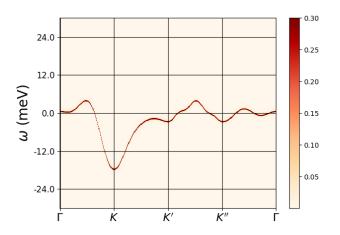
the spectral function A(k, w) is a <u>delta function</u> and "determines the bands"

$$A(k,w)=\delta(\omega=E(k))$$

What does it mean that the "independent" electron model works?

Independent electron model (Band theory):

- Well defined "single particle states" E(k)
- Rigid band shift.



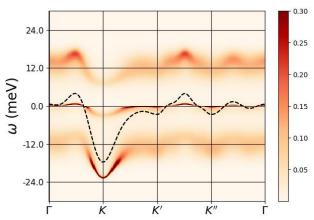
Interacting system:

 If we add electron with momentum k to ground state of a Fermi sea we expect the energy levels E(k) to be modified due the interactions, not just filled

Non rigid band shift expected

Electronic state E(k) expected to decay in excitations of the system

Description in terms of single particle states "does not seem possible".



What does it mean that the "independent" electron model works?

Independent electron model (Band theory):

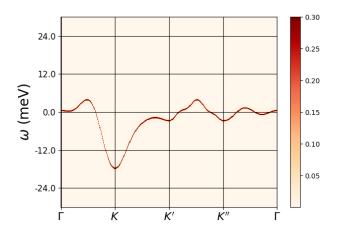
Rigid band shift. Single particle states E(k)

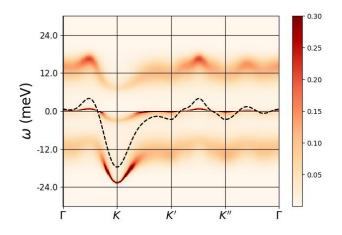
Interacting system:

- Description in terms of single particle states does not seem possible.
- Electronic state expected to decay in excitations of the system.

Fermi liquid theory

- Pauli principle restricts the phase space for decay of excitations
- Description based on elementary excitations not on ground state



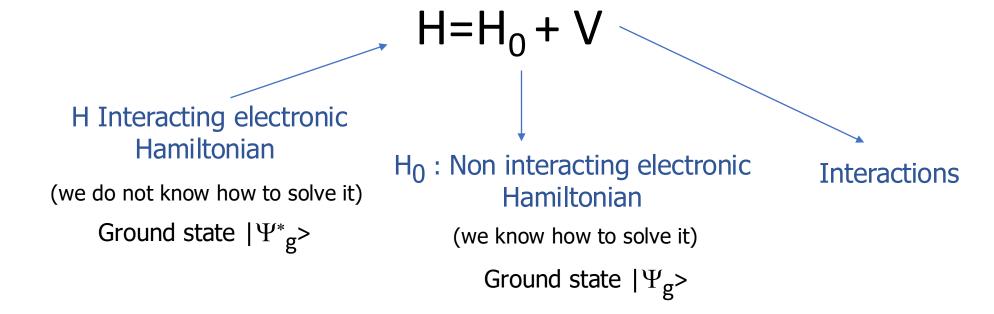


Fermi liquid theory: general idea

- ☐ It justifies the success of band theory ☐ Focus not in ground state but in low energy excitations. Introduces the concept of quasiparticles. Valid only at low energies and temperatures.
- ☐ Theory written in terms of parameters. It goes beyond particular models
- ☐ Phenomenological theory, but it can be justified with perturbation theory
- Perturbative theory, but not restricted to weak interactions.
- ☐ Proposed for 3-He: isotropic, no charge, short range interactions, in the continuum limit but it can be generalized to describe electrons in a metal
- ☐ Sometimes it fails. Strongly correlated electron systems. Non-Fermi liquid behavior

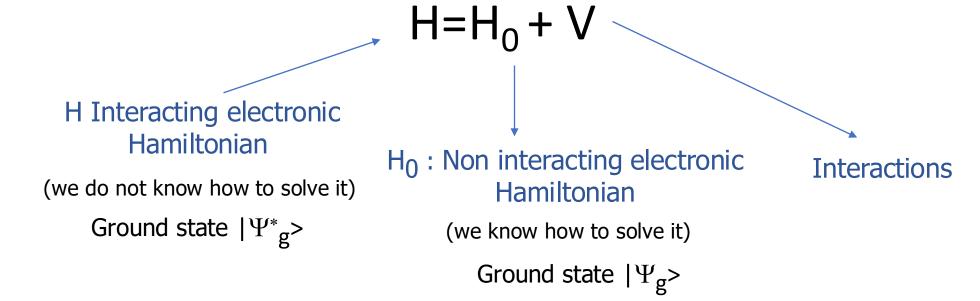
Adiabaticity and quasiparticles

Assume N interacting fermions



Adiabaticity

Assume N interacting fermions



Assume adiabaticity

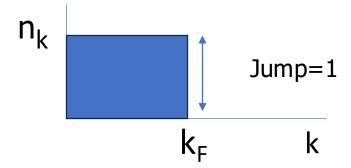
 $|\Psi^*_{\rm g}>$ and $|\Psi_{\rm g}>$ adiabatically connected

Effect of interactions V is perturbative (No phase transition)

Introducing quasiparticles

 \circ Assuming adiabaticity (perturbative effect of interactions) we will see that the system has elementary excitations with momentum k, spin ½ and charge **e** called quasiparticles $\mathbf{a}^+_{\mathbf{k}\sigma}$ (Assume there is no spin-orbit interaction)

 \circ The quasiparticles $\mathbf{a}^+_{\mathbf{k}\sigma}$ follow a Fermi-Dirac distribution at T=0 (step). Fermi surface



The quasiparticle energies $\epsilon^*(K)$ are well defined at small T and small energy (with respect to Fermi level) $\Gamma << \epsilon^*(K)$ in 3D and 2D (But not in 1D)

1

Away from T=0 and/or from the Fermi Surface $\tau^{-1}=\Gamma$ is finite (excitation decay)

Introducing quasiparticles

• Assuming adiabaticity (perturbative effect of interactions) we will see that the system has elementary excitations with momentum k, spin $\frac{1}{2}$ and charge **e** called quasiparticles $\mathbf{a}^+_{k\sigma}$. The quasiparticles follow a Fermi-Dirac distribution and have well defined energy at small T and small energy

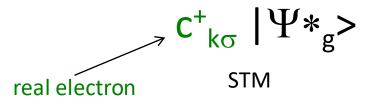
Distinguish: Real electron $c^+_{k\alpha}$

Quasiparticle a⁺_{kc}

$$c^{+}_{k\sigma} \neq a^{+}_{k\sigma}$$

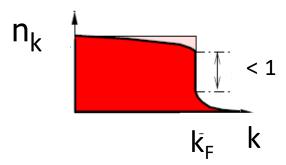
Not equal, but one to one correspondence when Fermi liquid works

o In an experiment (STM, ARPES) we add or remove a real electron

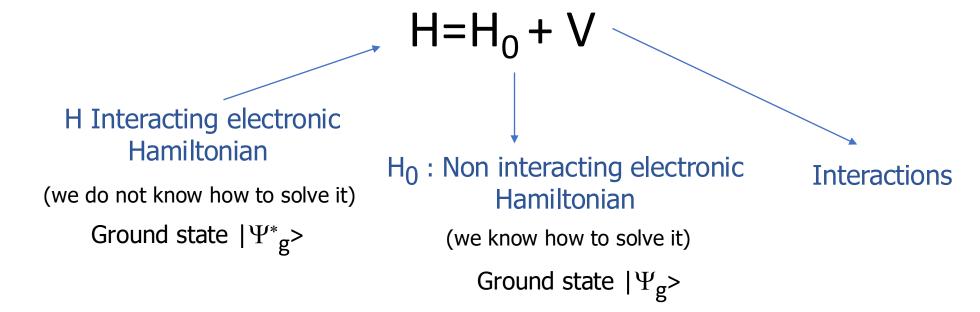


$$\mathsf{c}_{\mathsf{k}\sigma} \mid \Psi *_{\mathsf{g}} >$$

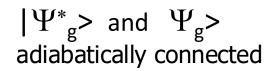
We probe the spectral function of the real electrons



Assume N interacting fermions



Assume adiabaticity



Effect of interactions V is perturbative (No phase transition)

 $|\Psi^*_{g}>$ ground state of N-particles of interacting system

$$H=H_0+V$$

 $|\Psi_{\rm g}\rangle$ ground state of N-particles of non-interacting system

 H_0

Imagine that we switch on the interactions very slowly in time starting from H_0 at $t=-\infty$

Interaction completely switched on at t=0

 $|\Psi^*_{g}\rangle$ ground state of N-particles of interacting system

$$H=H_0+V$$

 $|\Psi_{\rm g}\rangle$ ground state of N-particles of non-interacting system

 H_0

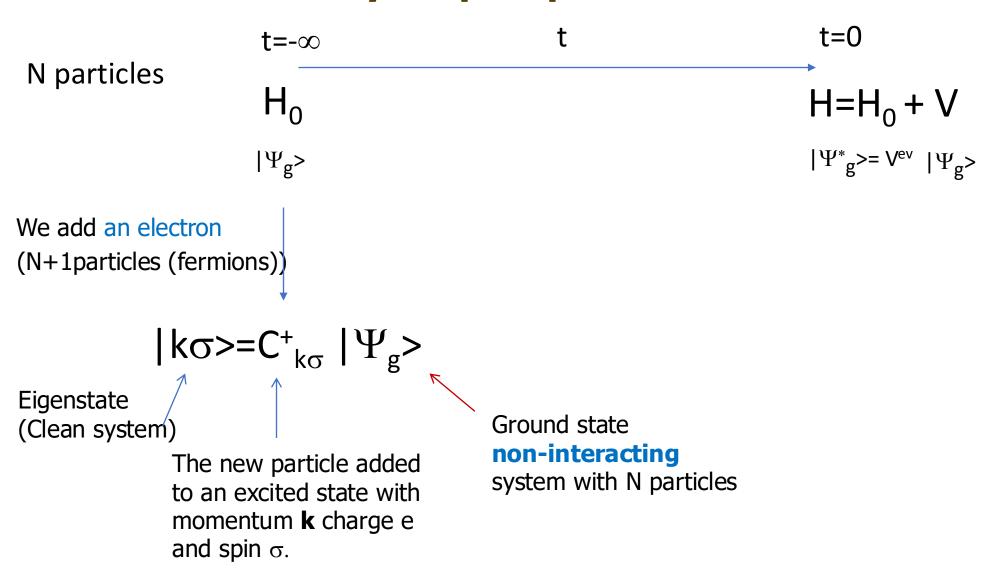
Imagine that we switch on the interactions very slowly in time starting from H_0 at $t=-\infty$

Interaction completely switched on at t=0

Follow the evolution of the ground state from $|\Psi_{\rm g}>$ to $|\Psi^*_{\rm g}>$

$$|\Psi_g^*(t)\rangle = V^{ev} |\Psi_g\rangle$$

Adiabaticity: $|\Psi^*_{g}\rangle$ and $|\Psi_{g}\rangle$ are perturbatively connected



$$t=-\infty$$
 t $t=0$ $H=H_0+V$ $|\Psi_g>=V^{ev}$ $|\Psi_g>$

We add **an electron** (N+1particles (fermions))

Switch on interactions and let the system evolve

$$\begin{array}{c|c} |k\sigma>=C^{+}_{k\sigma}|\Psi_{g}> \end{array}$$
 Eigenstate

The new particle added to an excited state with momentum \mathbf{k} charge e and spin σ .

Ground state **non-interacting** system with N particles

$$|k\sigma*>=V^{ev}|k\sigma>=V^{ev}C^{+}_{k\sigma}|\Psi_{g}>$$

State which results from the evolution of $|k\sigma\rangle$

N particles

We add **an electron** (N+1particles (fermions))

Switch on interactions and let the system evolve

$$|k\sigma\rangle = C^{+}_{k\sigma} |\Psi_{g}\rangle$$

The new particle added to an excited state with momentum \mathbf{k} charge e and spin σ .

$$\begin{aligned} |k\sigma*\rangle &= V^{ev} |k\sigma\rangle = V^{ev} C^{+}_{k\sigma} |\Psi_{g}\rangle \\ |k\sigma*\rangle &= V^{ev} C^{+}_{k\sigma} (V^{ev})^{-1} |\Psi^{*}_{g}\rangle \\ |k\sigma*\rangle &\neq C^{+}_{k\sigma} |\Psi^{*}_{g}\rangle \end{aligned}$$

N particles

We add **an electron** (N+1particles (fermions))

Switch on interactions and let the system evolve

$$|k\sigma\rangle = C^{+}_{k\sigma} |\Psi_{g}\rangle$$

$$|k\sigma*\rangle = V^{ev}|k\sigma\rangle = V^{ev}C^{+}_{k\sigma}|\Psi_{g}\rangle$$

$$|k\sigma*\rangle = V^{ev}C^{+}_{k\sigma}(V^{ev})^{-1}|\Psi^{*}_{g}\rangle$$

$$|k\sigma*\rangle \neq C^{+}_{k\sigma}|\Psi^{*}_{g}\rangle$$

Interactions conserve charge, momentum and spin (Assume there is no spin-orbit interaction)

N particles

We add **an electron** (N+1particles (fermions))

Switch on interactions and let the system evolve

$$|k\sigma>=C^{+}_{k\sigma}\ |\Psi_{g}>$$
 Same spin, momentum and charge

(Adiabaticity)

Create an excitation with charge e, momentum k and spin σ

$$|k\sigma*\rangle = V^{ev}|k\sigma\rangle = V^{ev}C^{+}_{k\sigma}|\Psi_{g}\rangle$$

$$|k\sigma*\rangle = V^{ev}C^{+}_{k\sigma}(V^{ev})^{-1}|\Psi^{*}_{g}\rangle$$

$$|k\sigma*\rangle \neq C^{+}_{k\sigma}|\Psi^{*}_{g}\rangle$$

$$|k\sigma*\rangle = a^{+}_{k\sigma}|\Psi^{*}_{g}\rangle$$
See Coleman's book

We add an electron $\ C^+_{\ k\sigma}$ with momentum k and spin σ

$$|k\sigma*>=a^{+}_{k\sigma}|\Psi*_{g}>$$

Create an excitation with momentum k and spin σ in the interacting state

Quasiparticle

Quasiparticle: Elementary excitation of the interacting system with momentum k, spin 1/2, and charge

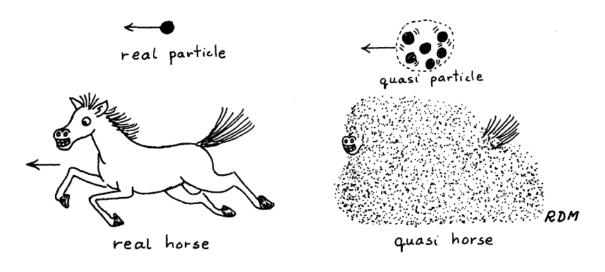
$$|k\sigma*\rangle \neq C^{+}_{k\sigma} |\Psi*_{g}\rangle$$

Quasiparticles and real electrons are not the same but they have a one to one connection

We add an electron $\ C^+_{\ k\sigma}$ with momentum k and spin σ

Create an excitation with momentum k and spin σ in the interacting state

Quasiparticle



Quasiparticle: Elementary excitation of the interacting system with momentum k, spin 1/2, and charge

$$|k\sigma*\rangle \neq C^{+}_{k\sigma} |\Psi*_{g}\rangle$$

Quasiparticles and real electrons are not the same but they have a one to one connection

See Coleman's book

Remember adiabaticity

Mattuck's book

Quasiparticles: Fermi Surface

Existence and definition of quasiparticles

$$|k\sigma*>=a^{+}_{k\sigma}|\Psi*_{g}>$$

Quasiparticles and real electrons are not the same

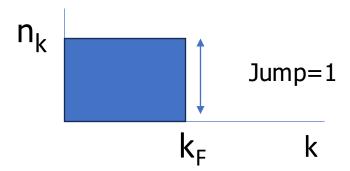
$$C^{\dagger}_{k\sigma}|\Psi^*_g>$$
 $a^{\dagger}_{k\sigma}$ Quasiparticle

$$C_{k\sigma} | \Psi *_g > \longrightarrow a_{k\sigma}$$
 Quasihole

Elementary excitation of the interacting system with momentum k, spin 1/2, and charge

Fermionic excitations

Fermi-Dirac distribution Fermi surface



Quasiparticles: Fermi Surface and decay

Non-interacting system

$$|k\sigma\rangle = C^{+}_{k\sigma} |\Psi_{g}\rangle$$
 Eigenstate (Infinite lifetime)

Interacting system

$$| k\sigma *> = a^+_{k\sigma} | \Psi *_g > \text{Not an Eigenstate} \longrightarrow \text{Finite lifetime} \quad \tau = \Gamma^{-1} \quad \text{(width level)}$$

Stability of the quasiparticle requires

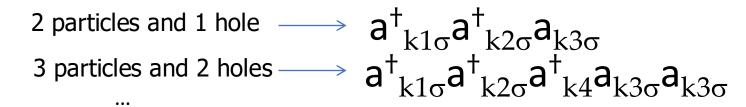
$$\Gamma \ll \epsilon$$

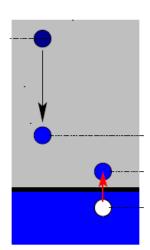
Decay rate of the quasiparticle Much smaller than its energy

A quasiparticle with $k > k_F$ cannot decay into an occupied state below the FS with $k < k_F$

Decay of quasiparticles conserves momentum, charge & spin

$$\mathsf{a}^{\dagger}_{ \mathbf{k} \sigma}$$



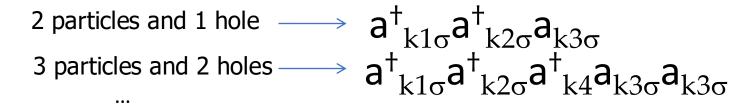


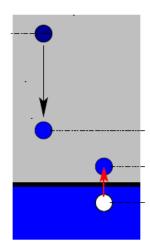
Decay of one quasiparticle 3-body process

A quasiparticle with $k > k_F$ cannot decay into an occupied state below the FS with $k < k_F$

Decay of quasiparticles conserves momentum, charge & spin

$${\sf a}^{\sf t}_{k\sigma}$$





Decay of one quasiparticle 3-body process

$$\tau^{-1} = \frac{\varepsilon^{*2} + \pi^{2}T^{2}}{E^{*}_{F}}$$

$$\varepsilon^{*} = E^{*} - E^{*}_{F}$$

Estimate in 3D based on phase space considerations (Pauli principle) & 3 body decay

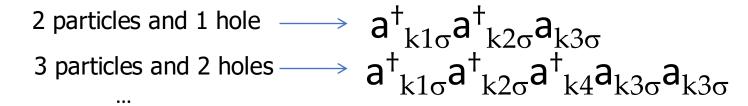
Energy from Fermi Surface

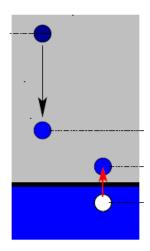
E*_F Fermi energy of the quasiparticles

A quasiparticle with $k > k_F$ cannot decay into an occupied state below the FS with $k < k_F$

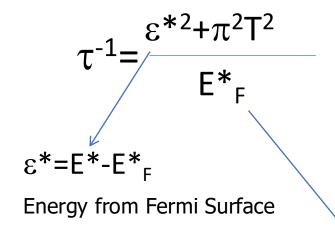
Decay of quasiparticles conserves momentum, charge & spin

$$\mathsf{a}^{\mathsf{t}}_{\mathbf{k}\sigma}$$



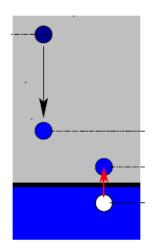


Decay of one quasiparticle 3-body process



Estimate in 3D based on phase space considerations (Pauli principle) & 3 body decay

E*_F Energy which control the range of temperature and energy at which the quasiparticle is well defined It can be very small!



Decay of one quasiparticle 3-body process

$$\frac{\Gamma}{\epsilon} \sim \epsilon$$

$$\frac{\Gamma}{\epsilon} \sim \epsilon \ln \epsilon^*_{\rm F}/\epsilon$$

$$\frac{\Gamma}{\varepsilon}$$
 ~ const

$$\varepsilon = E - E_F^*$$

Energy from Fermi Surface

Quasiparticles well defined at low energies & temperatura with infinite lifetime at the Fermi surface at zero temperature in 3D and 2D but not 1D.

Fermi liquid theory fails in 1D

Giuliani and Quinn PRB 26, 4421 (1982)

3 dimensions

©Michael Paraskevas

2 dimensions

©Sebastian Dubiel

1 dimension

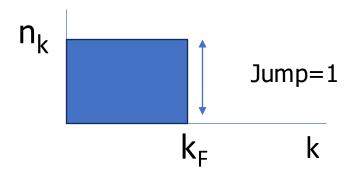
©Carlos Valenzuela

Interactions are never perturbative in 1 dimensión

The quasiparticles are not well defined even at very low temperature and energy

Adiabaticity and quasiparticles. Summary

- Provided that the interacting and non-interacting ground states are adiabatically connected
 (Perturbative effect of interactions. No phase transition):
 - The interacting system has elementary excitations with momentum k, spin ½ and charge $\bf e$ called quasiparticles ${\bf a^+}_{k\sigma}$
 - The quasiparticles **a**⁺_{ks} follow Fermi Dirac statistics and we can define a Fermi surface



• The quasiparticles \mathbf{a}^+_{ks} are not eigenstates of the interacting system. They are expected to decay and have a finite lifetime. But this decay is restricted by Pauli's principle. Quasiparticles are well defined in 2D and 3D at low temperatures and energies.

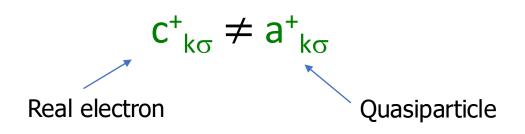
$$\tau^{-1} = \frac{\varepsilon^2 + \pi^2 T^2}{E_{\epsilon}} \qquad \text{in 3D}$$

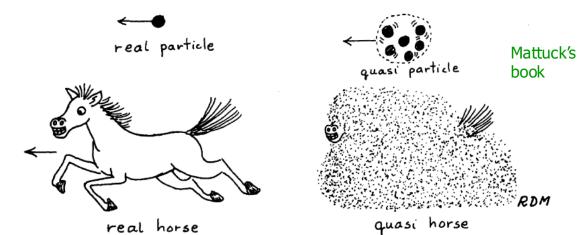
Interactions are not perturbative in 1D Non-Fermi liquid behavior

For simplicity we drop the * to refer to the energies

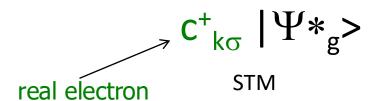
Connecting quasiparticles and real electrons

Adding an electron (hole) and creating a quasiparticle is not the same thing, but there is a one to one correspondence between them.





In an experiment:



$$c_{k\sigma} | \Psi *_{g} >$$

Experimentally it is posible to measure the electron spectral function $A(k,\omega)$

Write $c^+_{k\sigma}$ in terms of $a^+_{k\sigma}$

Quasiparticle weight

 \Box Write the electron operator $c^{\dagger}_{k\sigma}$ in terms of the elementary excitations of the interacting system, the quasiparticles $a^{\dagger}_{k\sigma}$

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}}a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_{4}+\mathbf{k}_{3}=\mathbf{k}_{2}+\mathbf{k}} A(\mathbf{k}_{4}\sigma_{4}, \mathbf{k}_{3}\sigma_{3}; \mathbf{k}_{2}\sigma_{2}, \mathbf{k}\sigma)a^{\dagger}_{\mathbf{k}_{4}\sigma_{4}}a^{\dagger}_{\mathbf{k}_{3}\sigma_{3}}a_{\mathbf{k}_{2}\sigma_{2}} + \dots$$
If different from zero the electron

Generic expression which conserves charge, momentum & spin

If different from zero the electron decays into particle-hole quasiparticle excitations

Decay of the electron into electron-hole quasiparticles excitations (not to be confused with the decay of the quasiparticle)

higher order

decay processes

 \Box Write the electron operator $c^{\dagger}_{k\sigma}$ in terms of the elementary excitations of the interacting system, the quasiparticles $a^{\dagger}_{k\sigma}$

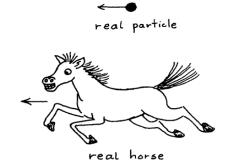
$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}} a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4 \sigma_4, \mathbf{k}_3 \sigma_3; \mathbf{k}_2 \sigma_2, \mathbf{k}\sigma) a^{\dagger}_{\mathbf{k}_4 \sigma_4} a^{\dagger}_{\mathbf{k}_3 \sigma_3} a_{\mathbf{k}_2 \sigma_2} + \dots$$

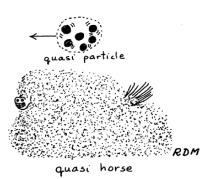
A single particle description

of
$$C^{\dagger}_{k\sigma}|\Psi^*_g>$$

will "make sense" if \mathbb{Z}_k is finite

Z_k Quasiparticle weight — Measurable





The one-to-one connection can be defined only if Z_k is finite

Mattuck's book

 \Box Write the electron operator $c^{\dagger}_{k\sigma}$ in terms of the elementary excitations of the interacting system, the quasiparticles $a^{\dagger}_{k\sigma}$

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}} a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4 \sigma_4, \mathbf{k}_3 \sigma_3; \mathbf{k}_2 \sigma_2, \mathbf{k}\sigma) a^{\dagger}_{\mathbf{k}_4 \sigma_4} a^{\dagger}_{\mathbf{k}_3 \sigma_3} a_{\mathbf{k}_2 \sigma_2} + \dots$$

A single particle description

of
$$C^{\dagger}_{k\sigma}|\Psi^*_g>$$

will "make sense" if Z_k is finite

Z_k Quasiparticle weight

$$Z_k = |\langle \Psi *_g | a_{k\sigma} c^{\dagger}_{k\sigma} | \Psi *_g \rangle|^2 > 0$$

Overlap between the state reached adding an electron to the interacting system and the state which results from adding an elementary excitation to the interacting system

See Coleman's book

 \Box Write the electron operator $c^{\dagger}_{k\sigma}$ in terms of the elementary excitations of the interacting system, the quasiparticles $a^{\dagger}_{k\sigma}$

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}}a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4\sigma_4, \mathbf{k}_3\sigma_3; \mathbf{k}_2\sigma_2, \mathbf{k}\sigma)a^{\dagger}_{\mathbf{k}_4\sigma_4}a^{\dagger}_{\mathbf{k}_3\sigma_3}a_{\mathbf{k}_2\sigma_2} + \dots$$

$$Z_k = |\langle \Psi *_g | a_{k\sigma} c^{\dagger}_{k\sigma} | \Psi *_g \rangle|^2$$

Quasiparticle weight

$$0 \le Z_k \le 1$$

 \boldsymbol{Z}_{k} Measures the strength of correlations & the validity of Fermi liquid description

- $Z_k=1$ non interacting system
- $Z_k > 0$ ensures one to one correspondence between electron and quasiparticle.
- $Z_k=0$ Fermi liquid theory not applicable

Electronic distribution. Jump at Fermi Surface

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}} a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4 \sigma_4, \mathbf{k}_3 \sigma_3; \mathbf{k}_2 \sigma_2, \mathbf{k}\sigma) a^{\dagger}_{\mathbf{k}_4 \sigma_4} a^{\dagger}_{\mathbf{k}_3 \sigma_3} a_{\mathbf{k}_2 \sigma_2} + \dots$$

$$n_k = <\Psi^*_g | C^\dagger_{k\sigma} C_{k\sigma} | \Psi^*_g > = Z_k < \Psi^*_g | a^\dagger_{k\sigma} a_{k\sigma} | \Psi^*_g > + continuum$$

Distribution of real electrons

Electronic excitations which are in the quasiparticle state

Continuum or incoherent part:

Electronic excitations which are not in the quasiparticle state

Do not confuse this continuum with the continuum limit vs lattice

Electronic distribution. Jump at Fermi Surface

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}} a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4 \sigma_4, \mathbf{k}_3 \sigma_3; \mathbf{k}_2 \sigma_2, \mathbf{k}\sigma) a^{\dagger}_{\mathbf{k}_4 \sigma_4} a^{\dagger}_{\mathbf{k}_3 \sigma_3} a_{\mathbf{k}_2 \sigma_2} + \dots$$

$$n_k = <\Psi^*_g | C^\dagger_{k\sigma} C_{k\sigma} | \Psi^*_g > = Z_k < \Psi^*_g | a^\dagger_{k\sigma} a_{k\sigma} | \Psi^*_g > + continuum$$

Distribution

Distribution of real electrons

The quasiparticles follow Fermi Dirac statistics

Continuum or incoherent part: particles Electronic excitations which

are not in the quasiparticle state

At T=0 the distribution of quasiparticles has jump of height 1 at the Fermi surface

$$\Theta(-\epsilon_k)$$

See Coleman's book

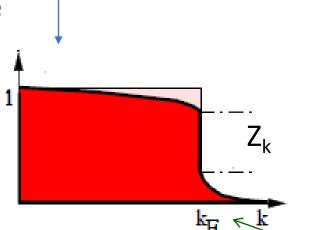
Electronic distribution. Jump at Fermi Surface

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}} a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4 \sigma_4, \mathbf{k}_3 \sigma_3; \mathbf{k}_2 \sigma_2, \mathbf{k}\sigma) a^{\dagger}_{\mathbf{k}_4 \sigma_4} a^{\dagger}_{\mathbf{k}_3 \sigma_3} a_{\mathbf{k}_2 \sigma_2} + \dots$$

Jump of Height 1 at Fermi surface

$$n_{k}\!\!=\!<\!\!\Psi^{*}_{g}|C^{\dagger}_{k\sigma}C_{k\sigma}|\Psi^{*}_{g}\!\!>=Z_{k}<\!\!\Psi^{*}_{g}|a^{\dagger}_{k\sigma}a_{k\sigma}|\Psi^{*}_{g}\!\!>+continuum$$

At T=0 the distribution of electrons has a jump of height Z_k (not 1) at the Fermi level



Leakage of electrons away from the Fermi surface (stronger correlations larger leakage)

See Coleman's book

The Spectral Function $A(k,\omega)$

ARPES

STM (sum of all K)

In an experiment:

$$c_{k\sigma} |\Psi *_g >$$

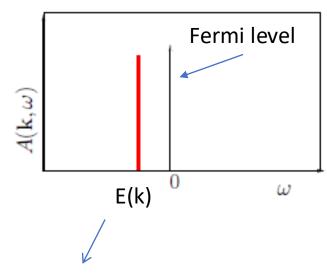
$$c_{k\sigma}^{+} |\Psi^*_g\rangle$$

The spectral function $A(k,\omega)$: Distribution of excitations created when an electron (a real electron) with momentum k is added or removed from the system

The Spectral function $A(k,\omega)$

In an experiment:

☐ Non interacting system



Eigenstate, well defined energy for a given momentum.

Infinite lifetime

ARPES

STM (sum of all K)

$$c_{k\sigma} \mid \Psi *_g >$$

$$c_{k\sigma}^{+} |\Psi^*_{g}\rangle$$

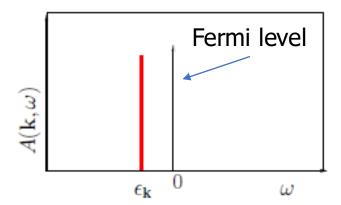
The spectral function $A(k,\omega)$: Distribution of excitations created when an electron (a real electron) with momentum k is added or removed from the system

In an independent electron system

the spectral function A(k, w) is a <u>delta function</u> and "measures the bands"

$$A(k,\omega)=\delta(\omega=E(k))$$

■ Non interacting



☐ Interacting system (Fermi liquid)

Distribution of excitations created when an electron (a real electron) with momentum k is added or removed from the system

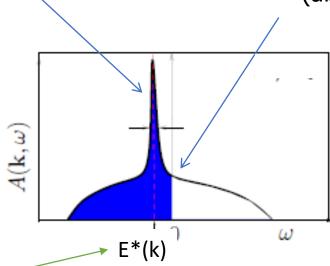
Quasiparticle peak:

Part of the electronic excitation which is in the quasiparticle state Coherent part

Incoherent part:

Amount of the Electronic excitation which is not in the quasiparticle state

(also called continuum)



Not the same energy as in the non-interacting limit

Figs. Coleman's book

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}} a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4 \sigma_4, \mathbf{k}_3 \sigma_3; \mathbf{k}_2 \sigma_2, \mathbf{k}\sigma) a^{\dagger}_{\mathbf{k}_4 \sigma_4} a^{\dagger}_{\mathbf{k}_3 \sigma_3} a_{\mathbf{k}_2 \sigma_2} + \dots$$

■ Interacting system (Fermi liquid)

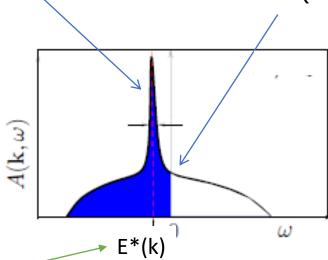
Quasiparticle peak:

Part of the electronic excitation which is in the quasiparticle state Coherent part

Incoherent part:

Amount of the Electronic excitation which is not in the quasiparticle state

(also called continuum)

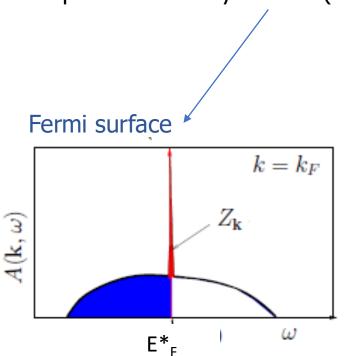


Not the same energy as in the non-interacting limit

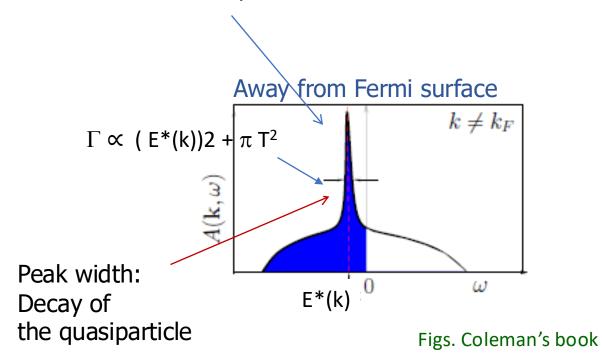
Figs. Coleman's book

Distribution of excitations created when an electron (a real electron) with momentum k is added or removed from the system

At the Fermi Surface the quasiparticle peak is infinitely narrow (at T=0)



Quasiparticle peak: Part of the electronic excitation which is in the quasiparticle state Coherent part

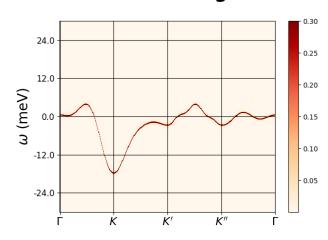


See Coleman's book

Finite temperature

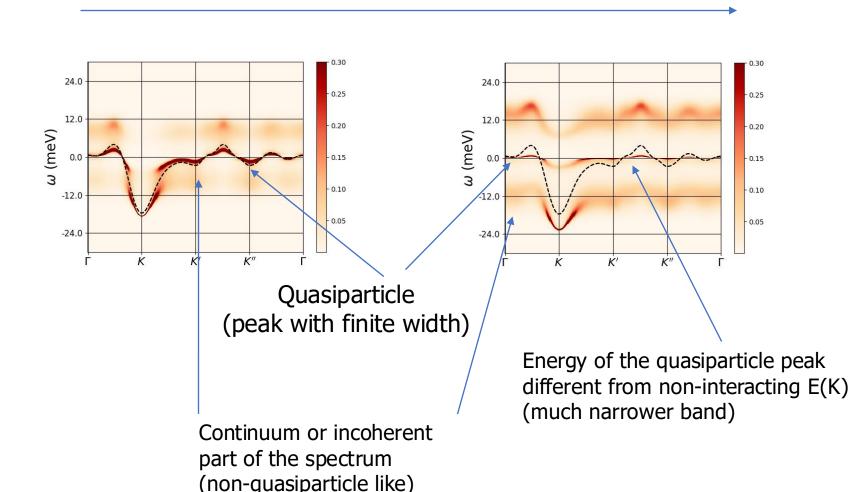
Larger interaction

Non interacting

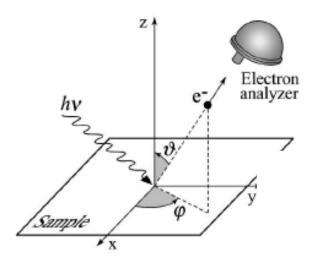


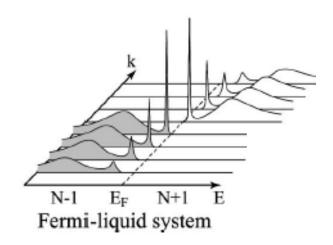
Calculated spectrum for a 2-orbital Hubbard model at half-filling

Calderón, Camjayi & EB, PRB 106, L081123 (2022)



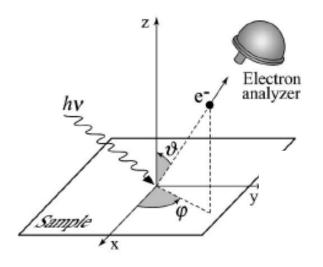
(angle resolved photoemission)

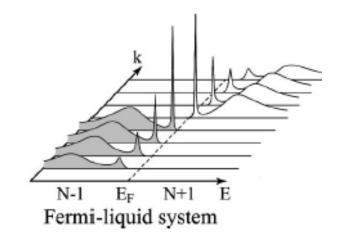


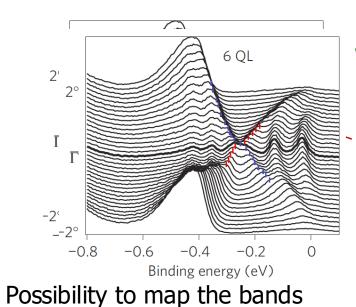


Figs: Damascelli et al, RMP 2003

(angle resolved photoemission)





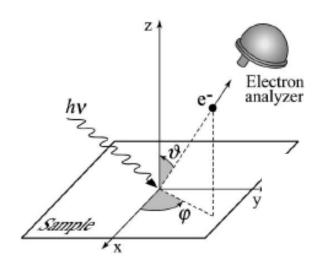


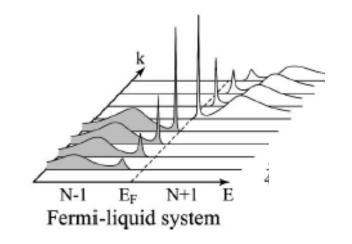
Bi₂Se₃
Weakly correlated system

Well defined Quasiparticle peaks

Figs: Damascelli et al, RMP 2003 Zhang et al, Nat Phys. 2010

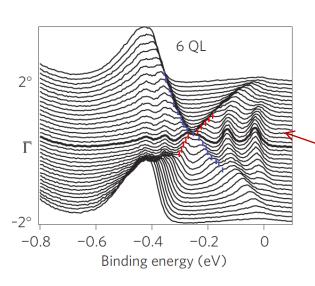
(angle resolved photoemission)





Very strongly correlated system

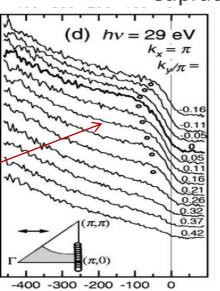
Cuprate



Bi₂Se₃ Weakly correlated system

Well defined Quasiparticle peaks

Badly defined quasiparticle peak



Possibility to map the bands

Figs: Damascelli et al, RMP 2003 Zhang et al, Nat Phys. 2010

Weakly correlated system

Well defined bands

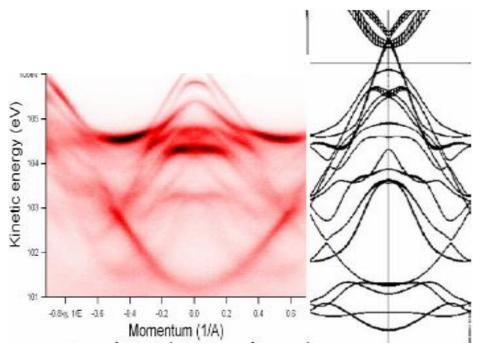
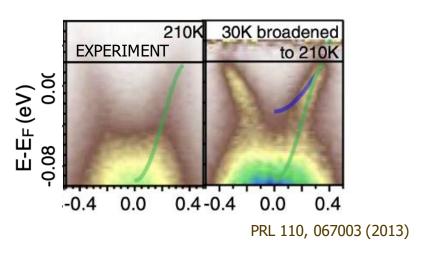


Fig.: Evtushinksy lectures

Strongly correlated system

Blurred spectrum and anomalous temperature behavior

Iron chalcogenide



Summary: Connecting quasiparticles and electrons. The spectral function

Electron
$$\longrightarrow$$
 $c^+_{k\sigma} \neq a^+_{k\sigma}$ Quasiparticle: Elementary excitation

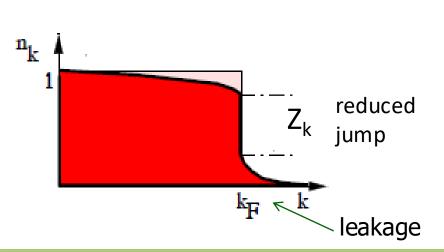
$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}} a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_4 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}} A(\mathbf{k}_4 \sigma_4, \mathbf{k}_3 \sigma_3; \mathbf{k}_2 \sigma_2, \mathbf{k}\sigma) a^{\dagger}_{\mathbf{k}_4 \sigma_4} a^{\dagger}_{\mathbf{k}_3 \sigma_3} a_{\mathbf{k}_2 \sigma_2} + \dots$$

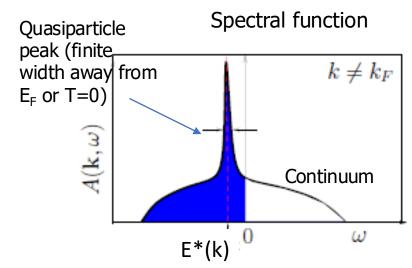
Quasiparticle weight (overlap)

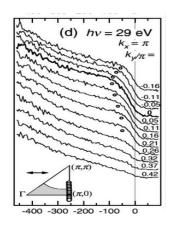
$$0 < Z \le 1$$
 measures correlations

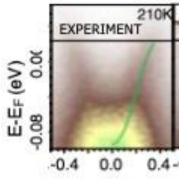
Decay of the electron (continuum)

Coleman's book Damascelli, RMP 2003 Zhang et al, N Phys. 2010









Fermi Liquid Theory

- ☐ Assume adiabaticity: the interacting ground state is perturbatively connected
- □Quasiparticles in a metal: fermionic excitations with spin ½ and charge e. Well defined Fermi surface
- \square Quasiparticles: elementary excitations of the interacting system have a one to one correspondence with elementary excitations of the non-interacting one. Implies quasiparticle weight Z_k finite.
- \Box Description of the system in terms not of the ground state of the system but in terms of the low energy excitations \to deviation from equilibrium δn_p .
- \Box Energy functional $F[\delta n_p]$ in terms of parameters which can be measured experimentally (specific heat, mass, susceptibilities ...)

Description of the energy in terms of excitations (quasiparticles)

□ Consider non-interacting ground state

$$H = H_0 - \mu N = \sum_{\sigma} (E_{\mathbf{k}} - \mu) c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} \qquad |\psi_g\rangle = \prod_{|\mathbf{k}| < k_F, \ \sigma} c^{\dagger}_{\mathbf{k}\sigma} |0\rangle$$

□ Define the transformation

$$\mathbf{d}^{\dagger}_{\mathbf{k}\sigma} = \begin{cases} c^{\dagger}_{\mathbf{k}\sigma} & (k > k_F) \\ \operatorname{sgn}(\sigma)c_{-\mathbf{k}-\sigma} & (k > k_F) \end{cases} \quad \text{particle} \quad \text{hole}$$

□ Rewrite the hamiltonian

 $H_0 - \mu N = \sum_{\mathbf{k}\sigma} |(E_{\mathbf{k}} - \mu)| \mathrm{id}^\dagger_{\mathbf{k}\sigma} \mathrm{d}_{\mathbf{k}\sigma} + F_g$ Fermionic excitations Charge e equilibrium occupation

Description in terms of excitations (quasiparticles)

$$H_0 - \mu N = \sum_{\mathbf{k}\sigma} |(E_{\mathbf{k}} - \mu)| \, d^{\dagger}_{\mathbf{k}\sigma} d_{\mathbf{k}\sigma} + F_g$$

Excitations (the occupation of the states in equilibrium is included in F_{α})

$$\delta n_{k\sigma} = d^{\dagger}_{k\sigma} d_{k\sigma} \longrightarrow \text{ Density of excitations}$$

$$H_0-\mu N=F_g+\sum_{k\sigma} \varepsilon_{k\sigma} \delta n_{k\sigma} = F[\delta n_{k\sigma}]$$

Energy of the excitation measured with respect to the ground state

Energy written as a functional of the density of excitations

$$H_0 - \mu N = \sum_{\mathbf{k}\sigma} |(E_{\mathbf{k}} - \mu)| \, \mathrm{d}^{\dagger}_{\mathbf{k}\sigma} \, \mathrm{d}_{\mathbf{k}\sigma} + F_g$$

Excitations (the occupation of the states in equilibrium is included in \boldsymbol{F}_{α})

$$\delta n_{k\sigma} = d^{\dagger}_{k\sigma} d_{k\sigma} \longrightarrow$$
 Density of excitations

$$H_0-\mu N=F_g+\sum_{k\sigma} \varepsilon_{k\sigma} \delta n_{k\sigma} = F[\delta n_{k\sigma}]$$

Energy of the excitation measured with respect to the ground state

Energy written as a functional of the density of excitations

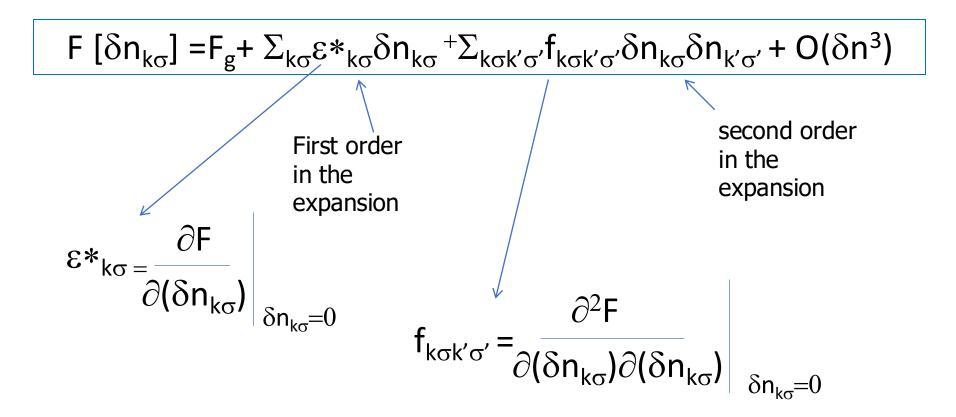
 \Box Landau's idea: Energy of interacting system is a functional of the density of excitations, the quasiparticles, $F[\delta n_{k\sigma}]$ and do an expansion around equilibrium assuming small $\delta n_{k\sigma}$

$$\delta n_{k\sigma} = a^{\dagger}_{k\sigma} a_{k\sigma}$$

 \Box Landau's idea: Energy of interacting system is a functional of the density of quasiparticles $F[\delta n_{k\sigma}]$

Expansion around equilibrium. Small $\,\delta n_{k\sigma}$

$$\delta n_{k\sigma} = a^{\dagger}_{k\sigma} a_{k\sigma}$$



 \Box Landau's idea: Energy of interacting system is a functional of the density of quasiparticles $F[\delta n_{k\sigma}]$

Expansion around equilibrium. Small $\,\delta n_{k\sigma}^{}$

$$\delta n_{k\sigma} = a^{\dagger}_{k\sigma} a_{k\sigma}$$

$$F\left[\delta n_{k\sigma}\right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$

First order: Energy of a quasiparticle in the absence of other quasiparticles

Second order: Residual interactions between the quasiparticles (responsable for quasiparticle decay and instabilities)

 \Box Landau's idea: Energy of interacting system is a functional of the density of quasiparticles $F[\delta n_{k\sigma}]$

Expansion around equilibrium. Small $\,\delta n_{k\sigma}^{}$

$$\delta n_{k\sigma} = a^{\dagger}_{k\sigma} a_{k\sigma}$$

$$F \left[\delta n_{k\sigma} \right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$

Comparison with non-interacting case

Renormalized energy of the quasiparticle $\epsilon_{k\sigma}$

No second order term in the non-interacting case (no interactions)

$$H_0$$
- μN = $F[\delta n_{k\sigma}]$ = F_g + $\Sigma_{k\sigma} \epsilon_{k\sigma} \delta n_{k\sigma}$

 \Box Landau's idea: Energy of interacting system is a functional of the density of quasiparticles $F[\delta n_{k\sigma}]$

Expansion around equilibrium. Small $\,\delta n_{k\sigma}^{}$

$$\delta n_{k\sigma} = a^{\dagger}_{k\sigma} a_{k\sigma}$$

$$F \left[\delta n_{k\sigma}\right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$

$$F \left[\delta n_{k\sigma} \right] = F_g + \sum_{k\sigma} \left(\varepsilon *_{k\sigma} + \sum_{k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k'\sigma'} \right) \delta n_{k\sigma}$$

 \Box Landau's idea: Energy of interacting system is a functional of the density of quasiparticles $F[\delta n_{k\sigma}]$

Expansion around equilibrium. Small $\,\delta n_{k\sigma}$

$$\delta n_{k\sigma} = a^{\dagger}_{k\sigma} a_{k\sigma}$$

$$F\left[\delta n_{k\sigma}\right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$

$$\mathsf{F}\left[\delta \mathsf{n}_{\mathsf{k}\sigma}\right] = \mathsf{F}_{\mathsf{g}} + \Sigma_{\mathsf{k}\sigma} \left(\epsilon *_{\mathsf{k}\sigma} + \Sigma_{\mathsf{k}'\sigma'} \mathsf{f}_{\mathsf{k}\sigma\mathsf{k}'\sigma'} \delta \mathsf{n}_{\mathsf{k}'\sigma'}\right) \delta \mathsf{n}_{\mathsf{k}\sigma} = \mathsf{F}_{\mathsf{g}} + \Sigma_{\mathsf{k}\sigma} \epsilon \square_{\mathsf{k}\sigma} \delta \mathsf{n}_{\mathsf{k}\sigma}$$

$$\epsilon'_{k\sigma} = \epsilon *_{k\sigma} + \sum_{k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k'\sigma'} \delta n_{k'\sigma'}$$

Non-rigid band shift

The energy of a quasiparticle is modified by the presence of other excitations

$$\delta n_{k\sigma} = n_{k\sigma}(T,\mu) - n_{k\sigma}(0,\mu)$$

☐ To first order:

Energy of a quasiparticle in the absence of other quasiparticles

$$F [\delta n_{k\sigma}] = F_g + \sum_{k\sigma} \varepsilon *_{k\sigma} \delta n_{k\sigma}$$

☐ To first order:

Energy of a quasiparticle in the absence of other quasiparticles

$$F [\delta n_{k\sigma}] = F_g + \sum_{k\sigma} \varepsilon *_{k\sigma} \delta n_{k\sigma}$$

In a non-interacting state (continuum)

$$F [\delta n_{k\sigma}] = F_g + \sum_{k\sigma} \varepsilon_{k\sigma} \delta n_{k\sigma}$$

$$\varepsilon_{k\sigma} = k^2/2m - \mu = (k^2 - k_F^2)/2m$$

close to k_F we can linearize the spectrum (first order expansion in $k-k_F$)

$$\epsilon_{k\sigma} = \frac{k_F}{m}(k-k_F)$$

☐ To first order:

Energy of a quasiparticle in the absence of other quasiparticles

$$F \left[\delta n_{k\sigma}\right] = F_g + \sum_{k\sigma} \varepsilon *_{k\sigma} \delta n_{k\sigma}$$

In a non-interacting state (continuum)

$$F [\delta n_{k\sigma}] = F_g + \sum_{k\sigma} \varepsilon_{k\sigma} \delta n_{k\sigma}$$

$$\varepsilon_{k\sigma} = k^2/2m - \mu = (k^2 - k_F^2)/2m$$

close to k_F we can linearize the spectrum (first order expansion in $k-k_F$)

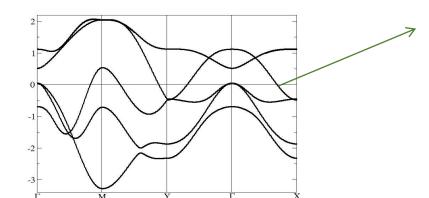
$$\varepsilon_{k\sigma} = \frac{k_F}{m}(k-k_F)$$

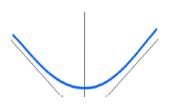
By analogy, in the interacting system, we linearize the spectrum close to k_{F} and **define m***

$$\varepsilon *_{k\sigma} = \frac{k_F}{m^*} (k - k_F)$$

Renormalized mass or quasiparticle mass

□ Non-interacting system:





$$m^{-1} = |\partial^2 \varepsilon / \partial k^2|$$

Band mass different to the free electron mass Modification due to ionic potential

$$\varepsilon_{k\sigma} = \frac{k_F}{m} (k-k_F)$$

☐ Interacting system:

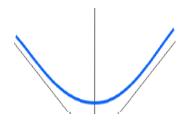
$$\varepsilon *_{k\sigma} = \frac{k_F}{m} * (k-k_F) \longrightarrow$$

(also v*_F in Dirac materials)

Quasiparticle mass different from the band mass m due to the electronic interactions

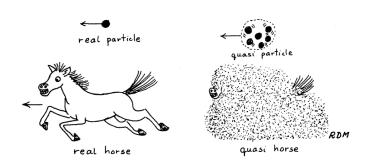
Mass/bandwidth renormalization

$$\varepsilon_{k\sigma} = \frac{k_F}{m} (k - k_F)$$



$$\epsilon *_{k\sigma} = \frac{k_F}{m} * (k-k_F)$$

The backflow of the surrounding fluid enhances the mass



$$m^* = \frac{m}{Z}$$
 Quasiparticle weight

Mass/bandwidth renormalization

$$\varepsilon_{k\sigma} = \frac{k_F}{m} (k - k_F)$$

$$\varepsilon *_{k\sigma} = \frac{k_F}{m} (k - k_F)$$

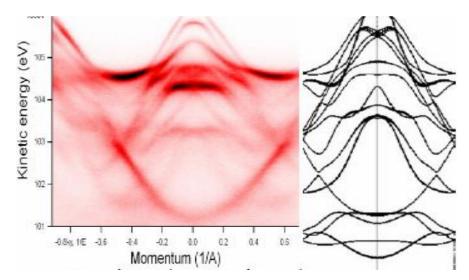
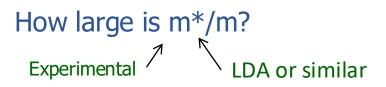


Fig. : Evtushinksy lectures

m*>m always

The backflow of the surrounding fluid enhances the mass



Non-interacting Fermi gas:

From Fermi-Dirac statistics
$$n(\epsilon) = \frac{1}{e^{(\epsilon - \mu)/K_B T} + 1}$$

• Specific heat
$$C_v = \frac{\partial F}{\partial T}\Big|_{\mu}$$

$$\label{eq:cv} \textbf{C}_{\text{v}} \text{=} \gamma \; \textbf{T} \qquad \begin{array}{ll} \text{Linear in} \\ \text{temperature} & \gamma \text{=} (\pi/3) K^2{}_B N(E_{\text{F}}) \propto m \end{array}$$

∘ Spin susceptibility
$$\chi_s = \frac{\partial M}{\partial H}$$

$$\chi_s = \mu_B^2 N(E_F) \propto m$$
 independent of T

Fermi liquid theory: Measurable quantities

Interacting Fermi liquid:

$$n_{k\sigma} = \frac{1}{e^{-(\epsilon_{k\sigma}' - \mu)/K_B T} + 1}$$

Quasiparticle weight Z_k not present because this is the distribution for the quasiparticle energies

Fermi-Dirac distribution for "interacting" quasiparticle energies

$$\epsilon'_{k\sigma} = \epsilon *_{k\sigma} + \sum_{k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k'\sigma'}$$

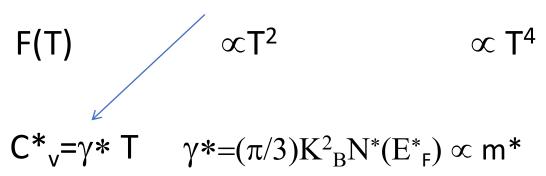
• Specific heat
$$C_v = \frac{\partial F}{\partial T}\Big|_{U}$$

∘ Spin susceptibility
$$\chi_s = \frac{\partial M}{\partial H}$$

See Pines & Nozieres' and Coleman's books for details on the derivation

Specific heat
$$C_v = \frac{\partial F}{\partial T}\Big|_{\mu}$$

$$F\left[\delta n_{k\sigma}\right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$



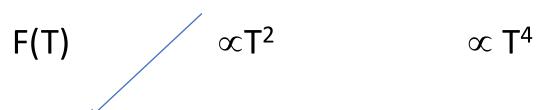
$$C_V^* = \gamma * T$$
 $\gamma * = (\pi/3)K_B^2N^*(E_F^*) \propto m^*$

Same temperature dependence as in Fermi gas but with a renormalized proportionality constant γ*

Fermi liquid theory: Parameters of the model. The renormalized mass

Specific heat
$$C_v = \frac{\partial F}{\partial T}\Big|_{\mu}$$

$$F \left[\delta n_{k\sigma} \right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$



$$C_{V}^{*} = \gamma * T$$
 $\gamma * = (\pi/3)K_{B}^{2}N^{*}(E_{F}^{*}) \propto m^{*}$

Same temperature dependence as in Fermi gas but with a renormalized proportionality constant γ*

Check experimental dependence and measure g Can be also compared with Model calculations

Interacting Non-Interacting $C^*_{v} = \frac{m^*}{m} C_{v}$ Comparison with LDA like calculations

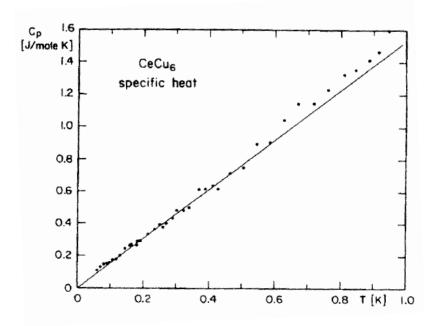
Fermi liquid theory: Parameters of the model. The renormalized mass

Specific heat

$$C_v = \gamma * T$$
 $\gamma * = (\pi/3)K^2_B N^*(E_F^*) \propto m^*$

$$\gamma^*_{Au,Ag} = 0.67 \text{ mJ mol}^{-1} \text{ K}^{-1} \text{ (vs 0.63 mJ mol}^{-1} \text{ K}^{-1} \text{ in absence of interaction)}$$

$$\gamma^*_{\text{CeCu6}} = 1.5 \text{ J mol}^{-1} \text{ K}^{-1} \longrightarrow \text{Heavy fermion}$$



Fermi liquid theory: Parameters of the model. The renormalized mass

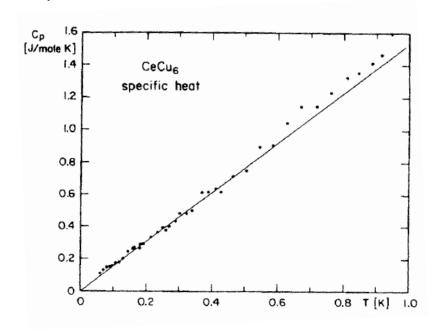
Specific heat

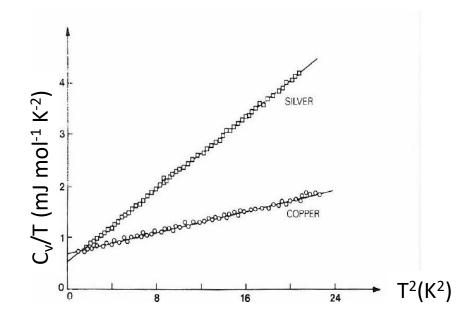
$$C_v = \gamma * T$$
 $\gamma * = (\pi/3)K^2_B N^*(E^*_F) \propto m^*$

(note phonon contribution can dominate $Cv \propto T^3$)

$$\gamma^*_{Au,Ag} = 0.67 \text{ mJ mol}^{-1} \text{ K}^{-1}$$
 (vs 0.63 mJ mol $^{-1}$ K $^{-1}$ in absence of interaction)

$$\gamma^*_{\text{CeCu6}} = 1.5 \text{ J mol}^{-1} \text{ K}^{-1} \longrightarrow \text{Heavy fermion}$$





Fermi liquid theory: Parameters of the model. Comparing to experiment

Specific heat

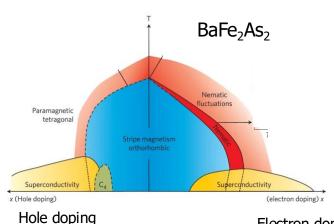
Iron superconductors

Non-interacting electrons

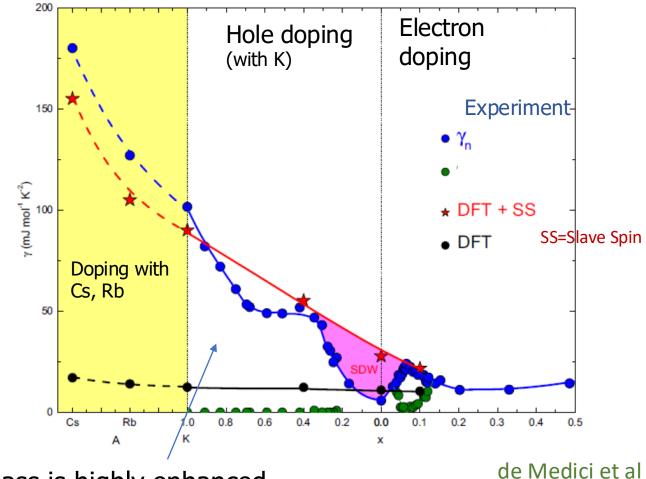
$$C_v = \gamma T$$
 $\gamma = (\pi/3)K^2_BN(E_F) \propto m$

Fermi liquid

$$C_v = \gamma^* T$$
 $\gamma \propto m^*$



Electron doping



The mass is highly enhanced with hole doping

nina

Doping

Fermi liquid theory: Interactions between quasiparticles

$$F\left[\delta n_{k\sigma}\right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$

Focus on the Fermi surface $|k| = |k'| = K_F$

Remember assumption of isotropic system

Time-reversal invariance (no magnetic field)

$$f_{k\sigma,k'\sigma'}=f_{-k-\sigma,-k'-\sigma'}$$

Fermi surface invariant under reflection $k \rightarrow -k$

$$f_{k\sigma,k'\sigma'}=f_{k-\sigma,k'-\sigma'}$$

If spin is conserved in general the dependence on spin enters only via their relative orientation

$$f_{k\sigma,k'\sigma'}=f_{kk'}+f_{kk'}+\sigma.\sigma'$$

Spin symmetric Spin antisymmetric (exchange)

Pines & Nozieres and Coleman's books

Fermi liquid theory: Interactions between quasiparticles

$$F \left[\delta n_{k\sigma} \right] = F_g + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + O(\delta n^3)$$

$$f_{kk'}{}^s \qquad f_{kk'}{}^a$$

Focus on the Fermi surface $|k|=|k'|=K_E$ Isotropic system

$$f_{kk'}{}^{s,a}: \text{dependence only on the} \\ \text{angle } \xi \text{ between } k \text{ and } k' \\ \end{bmatrix} \qquad \qquad \text{Expansion in} \\ \text{Legendre Polynomials}$$

$$f_{kk'}^{s,a} = \sum_{l=0}^{\infty} f_l^{s,a} P_l(\cos \xi)$$

Dimensionless parameters $N^*(E^*_F)$ $f_I^{s,a} = F_I^{s,a}$

Density of quasiparticle states at the Fermi level In the interacting system Interaction parameters F_0^s , F_0^a , F_1^s , F_1^a ... Can be extracted from experiment and model calculations

Fermi liquid theory: Interactions and parameters. Summary

Expansion of the free energy in terms of the quasiparticle density

$$\text{F}\left[\delta n_{k\sigma}\right] = \text{F}_{g} + \sum_{k\sigma} \epsilon *_{k\sigma} \delta n_{k\sigma} + \sum_{k\sigma k'\sigma'} f_{k\sigma k'\sigma'} \delta n_{k\sigma} \delta n_{k'\sigma'} + \text{O}(\delta n^{3})$$

Energy of a quasiparticle in the absence of other quasiparticles

Residual interactions between the quasiparticles

Linearized dispersion around K_F

$$\varepsilon *_{k\sigma} = \frac{k_F}{m} * (k-k_F)$$

Renormalized mass or quasiparticle mass

$$f_{kk'}^{s,a} = \sum_{l=0}^{\infty} f_l^{s,a} P_l(\cos \xi)$$

$$N^*(E^*_F) f_1^{s,a} = F_1^{s,a}$$

Small number of parameters l=0,1...

Fermi liquid theory: Measurable quantities. Spin susceptibility

Spin susceptibility

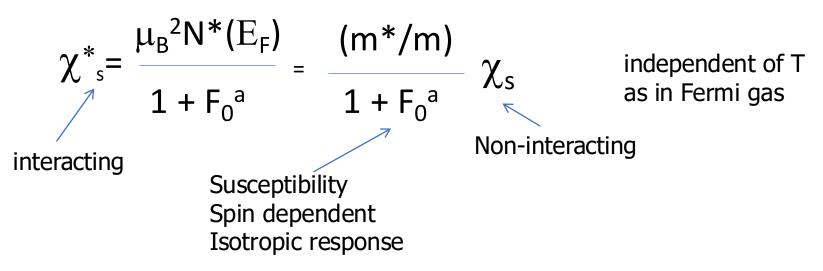
$$\chi_s = \frac{\partial M}{\partial H}$$

$$\chi^*_s = \frac{\mu_B^2 N^*(E_F)}{1 + F_0^a} = \frac{(m^*/m)}{1 + F_0^a} \chi_s \qquad \begin{array}{l} \text{independent of T} \\ \text{as in Fermi gas} \end{array}$$
 interacting
$$\begin{array}{l} \text{Susceptibility} \\ \text{Spin dependent} \\ \text{Isotropic response} \end{array}$$

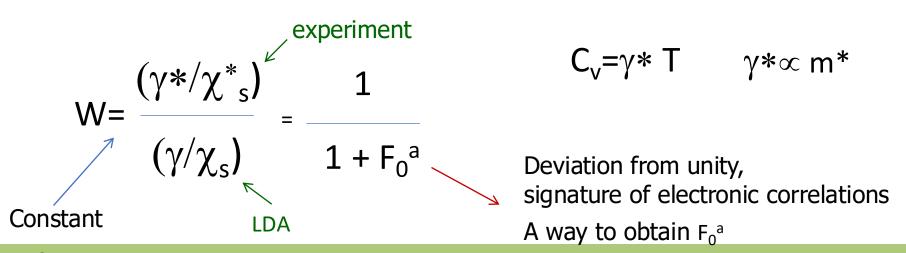
Fermi liquid theory: Measurable quantities. Spin susceptibility

Spin susceptibility

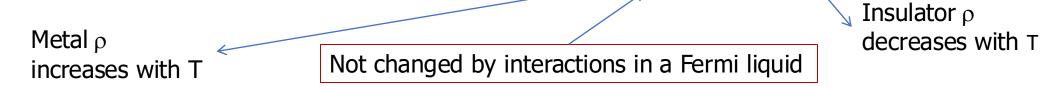
$$\chi_s = \frac{\partial M}{\partial H}$$



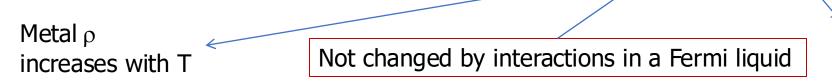
Wilson ratio or Stoner enhancement factor



Band theory: classification into metals and insulators

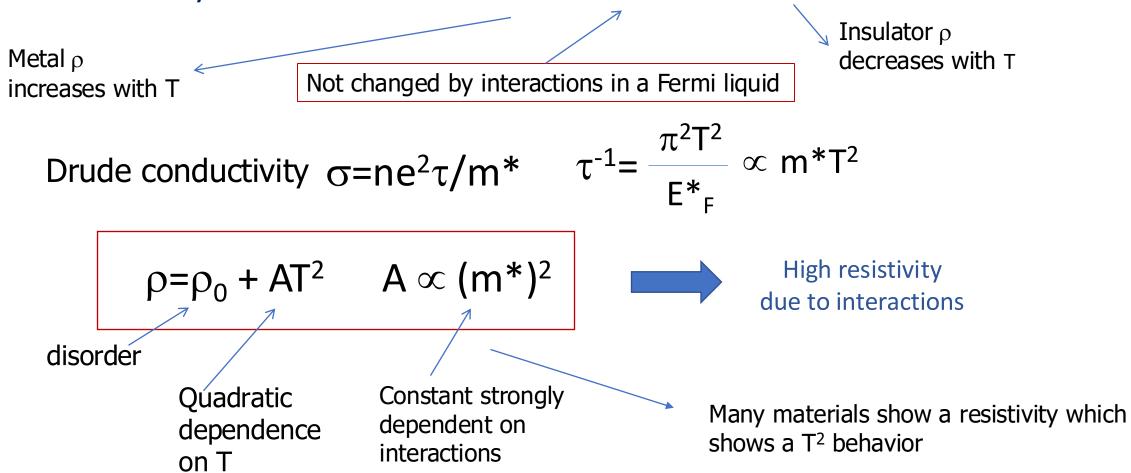


Band theory: classification into metals and insulators



Drude conductivity $\sigma = ne^2\tau/m^*$ $\tau^{-1} = \frac{\pi^2T^2}{E^*_{E}} \propto m^*T^2$

Band theory: classification into metals and insulators

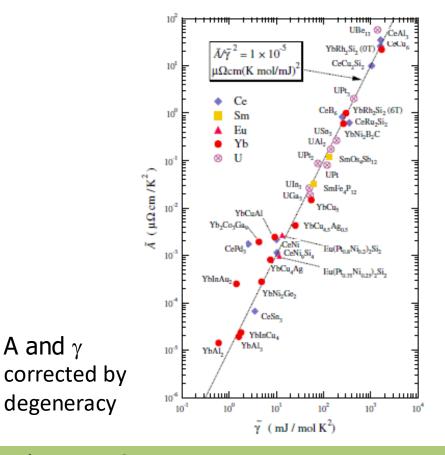


Phonon resistivity ∞T^5 can dominate in simple metals

Fermi liquid theory: Measurable quantities.

$$C^*_{v}=\gamma*T$$
 $\gamma*\infty m^*$ $A \propto (m^*)^2$ $A \propto (m^*)^2$ Constant

Fermi liquid theory: Measurable quantities.



Kadowaki –Woods ratio

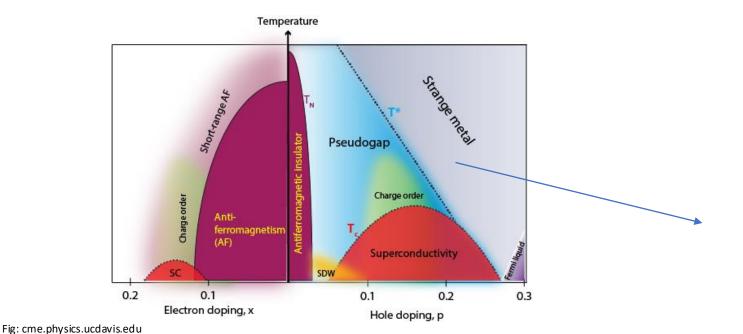
Fig: Tsuji et al, PRL 94, 057201 (2005)

A and γ

degeneracy

$$\rho = \rho_0 + AT^2$$
 $A \propto (m^*)^2$

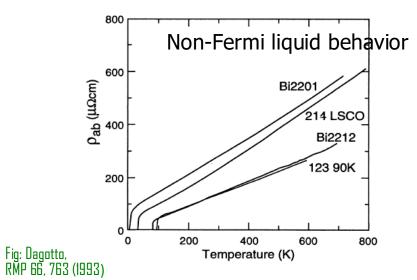
High-Tc superconducting cuprates



Strange metal

$$\rho \sim T$$

Observed in many correlated systems. Not the behavior expected from quasiparticles
Key whether this behavior reaches T → 0



In cuprates the resistivity does not seem to saturate

Linear in T resistivity also observed in iron superconductors, heavy fermions, Twisted Bilayer Graphene, Twisted dichalcogenides ...

Fermi liquid theory: Measurable quantities.

Mass renormalization

Looking at the quasiparticle current

$$m^*=m (1+F_1^s) = \frac{m}{1-N(E_F)f_s^1}$$
Spin independent
But directional response

Fermi liquid behavior

■ Bands observed in photoemission

Reduction in bandwidth as compared to LDA estimate of m*/m

☐ Specific heat linear in temperature.

 $C*_{\vee}=\gamma*T$

Enhancement of g estimate of m*/m

Careful in materials with multiple Fermi pockets

☐ Temperature independent spin susceptibility

Enhancement: mass renormalization + Stoner enhancement

☐ Resistivity quadratic in temperature

Interactions enhance resistivity as $(m^*)^2$ $\rho = \rho_0 + AT^2$

Correlated electrons: frequently non-Fermi liquid behavior

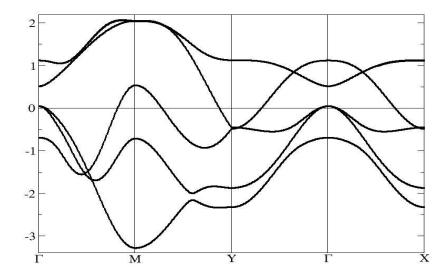
The notion of Quantum Materials

Remember: Fermi liquid behavior does not mean simple band theory

Band theory:

Basis of our understanding of solids

- Successful description
- Metals and insulators
- Dependence on temperature of measurable quantities (Cv, c, ..)



m*/m can be large

Enhancement of susceptibility and specific heat

$$\rho = \rho_0 + AT^2$$
 Due of qu

Due to decay of quasiparticles

Renormalized parameters tell us about the strength of interactions

Larger deviations of "standard" behavior at large energies and temperatures

