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Outline

•Modern aspects of the Kondo effect in mesoscopic systems: 
quantum dots and nanotubes, non-equilibrium effects, etc. 

•New developments: hybrid systems (competition between 
superconductivity and Kondo), Shiba states, etc. 
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The Anderson Model
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• Paradigm model of strong correlations 

• Despite its apparent simplicity, extremely nontrivial: 
strong on-site interactions+quantum fluctuations
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Anderson, Phys. Rev. 124, 41, 1961

Scattering resonance “Atomic” limit
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Image from Piers Coleman’s book



The basic idea is the following: second-order virtual processes in the Anderson model that 
lead to scattering of a conduction electron with a local moment. Such processes have 

amplitudes
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Quenching of local moments: Kondo’s calculation
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Quenching of local moments: Kondo’s calculation
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Quenching of local moments: Kondo’s calculation



virtual

"d

"d + U

initial final

Spin-flip.
"k

"k0

"k ⇡ "k0 ⇡ 0
we have exchanged two fermions
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Quenching of local moments: Kondo’s calculation



"d

"d + U

initial

"k

Vkd
1

Ei � Eint
V ⇤
k0d

Ramón Aguado ICMM-CSIC

Quenching of local moments: Kondo’s calculation



virtual

"d

"d + U

initial

"k

Vkd
1

Ei � Eint
V ⇤
k0d

Ramón Aguado ICMM-CSIC

Quenching of local moments: Kondo’s calculation
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Quenching of local moments: Kondo’s calculation
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Kondo showed that a logarithmic correction appears in a perturbative 
expansion in terms of J (Prog. Theor. Phys. 32, 37, 1964).
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If we add the phonon term, 
Kondo’s calculation explains the 
resistance minimum.

R(T ) = AT 5 �Bln
kBT

D

Ramón Aguado ICMM-CSIC

Quenching of local moments: Kondo’s calculation
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•More relevant: the resistivity diverges as  
  
The solution of this Non-perturbative  problem is what is 
known as the Kondo problem. More than three decades of 
theory work towards solving this problem helped to develop 
a great deal of strongly correlated electron techniques. 

•Scaling: Anderson 60’s 
•Numerical renormalization group: Wilson 70’s, Nobel prize. 
•Fermi liquid: Langreth, Nozieres, 70’s 
•Exact solutions by Bethe Anstaz: Andrei, Wiegman, 80’s 
•1/N expansions 80’s, 90‘s 
•Non-equilibrium properties, 2000-present

T ! 0
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Quenching of local moments: Kondo’s calculation



Breakthrough: Anderson’s scaling ideas 
(the art of projecting out unwanted high-energy scales)
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The effective coupling diverges at a dynamically generated scale: the Kondo 
temperature.

TK = D0exp[�1/2g0]

g(D0) =
1
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“Running” coupling constant



Breakthrough: Anderson’s scaling ideas 
(the art of projecting out unwanted high-energy scales)
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g(D0) =
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Breakthrough: Anderson’s scaling ideas 
(the art of projecting out unwanted high-energy scales)
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Ferromagnetic case

g(D0) = � |g0|
1 + 2|g0|ln(D0/D0)

Very gradual decreasing of the effective coupling of the local moment to the surrounding 
conduction sea. Irrelevant since the interaction scales to zero (the problem remains 

perturbative).



Breakthrough: Anderson’s scaling ideas 
(the art of projecting out unwanted high-energy scales)
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Antiferromagnetic case
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Breakthrough: Anderson’s scaling ideas 
(the art of projecting out unwanted high-energy scales)
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Antiferromagnetic case

The effective coupling diverges at a dynamically generated scale: 
the Kondo temperature.
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Breakthrough: Anderson’s scaling ideas 
(the art of projecting out unwanted high-energy scales)
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• The Kondo interaction can only be treated perturbatively at energies 
larger compared with the Kondo temperature.

• The Kondo problem does not depend on the high-energy details of the 
model but rather on one relevant energy scale, the Kondo temperature

TK = D0exp[�1/2g0]



Breakthrough: Anderson’s scaling ideas 
(the art of projecting out unwanted high-energy scales)
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TK = D0exp[�1/2g0]
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All logarithmic corrections vanish when the high-energy cutoff equals the thermal energy:

•The Kondo temperature is the only scale governing 
the physics.

•Different systems have the same low-temperature 
behavior.

•All physical quantities depend on temperature only 
through this logarithm (universal behavior).

Anderson’s scaling ideas

g(kBT ) =
1

2

1

ln[ T
TK

]
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Origin of this 
saturation?

Universality: all 
curves fall on top of 
each other, details 

don’t matter!!



•The first reliable non-perturbative calculation to go well below 
the Kondo temperature was Wilson’s numerical renormalization 
group (Review of Modern Physics 47, 773, 1975).
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•The renormalization group approach was designed for problems 
in which there is no characteristic energy or length scale and every 
energy or length makes a contribution such as critical phenomena 
and phase transitions. This is also the case with the Kondo 
problem as the integrals that lead to breakdown of perturbation 
theory are logarithmic.

Z D

kBT

d"

"
⇠ ln(

kBT

D
)

•we cannot take the D ! 1 limit: high energy states matter. 

Ultraviolet divergence 



•The first reliable non-perturbative calculation to go well below 
the Kondo temperature was Wilson’s numerical renormalization 
group (Review of Modern Physics 47, 773, 1975).
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•To reflect this dependence, Wilson designed a logarithmic 
discretization of the states of the conduction band.
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•The first reliable non-perturbative calculation to go well below 
the Kondo temperature was Wilson’s numerical renormalization 
group (Review of Modern Physics 47, 773, 1975).
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•Tight-binding chain

H = J⇢
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•The first reliable non-perturbative calculation to go well below 
the Kondo temperature was Wilson’s numerical renormalization 
group (Review of Modern Physics 47, 773, 1975).
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•The low-energy part of the spectrum is obtained by iterative diagonalization adding 
one extra site of the chain in each step of the iterative scheme.  

•The number of states would increase exponentially as new sites are added. This 
problem is avoided and a numerically tractable scheme is obtained if the higher lying 
levels are truncated in each step by keeping a fixed number of low-lying levels (typically 
of order 103).

impurity

0 1 2 ... ⇤�n/2



•The first reliable non-perturbative calculation to go well below 
the Kondo temperature was Wilson’s numerical renormalization 
group (Review of Modern Physics 47, 773, 1975).
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•recurrence relation

H̄N+1 = ⇤1/2
H̄N +

X

�

(c†N�cN+1� + c
†
N+1�cN�)

•Many energy scales are locally coupled



•The first reliable non-perturbative calculation to go well below 
the Kondo temperature was Wilson’s numerical renormalization 
group (Review of Modern Physics 47, 773, 1975).
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adapted from Piers Coleman, arxiv:0612006
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Asymptotic freedom in condensed matter
The Kondo effect is a manifestation of the phenomenon of “asymptotic 
freedom” that also governs quark physics. Like the quark, at high energies the 
local moments inside metals are asymptotically free, but at energies below a 
characteristic scale, the Kondo temperature, they interact so strongly with 
the surrounding electrons that they become screened into a singlet state, or 
“confined” at low energies, ultimately forming a Landau Fermi liquid. 

J(⇤) = 0
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Asymptotic freedom in condensed matter
The Kondo effect is a manifestation of the phenomenon of “asymptotic 
freedom” that also governs quark physics. Like the quark, at high energies the 
local moments inside metals are asymptotically free, but at energies below a 
characteristic scale, the Kondo temperature, they interact so strongly with 
the surrounding electrons that they become screened into a singlet state, or 
“confined” at low energies, ultimately forming a Landau Fermi liquid. 

J(⇤) = 0

J(⇤) = 1

This “Kondo cloud” is extremely long!!!

⇠K ' ~vF
kBTK
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Asymptotic freedom in condensed matter

5.4 Piers Coleman

Fig. 2: (a) In isolation, the localized atomic states of an atom form a stable, sharp excitation
lying below the continuum. (b) In a crystal, the 2 j+1 fold degenerate state splits into multiplets,
typically forming a low lying Kramers doublet. (c) The inverse of the Curie-Weiss susceptibility
of local moments ��1 is a linear function of temperature, intersecting zero at T = �✓.

predicted by Philip W. Anderson [4, 5], which results from high energy valence fluctuations.
Jun Kondo [6] first analyzed the e↵ect of this scattering, showing that as the temperature is
lowered, the e↵ective strength of the interaction grows logarithmically, according to

J ! J(T ) = J + 2J2⇢ ln
D
T

(4)

where ⇢ is the density of states of the conduction sea (per spin) and D is the band-width. The
growth of this interaction enabled Kondo to understand why in many metals at low temperatures,
the resistance starts to rise as the temperature is lowered, giving rise to resistance minimum.

Fig. 3: (a) Schematic temperature-field phase diagram of the Kondo e↵ect. At fields and tem-
peratures large compared with the Kondo temperature TK, the local moment is unscreened with
a Curie susceptibility. At temperatures and fields small compared with TK, the local moment is
screened, forming an elastic scattering center within a Landau Fermi liquid with a Pauli sus-
ceptibility � ⇠ 1

TK
. (b) Schematic susceptibility curve for the Kondo e↵ect, showing cross-over

from Curie susceptibility at high temperatures to Pauli susceptibility at temperatures below the
Kondo temperature TK. (c) Specific heat curve for the Kondo e↵ect. Since the total area is the
full spin entropy R ln 2 and the width is of order TK, the height must be of order � ⇠ R ln 2/TK.
This sets the scale for the zero temperature specific heat coe�cient.

Today, we understand this logarithmic correction as a renormalization of the Kondo coupling
constant, resulting from fact that as the temperature is lowered, more and more high frequency
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Crossover region

�imp(T ) =
0.68(gµB)2

4kB(T +
p
2TK)

Curie-Weiss form that corresponds to a reduced moment with respect to the free spin. Even for 
temperatures of the order of the Kondo temperature, the impurity moment is around 30% that of a 
free spin. Very slow approach to the susceptibility of a free spin 



�imp(T ! 0) =
0.4128(gµB)2

4kBTK
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Strong coupling

Wilson number (Universal)
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Fermi liquid fixed point

Wilson was able to show that the specific heat would be a linear function of 
temperature, like a Fermi liquid, that could be written in a universal form.

CV = �T

� =
⇡2

3

0.4128± 0.002

8TK

W =
�/�0

�/�0
=

�

�
(
⇡2k2B
3µ2

B

) = 2

The Wilson ratio (the quotient between the susceptibility 
and the linear specific heat) is also a universal number.   



•For low temperatures T, the impurity spin is screened by the spin of conduction electrons.

•The singlet consisting of the impurity spin and the screening cloud scatters other electrons. 

•Virtual excitations of the singlet to the triplet state lead to weak interactions between 
conduction electrons of opposite spin in the vicinity of the impurity.

•The length scale for these interactions and for scattering from the impurity
spin plus screening cloud is        which is much larger than the distance between electrons.

•The screening is done by electrons with energy to 

•The impurity not only causes scattering of electrons, it also induces interactions between the 
electrons. Since these interactions won't change on microscopic length scales, we expect that 
a description in terms of Fermi Liquid Theory might apply (Nozières 1975).
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⇠K

"F

Fermi liquid fixed point
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NRG for the Anderson model
H. R. Krishna-murthy, J. W. Wilkins and K. G. Wilson, Phys. Rev. B 21, 1003–1043; 21, 1044–1083 (1980)

http://publish.aps.org/search/field/author/H.%20R.%20Krishna-murthy
http://publish.aps.org/search/field/author/J.%20W.%20Wilkins
http://publish.aps.org/search/field/author/K.%20G.%20Wilson


Further confirmation of these ideas came in the form 
of exact results for the thermodynamics of the 
Kondo model by Andrei (1980) and Wiegmann 
(1980), by applying the Bethe Ansatz method. Later 
also for the Anderson model (Wiegmann, 1980).
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How about dynamics?
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The key quantity is the impurity spectral function 
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How about dynamics?
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Physical meaning

How about dynamics?

! > 0

! < 0

electron addition

electron removal
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2�

"d

TK
Kondo 

resonance
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Hubbard bands

Abrikosov-Suhl 
resonance

How about dynamics?

NRG calculations: Frota & Oliveira 86, Sakai, Shimizu & Kasuya 89, Costi & Hewson 90)

⇢�(!) = � 1

⇡
ImGr
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⇡
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How about dynamics?

NRG calculations: Frota & Oliveira 86, Sakai, Shimizu & Kasuya 89, Costi & Hewson 90)

⇢�(!) = � 1

⇡
ImGr

�(!) = � 1

⇡
ImG�(! + i⌘)

Away from particle-
hole symmetry



Image Piers Coleman, Rutgers
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Image Piers Coleman, Rutgers

Adiabatic Invariant (Langreth 1966)
⇢�(!) = � 1
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Adiabatic Invariant (Langreth 1966)

For large U we expect the two Hubbard bands, since the spectral 
weight is conserved each band should contribute 1/2.

Z
A(!)d! = 1

Remarkably, the spectral function at             remains invariant as the 
interaction increases (always equal to the non-interacting value)

! = 0

Deep result: the spectral function must always contain a peak of height   

and vanishingly small weight  Z<<1   as U increases. This narrow resonance is a direct 
consequence of local Fermi liquid behaviour!

A(! = 0) =
1

⇡�
sin2�

1

⇡�
sin2�

Z ⇠ TK

�



Langreth Physical Review 150, 516, 1966: Friedel Sum rule for the Anderson model 
for arbitrary interaction. 

Exact relations (Fermi-liquid) for the self-energy at T=0:
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Fermi liquid picture
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Langreth Physical Review 150, 516, 1966: Friedel Sum rule for the Anderson model 
for arbitrary interaction. 

Exact relations (Fermi-liquid) for the self-energy at T=0:
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Fermi liquid picture

1

! � "d + i�� ⌃(!) + i⌘
=

@

@!
ln(! � "d + i�� ⌃(!) + i⌘) +

@⌃(!)/@!

! � "d + i�� ⌃(!) + i⌘
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Langreth Physical Review 150, 516, 1966: Friedel Sum rule for the Anderson model 
for arbitrary interaction. 

Exact relations (Fermi-liquid) for the self-energy at T=0:
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Fermi liquid picture
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Langreth Physical Review 150, 516, 1966: Friedel Sum rule for the Anderson model 
for arbitrary interaction. 

Exact relations (Fermi-liquid) for the self-energy at T=0:



Image Piers Coleman, Rutgers

Adiabatic Invariant (Langreth 1966)

The Abrikosov-Suhl resonance (or “Kondo 
peak”) is a direct consequence of Fermi 
liquid behaviour in the strong coupling 
limit. This physics is similar as the one 
giving the “coherence peaks” in Mott 
insulators (Leni’s lecture)
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Abrikosov-Suhl resonance

Level position
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Abrikosov-Suhl resonance

t ⌘ T

TK

Temperature dependence
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⇢(T ) = nimp
2ne2

m⇡⌫(✏F )
F (

T

TK
)

Universal behaviour (scaling) over 
many decades of  T (logarithmic) 
and Fermi liquid saturation is the 
unambiguous signature of Kondo 
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Heavy fermion materials: strong correlations

•In the periodic table, the most 
strongly interacting electrons reside in 
orbitals that are well localised.

•The properties of heavy-fermion 
compounds derive from the partially 
filled f orbitals of rare-earth or 
actinide ions.
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•Heavy-fermion materials display properties which change 
qualitatively (unconventional superconductivity, quantum criticality, 
etc), depending on the temperature, so much so, that the 
room-temperature and low-temperature behavior 
almost resembles two different materials.

Heavy fermion materials: strong correlations



Ramón Aguado ICMM-CSIC

Heavy fermion materials
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Heavy fermion materials
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• The first heavy-electron materials to be discovered are now called Kondo insulators. 

• In the late 1960s, an unusual metal, SmB6, containing magnetic Sm3+ ions was 
discovered . While apparently a magnetic metal with a Curie–Weiss susceptibility at 
room temperature, on cooling SmB6 transforms continuously into a paramagnetic 
insulator with a tiny 10 meV gap. 

• The first heavy-fermion metal, CeAl3 was discovered in the mid 1970s.

Heavy fermion materials: strong correlations
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Heavy fermion metals
Transport properties

•Curie-Weiss susceptibility at high T.
•Paramagnetic spin susceptibility at low T
•Quadratic temperature dependence of the 
low temperature resistivity.

•A dramatic enhancement of the linear 
specific heat (e.g. for CeAl3 more than 1500 
times that of Copper!).
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•These transport properties suggest that Kondo 
physics is relevant. If this is correct, the resulting 
Fermi liquid at low temperatures is composed of 
quasiparticles with greatly enhanced masses.

Heavy fermions 

Heavy fermion metals
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Heavy fermion metals
•Andres, Graebner, and Ott proposed in their 1975 paper that the ground-state 
excitations of CeAl3 were those of a Landau Fermi-liquid, in which the effective mass 
of the quasiparticles is about 1000 bare electron masses!
•Like other cerium heavy-fermion materials, the cerium atoms in this metal are in a 
Ce3+(4f1) configuration, and because they are spin–orbit coupled, they form huge 
local moments with a spin of J = 5/2. 
•In their paper, Andres, Ott, and Graebner suggested that a lattice version of 
the Kondo effect is responsible. 
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Specific-heat and electrical-resistivity measurements in CeA13 below 0.2 K reveal enor. —

mous magnitudes of the linear specific-heat term C = 1'T (1'=1620 mJ mole/K ) and the T
term in p=AT (@=35pu cm/K). We conclude that the 4f electrons obey Fermi statis-
tics at low temperatures because of the formation of virtual bound 4f states.

In the intermetallic compound CeA1, both the
lattice parameters and the susceptibility at high
temperatures suggest that the Ce ion is in a 3+
state. The lack of magnetic order at low tem-
peratures is interpreted as being caused by a
partial admixture of the nonmagnetic 4+ state.
Such behavior has been explained in different
ways in the past. A model distinguishing be-
tween "atomic" and "bandlike" 4f electrons has
been suggested by Gschneidner. ' More recently,
CeAl, has often been cited as an example of a
mixed valence- -or interconfigurational fluctua-
tion (ICF)—compound'; and in another approach,
Mott' has explained the peculiar properties of
CeAl, based on a Kondo-type theory. The pur-
pose of this note is to present new data on the
very-low-temperature properties of CeAl, and

to show that they can be understood using Frie-
del's' classic theory of virutal bound states.

All measurements were performed in dilution
refrigerator s except the thermal-expansion mea-
surement, which was done in a 'He cryostat.
The data were taken by standard techniques us-
ing a cerium-magnesium-nitrate magnetic-sus-
ceptibility ther mometer. Only polycrystalline
samples were investigated; they were cut from
a 20-g button-that was are melted in argon and
annealed at 900 C for 3 weeks. X-ray analysis
showed the proper structure (hexagonal, Ni, Sn-
type). The specific-heat results are shown in
Fig. 1. Below 150 mK, the specific heat varies
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FIG. 1. Specific heat of CeA13 at very low tempera-
tures in zero field (o, b,) and in 10 kOe (Q).

linearly with temperature and yields an extreme-
ly large y value of 1620 mJ/mole K'. It remains
practically unchanged in a field of 10 koe except
at the lowest temperatures where the nuclear
Zeeman specific heat of the Al nuclei is seen
(the Ce"' and Ce"' isotopes have no nuclear
spin). This behavior is to be contrasted with
what one would have expected from the lowest-
].ying Ce" Kramers doublet state, namely a
strong field-dependent magnetic specific heat
with entropy R ln2/mole. Interpolating our data
with previous specific-heat measurements down
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Heavy fermion materials

• High temperatures: local 4f or 5f moments

Low lying magnetic multiplet

N = 2j + 1

|4f1 : j,miFor example Ce3+

L = 3, S = 1/2

J = L� S = 5/2

N = 6

Remember, local moments have a 
Curie spin susceptibility

� =
(gJµB)2J(J + 1)

3kBT

Large unquenched 
entropyS = kBln(2J + 1)
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Heavy fermion materials
The entropy can also be written as an integral of the specific heat

At low temperature, the Kondo effect develops and the local moments become 
quenched. This implies that the spin entropy is rapidly lost from the material. 

This rapid loss of spin entropy forces a sudden rise in the specific heat

S = kBln(2J + 1)

� = LimT!0
CV

T
=

⇡2k2B
3

⇢⇤

⇢⇤ =
kFm⇤

⇡2~2
Huge increase of effective mass 
at low temperatures (hence the 

name “Heavy Fermions”)

Sommerfeld coefficient

S =

Z T

0

CV

T 0 dT
0
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Heavy fermion materials

⇢⇤ =
kFm⇤

⇡2~2

Huge increase of effective mass 
at low temperatures (hence the 

name “Heavy Fermions”)

m⇤

me
⇠ 1000!!
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Heavy fermion materials

Further confirmation of the Fermi-liquid behavior of 
heavy-fermion systems is obtained when the 
Sommerfeld coefficient of the linear term of the specific 
heat is compared with the coefficient A of the resistivity

⇢ = ⇢0 +AT 2

A ⇠ (m⇤)2

� ⇠ m⇤

}A

�2
⇠ cons Kadowaki-Woods
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Heavy fermion insulators
Transport properties

•While apparently a magnetic 
metal with a Curie–Weiss 
susceptibility at room 
temperature, on cooling these 
materials they transform 
continuously into a 
paramagnetic insulator with 
very tiny gaps (around 10 meV).
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Development of Coherence

Development of coherence in heavy fermion systems

• Lanthanum is iso-electronic with 
Cerium but has an empty f-shell so 
the x=0 limit corresponds to a 
dilute Kondo system.

• As the concentration of Cerium 
increases, the resistivity curve starts 
to develop a coherence maximum 
and in the concentrated limit it 
drops to zero as a Fermi liquid.
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How to explain all this?
This experimental evidence suggests that heavy fermion materials can be understood 
as a lattice version of the Kondo effect with a renormalised density of states

Image from Pier Coleman’s book

Immersion of a lattice of spins in a conduction sea injects a resonance at each site in the 
lattice, giving rise to a new band of delocalized heavy fermions with a 
hybridization gap. The density of carriers is increased in the Kondo lattice. 



Ramón Aguado ICMM-CSIC

•The early resistance to this Kondo explanation was rooted in a 
number of misconceptions about spin physics and the Kondo effect.  
Some of the first heavy-electron systems are superconductors, e.g. 
UBe13 , yet it was well known that small concentrations of magnetic 
ions, typically a few percent, suppress conventional superconductivity, so 
the appearance of superconductivity in a dense magnetic system 
appeared at first sight to be impossible!!!

• How can be explain heavy-fermion superconductors?: the Kondo 
effect quenches the local moments to form a new kind of heavy-
fermion metal. 

Heavy fermion superconductors
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Heavy fermion materials

•High temperatures: heavy fermion compounds exhibit a large saturated resistivity, induced by 
incoherent spin-flip scattering of the conduction electrons of the local f moments.

•Low temperatures: Quenching of local moments (Kondo-like) together with development of 
phase coherence. 

Transport properties

The simplest model which might be capable of describing heavy-fermion, mixed valence, and 
Kondo behavior depending on the values of the parameters is the periodic Anderson model 
(Varma and Yafet, Phys. Rev. B 13, 2950, 1976) 

H =
X

k,�

"kc
†
k,�ck,� +

X

i,�

"ff
†
i,�fi,� +
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i

Uni"ni#+
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i,k,�

(Vke
�ik.Ric

†
k,�fi,� + V

⇤
k e

ik.Rif
†
i,�ck,�)
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Non-interacting case
H =

X

k,�

"kc
†
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Bloch representation
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Non-interacting case
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H =
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The relevant question is how interactions renormalize these bands and, in 
particular, how to obtain a minigap of the order of Tk characteristic of heavy 

fermion “Kondo insulators”

TK?
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Doniach’s Kondo lattice
Simpler than Anderson, Doniach just considered spins on a lattice

Most local moments develop an antiferromagnetic order at low temperatures. A magnetic 
moment at a given location induces a wave of Friedel oscillations in the electron spin density 

(RKKY interaction, Mª José Calderón’s lectures)

h~�(x)i = �J�(x� x0)h~S(x0)i

�(x� x0) = 2
X
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Doniach’s Kondo lattice
h~�(x)i = �J�(x� x0)h~S(x0)i

h~�(r)i ⇠ �J⇢
cos2kF r

|kF r|3
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Doniach’s Kondo lattice

HRKKY ⇠ �J
2
�(x� x0)~S(x).~S(x0)

Competition of two energy scales
1.8 Piers Coleman

Fig. 5: Doniach phase diagram for the Kondo lattice, illustrating the antiferromagnetic regime

and the heavy-fermion regime for TK < TRKKY and TK > TRKKY respectively. The effective

Fermi temperature of the heavy Fermi liquid is indicated as a solid line. Experimental evidence

suggests that in many heavy-fermion materials this scale drops to zero at the antiferromagnetic

quantum critical point.

The simplest Kondo lattice Hamiltonian [14] is

H =

X

k�

"k c
†
k�ck� + J

X

j

~Sj · c
†
j↵
~�↵� cj� , (11)

where
c†
j↵

=
1

p
Ns

X

k

c†k↵e
�ik·Rj (12)

creates an electron at site j. Mott and Doniach [9, 10] pointed out that there are two energy
scales in the Kondo lattice: the Kondo temperature TK ⇠ De�1/(2J⇢) and the RKKY scale
ERKKY = J2⇢.
For small J⇢, ERKKY � TK leading to an antiferromagnetic ground state, but when J⇢ is
large, TK � ERKKY, stabilizing a ground state in which every site in the lattice resonantly
scatters electrons. Based on a simplified one-dimensional Kondo necklace model [15], Doniach
conjectured [10] that the transition between the antiferromagnet and the dense Kondo ground
state is a continuous quantum phase transition. Experiment confirms this conjecture, and today
we have several examples of such quantum critical points, including CeCu6 doped with gold to
form CeCu6�xAux and CeRhIn5 under pressure [16–18]. In the fully developed Kondo lattice,
the ground state Bloch’s theorem ensures that the resonant elastic scattering at each site will
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Doniach’s Kondo lattice

HRKKY ⇠ �J
2
�(x� x0)~S(x).~S(x0)

Competition of two energy scales

Minimal realization where this competition already 
appears: the two-impurity Kondo problem, the ground 
state changes from Kondo singlet to AF singlet when 

J

TK
⇠ 2

B. A. Jones, C. M.  Varma,  and J. W. Wilkins, Low-temperature properties of the two-impurity Kondo hamiltonian. 
Phys. Rev. Lett. 61, 125–128 (1988). 

1.8 Piers Coleman

Fig. 5: Doniach phase diagram for the Kondo lattice, illustrating the antiferromagnetic regime

and the heavy-fermion regime for TK < TRKKY and TK > TRKKY respectively. The effective

Fermi temperature of the heavy Fermi liquid is indicated as a solid line. Experimental evidence

suggests that in many heavy-fermion materials this scale drops to zero at the antiferromagnetic

quantum critical point.

The simplest Kondo lattice Hamiltonian [14] is

H =

X

k�

"k c
†
k�ck� + J

X

j

~Sj · c
†
j↵
~�↵� cj� , (11)

where
c†
j↵

=
1

p
Ns

X

k

c†k↵e
�ik·Rj (12)

creates an electron at site j. Mott and Doniach [9, 10] pointed out that there are two energy
scales in the Kondo lattice: the Kondo temperature TK ⇠ De�1/(2J⇢) and the RKKY scale
ERKKY = J2⇢.
For small J⇢, ERKKY � TK leading to an antiferromagnetic ground state, but when J⇢ is
large, TK � ERKKY, stabilizing a ground state in which every site in the lattice resonantly
scatters electrons. Based on a simplified one-dimensional Kondo necklace model [15], Doniach
conjectured [10] that the transition between the antiferromagnet and the dense Kondo ground
state is a continuous quantum phase transition. Experiment confirms this conjecture, and today
we have several examples of such quantum critical points, including CeCu6 doped with gold to
form CeCu6�xAux and CeRhIn5 under pressure [16–18]. In the fully developed Kondo lattice,
the ground state Bloch’s theorem ensures that the resonant elastic scattering at each site will
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How to treat lattices beyond this phenomenological 
picture? A powerful technique to capture the strong 
coupling limit is the large N approach
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The relevant question is how interactions renormalize these bands and, in 
particular, how to obtain a minigap of the order of Tk characteristic of heavy 

fermion “Kondo insulators”

TK?

H =
X

k,�

"kc
†
k,�ck,� +

X

k,�

"̃ff
†
k,�fk,�+

X

k,�

(Ṽkc
†
k,�fk,� + Ṽ

⇤
k f

†
k,�ck,�)

H =
X

k,�

"kc
†
k,�ck,� +

X

k,�

"ff
†
k,�fk,�+

X

k,�

(Vkc
†
k,�fk,� + V

⇤
k f

†
k,�ck,�)

?
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TK?

H =
X

k,�

"kc
†
k,�ck,� +

X

i,�

"ff
†
i,�fi,� +

X

i

Uni"ni#+

X

i,k,�

(Vke
�ik.Ric

†
k,�fi,� + V

⇤
k e

ik.Rif
†
i,�ck,�)

Narrow f-bands, such as Cerium, the ratio U to the band width is extremely large:

U ! 1
Double occupancy of the orbitals becomes forbidden
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TK? U ! 1
Double occupancy of the orbitals becomes forbidden

On each site

H =
X

k,�

"kc
†
k,�ck,� +

X

�

"f |1,�ih1,�|+
X

k,�

Vkc
†
k,�|0, 0ih1,�|+ V

⇤
k |1,�ih0, 0|ck,�

are Hubbard operators that restrict the Hilbert space to the desired physical 
sector, such constraint is just given by the completeness relation

Xpq = |pihq|

X

q

Xqq = |qihq| = 1

|qihp|p0ihq0| = �p,p0 |qihq0|

Note: these many-body operators do not follow 
standard commutation/anticommutation rules

Similar to spin operators, Wicks theorem is not valid 
and standard perturbation theory cannot be applied.
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TK? U ! 1
Double occupancy of the orbitals becomes forbidden

On each site

H =
X

k,�

"kc
†
k,�ck,� +

X

�

"f |1,�ih1,�|+
X

k,�

Vkc
†
k,�|0, 0ih1,�|+ V

⇤
k |1,�ih0, 0|ck,�

Xpq = |pihq|
X

q

Xqq = |qihq| = 1

f†
� ! |1,�ih0, 0|f� ! |0, 0ih1,�|

X

�

f†
�f� + |0, 0ih0, 0| = 1

Trick: replace physical fermion by slave boson and fermion (exact). Physically these degrees of 
freedom represent charge fluctuations and spin fluctuations, respectively.

f†
� ! d†�b
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TK? U ! 1
Double occupancy of the orbitals becomes forbidden

H =
X

k,�

"kc
†
k,�ck,� +

X

�

"f |1,�ih1,�|+
X

k,�

Vkc
†
k,�|0, 0ih1,�|+ V

⇤
k |1,�ih0, 0|ck,�

Provided that we work with the constraint 

H =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

X

k,�

Vkc
†
k,�d�b

† + V
⇤
k d

†
�ck,�b

X

�

d†�d� + b†b = 1
Read &Newns, J. Phys. C, 16, 3273 (1983)
Coleman, Phys. Rev B, 29, 3035 (1984)

Three operator vertex containing fermions and bosons! 
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TK? U ! 1
Double occupancy of the orbitals becomes forbidden

Work with generalized Hamiltonian, includes Lagrange multiplier to take care of constraint

H(�) =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

X

k,�

Vkc
†
k,�d�b

† + V
⇤
k d

†
�ck,�b+ �(b†b+

X

�

d
†
�d� � 1)

Constraint
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TK? U ! 1
Double occupancy of the orbitals becomes forbidden

Work with generalized Hamiltonian, includes Lagrange multiplier to take care of constraint

H(�) =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

X

k,�

Vkc
†
k,�d�b

† + V
⇤
k d

†
�ck,�b+ �(b†b+

X

�

d
†
�d� � 1)

Low lying magnetic multiplet

N = 2j + 1

Remember: f local moments 
have large degeneracies

NX

�=1

Constraint
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TK? U ! 1
Double occupancy of the orbitals becomes forbidden

N ! 1

•One can perform controlled 
1

N
expansions 

•The “mean field” limit gives the strong coupling limit we seek!

H(�) =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

X

k,�

Vkc
†
k,�d�b

† + V
⇤
k d

†
�ck,�b+ �(b†b+

X

�

d
†
�d� � 1)
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Large N

This kind of interaction can be factorized using Hubbard-Stratonovich

�gA†A ! A†V + V̄ A+
V̄ V

g

HI(j) =
J

N
S↵�(j).c

†
j↵cj� = � J

N
(c†j�fj�)(f

†
j↵cj↵)

HI(j) ! V̄j(c
†
j�fj�) + (f†

j↵cj↵)Vj +N
V̄jVj

J

Exact provided that the auxiliary V are treated as quantum fluctuating fields. As we have seen, these 
fields have a physical meaning in the context of the Anderson model (“slave bosons” that govern 

valence fluctuations).
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Large N
HI(j) ! V̄j(c

†
j�fj�) + (f†

j↵cj↵)Vj +N
V̄jVj

J

J

N

� J

N
(c†�f�)(f

†
�0c�0)

c†�f� f†
�0c�0⌘

Exact provided that the auxiliary V are treated as quantum fluctuating fields. As we have seen, these 
fields have a physical meaning in the context of the Anderson model (“slave bosons” that govern 

valence fluctuations).
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Large N

•Very powerful method as it allows systematic expansion in 1
N

Kadanoff-Baym 
generating function

Pseudo-fermion selfenergy

Slave boson selfenergy
Non-crossing approximation (NCA)

O(
1

N
)

O(1)

1p
N

1p
N

1p
N

1p
N

NX

�=1
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Large N

•Non-perturbative self-consistent expansion.

•It can be generalized to non-equilibrium using Keldysh Green’s 
functions techniques.  As we will see, very useful for Kondo 
transport in nanostructures

•Very powerful method as it allows systematic expansion in 1
N

• David C. Langreth and Peter Nordlander, Phys. Rev. B, 43, 2541 (1991).
• Ned Wingreen and Yigal Meir, Phys. Rev. B 49, 11040 (1994)
• Ramón Aguado and David C. Langreth, Phys. Rev. B 67, 245307 (2003)
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U ! 1
Double occupancy of the orbitals becomes forbidden

Mean field

Renormalized parameters

H(�) =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

V0p
N

X

k,�

(c†k,�d�b
† + d

†
�ck,�b) + �(b†b+

X

�

d
†
�d� � 1)

H(�) =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

V0hbip
N

X

k,�

(c†k,�d� + d
†
�ck,�) + �(hbi2 +

X

�

d
†
�d� � 1)

"̃f = "f + �Ṽ =
V0hbip

N
= V0b̃
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Effective non-interacting resonant level model with 
renormalized parameters!!

H(�) =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

V0hbip
N

X

k,�

(c†k,�d� + d
†
�ck,�) + �(hbi2 +

X

�

d
†
�d� � 1)

"̃f = "f + �Ṽ =
V0hbip

N
= V0b̃

U ! 1
Double occupancy of the orbitals becomes forbidden
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H(�) =
X

k,�

"kc
†
k,�ck,� +

X

�

"fd
†
�d� +

V0hbip
N

X

k,�

(c†k,�d� + d
†
�ck,�) + �(hbi2 +

X

�

d
†
�d� � 1)

Solution: solve the selfconsistent set of equations

b̃2 +
1

N

X

�

hd†�d�i =
1

N

Ṽ

N

X

k,�

hc†k,�d�i+ ("̃f � "f )b̃
2 = 0

U ! 1
Double occupancy of the orbitals becomes forbidden
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⇢(") =
1

⇡

�̃

("� "̃f )2 + �̃2

�̃ = ⇡Ṽ 2⌫("F ) = b̃2�

q
"̃2f + �̃2 ⌘ TK = De�

⇡|"f |
N�

Exact Kondo temperature!!!!

U ! 1
Double occupancy of the orbitals becomes forbidden
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�

"f

"F

U ! 1
Double occupancy of the orbitals becomes forbidden
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"F "̃f
TK

U ! 1
Double occupancy of the orbitals becomes forbidden
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Physical explanation

•For U=0 one would just have a trivial resonant level below the 
Fermi energy. 

•In the presence of interactions, the constraint forces the resonance 
to be slightly above the Fermi level while at the same time narrowing 
it: the hopping amplitude is strongly reduced by the interactions, 
electrons have to “wait” until the level is empty, this job is taken care 
of by the slave boson that gives the probability of being empty.

Ramón Aguado ICMM-CSIC

U ! 1
Double occupancy of the orbitals becomes forbidden
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The same method applied to the lattice gives the strong 
renormalization of the heavy fermion bands

Ek± =
✏k + �

2
± [(

✏k � �

2
)2 + |Ṽ |2] 12
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Picture confirmed by Dynamical Mean field calculations of the 
periodic Anderson model

Th. Pruschke, R. Bulla, and M. Jarrell, Phys. Rev. B 61, 12799 (2000)



Ramón Aguado ICMM-CSICRamón Aguado ICMM-CSIC

The same method applied to the lattice gives the strong 
renormalization of the heavy fermion bands

Ek± =
✏k + �

2
± [(

✏k � �

2
)2 + |Ṽ |2] 12
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Development of Coherence: at low enough temperatures, the Kondo 
increase is quenched by the effective gap

Development of coherence in heavy 
fermion systems
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Optical conductivity

2

⇡

Z 1

0
d!�(!) = f1 =

ne2

m

According to the f-sum rule, the total integrated optical conductivity is determined
by the plasma frequency. In the absence of local moments, this is the total spectral 
weight inside the Drude peak of the optical conductivity

But what happens to the distribution of the spectral weight when the heavy-electron 
fluid forms? Physically, while we expect this sum rule to be preserved, a new 
quasiparticle Drude peak will form, corresponding to the heavy-electron Drude peak

2

⇡

Z TK

0
d!�(!) = f2 =

ne2

m⇤
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The total spectral weight is divided up 
into a small “heavy fermion” Drude peak 
of weight f2 and a large interband 
component associated with excitations 
between lower and upper Kondo bands

(
V

TK
)2 ⇡ D

TK
⇠ m⇤

m

V ⇠
p

TKD
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(
V

TK
)2 ⇡ D

TK
⇠ m⇤

m


