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a b s t r a c t

We develop a theoretical framework that explains the use of amplitude modulation AFM to measure

and identify energy dissipation processes at the nanoscale. The variation of the dissipated energy on a

surface by a vibrating tip as a function of its amplitude has a shape that singles out the dissipative

process. The method is illustrated by calculating the dynamic-dissipation curves for surface adhesion

energy hysteresis, long-range interfacial interactions and viscoelastic processes. We also show that by

diving the dissipated energy by its maximum value, the dynamic-dissipation curves become

independent of the experimental parameters. In particular, for long-range dissipative processes we

have derived an analytical relationship that shows the independence of the normalized dynamic-

dissipation curves with respect the free amplitude, cantilever constant or quality factor.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The development of an instrument that combines topography
and compositional analysis is a goal of many nanoscale imaging
techniques. In amplitude modulation atomic force microscopy
(AM-AFM), the variation of the phase shift of the vibrating tip
while imaging surface gives rise to a powerful source of
compositional contrast in heterogeneous samples [1–19]. This
method is usually known as phase imaging atomic force micro-
scopy. Phase-imaging AFM is a versatile method to study material
surfaces in their native environment and state with nanoscale
spatial resolution. For experiments performed with high quality
factor cantilevers (air), the variations observed in the phase shift
signal are related to the amount of energy transferred from the tip
to the sample surface (dissipation) [1,20–22]. As a consequence,
phase shift variations carry information on the dissipative
processes of the sample. In liquid or in bimodal AFM excitation
schemes, the relationship between phase shifts and conservative
and non-conservative forces is more complex and requires the
inclusion of higher cantilever modes and/or harmonics [23–26].

The high spatial contrast derived from AFM phase images
relies on the sensitivity of the phase shift to detect small
variations of the dissipated energy. Energy dissipation can be
studied from an atomistic [27,28] or a nanoscale perspective
[29,30]. The latter emphasizes the quantitative relationship
between dissipation and macroscopic quantities such as surface
ll rights reserved.
adhesion energy, elastic modulus, stiffness, plasticity index or
viscoelasticity.

Here, we develop a theoretical model that explains the use of
phase shifts in AM-AFM to measure and identify energy dissipa-
tion processes. We show that by normalizing the dissipated
energy to its maximum value the method is practically indepen-
dent from the experimental parameters such as the tip radius,
force constant or quality factor. In particular, we develop an
analytical expression that applies to dissipative processes that
arise from long-range interactions. The agreement obtained
between numerical simulations and the analytical expression
validates the model. Finally, the theoretical method also supports
the use of AM-AFM to obtain quantitative information on material
properties.
2. Model

We have used a point-mass model to calculate the properties
and interactions of a vibrating tip in the proximity of a surface.
Point-mass models have demonstrated great quantitative accu-
racy to describe amplitude-modulation AFM experiments when-
ever the contribution of higher cantilever eigenmodes can be
neglected [30–34]. The simulations were obtained by solving
numerically the equation of motion with a fourth order Runge–
Kutta algorithm.

The equation of motion in amplitude-modulation AFM is
approximately described by

m
d2z

dt2
¼�kz�

mo0

Q

dz

dt
þFtsþF0 cosot ð1Þ
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Fig. 1. Scheme of the different separations and spatial distances involved in AM-

AFM. The average tip–surface separation zc is the origin of the z coordinate. The

instantaneous tip–sample separation is d; z is the instantaneous cantilever

deflection and z0 is the average cantilever deflection.

Fig. 2. Non-conservative tip–surface forces: (a) long-range surface adhesion

hysteresis, (b) short-range surface adhesion hysteresis and (c) viscoelasticity.
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The total force that governs the tip motion includes the elastic
response of the cantilever, the hydrodynamic damping with the
medium, the tip–sample interaction force and the periodic driving
force; Q, k and o0 are, respectively, the quality factor, the force
constant and the angular resonant frequency of the free
cantilever; F0 and o are, respectively, the amplitude and the
angular frequency of the driving force. The steady-state oscillation
of the above differential equation can be approximated by a
sinusoidal oscillation z(t)=zc+A cos(ot�f), where zc, A and f are,
respectively, the average tip–sample separation, amplitude and
phase shift of the oscillation with respect to the driving force
(Fig. 1).

The tip–sample geometry is simulated by a semispherical tip
and a flat sample. The tip–sample interaction contains long and
short range forces. Long-range dissipative interfacial forces (non-
contact) are calculated by using a time-dependent power law
interaction:

Flr ¼
�aðtÞ

d2
ð2Þ

where a=aa for tA[0, T/2] a=ar for tA(T/2, T]. For separations
dra0, where a0 is an intermolecular distance (0.165 nm), the
resulting force is identified with the adhesion force given by the
Dejarguin–Muller–Toporov (DMT) theory [35]:

Fsh ¼ 4pRg¼ �a
a2

0

ð3Þ

where g is the surface energy and R the tip radius. In addition to
the adhesion force, during the contact (dra0), there is a repulsive
force arising from Pauli and ionic repulsion. The repulsive force
and the sample deformation are modeled by using the DMT
contact mechanics:

Fts ¼
�a
a2

0

þ
4

3
Eeff

ffiffiffi
R
p

d3=2
ð4Þ

where Eeff and d are the effective elastic modulus and the
indentation (deformation), respectively.

The viscoelastic force is calculated by combining the Voigt
model for the viscoelastic response [36] and the Hertz contact
mechanics model for the surface deformation [31]:

Fv ¼ Z
ffiffiffiffiffiffi
Rd
p dd

dt
ð5Þ

where Z is the viscosity of the sample.
Fig. 2 shows the above forces plotted versus the tip–sample
distance. The hysteresis in the force curves illustrates the non-
conservative nature of the interaction. The area enclosed by the
hysteresis loop gives the amount of the energy dissipated on the
sample surface.
3. Identification of energy dissipation processes

The sine of the phase lag that exists between the external
excitation and the tip response is directly linked to the amount of
energy dissipated on the sample [20]. In addition, there are
several analytical relationships that relate the dissipated energy
to some sample properties such as surface adhesion energy,
elastic modulus, stiffness, plasticity index or viscoelasticity. It has
also been shown that the representation of the dissipated energy
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(dynamic-dissipation curves hereafter) and, in particular, its
derivative with respect to the amplitude characterizes the
dissipation process [22].

Here we study three different energy dissipation processes,
surface energy hysteresis, dissipative interfacial interactions
between non-contact surfaces and viscoelasticity. The results
obtained from the numerical simulations show that the above
dissipation processes have a unique type of dynamic-dissipation
curve (Fig. 3). These observations are enhanced by taking the
derivative of the dissipated energy.

For surface energy hysteresis and dissipative interfacial
interactions between non-contact surfaces, the simulations have
been performed with the following set of parameters (set 1)
k=2 N/m, o0=59 kHz, Q=150 ga=33 mJ/m2, Dg=33 mJ/m2,
Da=HR/4, R=10 nm, H=6.77�10�20 J, Z=0, Eeff=150 GPa.
To simulate the viscoelastic process the parameters used
Fig. 3. Dynamic-dissipation curves for different non-conservative tip–surface forces. E

range surface adhesion hysteresis (a, b), short-range surface adhesion hysteresis (c, d)
(set 2) were k=40 N/m, o0=300 kHz, Q=500, R=10 nm, ga=20
mJ/m2, Dg =0, Da =0, Z=800 Pa s, Eeff=500 MPa. Here H is the
Hamaker constant, ga the surface energy when the tip approaches
the surface and Dg the difference in the surface energy between
approaching and retracting curves, i.e., the surface energy
hysteresis in a cycle; Da=ar�aa is the hysteresis in the long
range attractive force (Eq. (3)).

3.1. Long-range surface adhesion hysteresis

The dissipated energy per cycle in the presence of long-range
adhesion hysteresis (Eq. 2) can be calculated by

Edis ¼

I a
z2

dz¼

Zd2

d1

aa

z2
dz�

Zd1

d2

ar

z2
dz¼Da 1

d1
�

1

d2

� �
ð6Þ
nergy dissipation and its derivative as a function of the amplitude ratio for long-

, and viscoelasticity (e, f).
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Fig. 4. Dynamic-dissipation curves for long-range dissipative forces. Dissipation

(a, b), normalized dissipation (c, d), and derivate (e, f) as a function of the

amplitude ratio for long-range dissipative forces. The left-hand column represents

a simulation for A0=6 nm and three different tip radii (5, 10 and 15 nm). The right-

hand column is for R=10 nm and three different free amplitudes (3, 6 and 10 nm).
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Fig. 5. Dynamic-dissipation curves as a function of the free amplitude and force consta

normalized dissipation for different free amplitude values (k=2 N/m). (c) Dissipation an

lines for the normalized dissipated energy do not depend on the experimental parame
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where d1 and d2 are the closest and the farthest tip–surface gap
separations during the cycle, respectively. The parameters used in
the simulations were chosen to model a silicon oxide sample and
a vibrating tip in the attractive regime. The dynamic-dissipation
curves plotted for different tip radii and free amplitudes are
shown in Fig. 4. In all the cases, the dissipated energy shows a
maximum with respect to the amplitude ratio. As expected, for a
fixed amplitude, the dissipated energy decreases with the radius
(Fig. 4a). Similarly, for a fixed radius, the dissipated energy
decreases by decreasing the free amplitude (Fig. 4b). By
normalizing the energy to its maximum (Edis ¼ Edis=Edis (max)),
we found that the dynamic-dissipation curves are independent of
the experimental parameters (Fig. 4c and d). The derivative is
characterized by a region where the derivative changes very
slowly. This region is flanked by sharp increases at both ends of
the amplitude ratio interval.

Fig. 5 shows the dynamic-dissipation curves for cantilevers
with different force constants. Each contour line traces a line of
equal dissipated energy. Fig. 5a shows that the dissipated energy
increases with the free amplitude (k=2 N/m and Q=150).
However, the dynamic-dissipation curves of the normalized
dissipated energy do not depend on the free amplitude values
(Fig. 5b). Fig. 5c shows that the dissipated energy increases with
the force constant because the energy stored in the cantilever is
proportional to k. Again by normalizing the energy to its
maximum value, the dynamic-dissipation curves become
/A0

0.0 0.2 0.4 0.6 0.8 1.0

nt. The contour line traces a line of equal dissipated energy: (a) dissipation and (b)

d (d) normalized dissipation for different force constants (A0=5 nm). The contour

ters (vertical lines).
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independent of the cantilever constant (Fig. 5d). In Fig. 5a and c,
the dissipated energy increases from bottom to top. Similar
results are obtained when the Q factor is changed. The above
results have been obtained by using Eq. (A.10) of the appendix
with the following parameters: A0=5 nm, R=10 nm, Q=150,
k=2 N/m and Da=HR/4.

3.2. Short-range surface adhesion hysteresis

Upon contact, the energy might also be dissipated by short
range forces due to the presence of adhesion hysteresis. Similarly,
the dissipated energy is calculated by

Edis ¼

I
4pRgdz¼ 4pR

Zd2

d1

ga dz�

Zd1

d2

gr dz¼ 4pRDg ð7Þ

Fig. 6 shows the energy dissipated by short range forces for
different amplitudes and tip radii. For a fixed free amplitude, the
dissipation increases with the radius (5, 7 and 10 nm) because the
adhesion hysteresis also increases with the tip’s radius (Fig. 6a).
An increase of the free amplitude from 20 to 60 nm produces a
small increase in the dissipated energy (from 9 to 10 eV). This is
due to the small differences that for stiff materials (Eeff=150 GPa
Fig. 6. Dynamic-dissipation curves for a short-range dissipative force:

(a) dissipation (b) normalized dissipation, (c) derivate for A0=20 nm and radii (5,

7 and 10 nm). (d) Dissipation (e) normalized dissipation, (f) derivate for R=10 nm

and three free amplitudes (20, 40 and 60 nm).

Fig. 7. Dynamic-dissipation curves for a viscoelastic force: (a) dissipation, (b) normali

viscosity values (400, 800, 1600 Pa s).
in this case) exist between the indentation values for both
amplitudes. Again, the normalization with respect the maximum
value of the dissipated energy produces the overlapping of the
above curves (Fig. 6c and d). Finally, by taking the derivative of
the energy with respect to the amplitude the independence of the
curves with respect to the experimental parameters is enhanced
(Fig. 6e and f).

3.3. Viscoelasticity

To simulate the viscoelastic response of the sample we use a
model that combines Voigt’s viscoelastic response with the
surface deformation given by the Hertz contact mechanics
[21,22]. This model gives the force described in Eq. (5). The
dynamic-dissipation curves corresponding to the above force has
been calculated for different values of the viscosity (Fig. 7a). By
normalizing the energy it is found that the curves do not depend
on the actual value of the viscosity (Fig. 7b and c).

3.4. Multiple dissipation processes

We have also simulated a more general tip–surface interaction
that includes the three dissipation process described above. This
zed dissipation and (c) derivative as function of the amplitude ratio for different

Fig. 8. Dynamic-dissipation curves for a tip–surface interaction that includes

several dissipation processes: (a) dissipation, (b) normalized dissipation, (c) first

derivative for A0=10 nm and radii (2, 5 and 7 nm), (d) dissipation, (e) normalized

dissipation and (f) first derivative for R=10 nm and three free amplitudes (15, 17,

20 nm).
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case could correspond to imaging a soft polymer surface. For this
interaction, the dynamic-dissipation curves reflect the contribu-
tion of the three dissipative processes. Depending on the values of
the parameters, one process might dominate over the other two
and then the dynamic-dissipation curves will be similar to the
ones of the dominating process. The corresponding dynamic-
dissipation curves as a function of the free amplitude are shown in
Fig. 8a, c and d while Fig. 8b, d and f shows the dependence on the
tip radius. We have used the parameters described in set 2 but
with Dg=33 mJ/m2 and Da=HR/4. The dynamic-dissipation
curves indicate that viscoelasticity and long-range surface
adhesion are the dominant contributions.
4. Discussion

The results presented in the previous sections have revealed
some remarkable features such as the existence of a maximum in
the dissipated energy, the dependence of the dynamic-curve on
the dissipation process or the near independence of the dynamic-
dissipation values (normalized energy) on the tip radius, the free
amplitude or the cantilever constant.

We start by explaining the origin of the maximum observed in
the dynamic dissipation curves in the presence of long-range
adhesion hysteresis (Fig. 4). This maximum is related to existence
of a minimum in the tip–surface distance. The existence of such a
minimum implies a maximum in the dissipated energy because
the dissipated energy is calculated by integrating the force
(approach and retraction) between the closest and farthest
tip–surface distances (Eq. (6)). The lower limit is precisely the
more relevant because the forces and the force differences are
larger at the closest tip–surface distance. Fig. 9a shows the
existence of a minimum tip–surface distance as a function of the
amplitude ratio. The simulations have been performed for both
elastic and non-conservative interactions.

The maximum observed in the presence of viscoelastic
interactions has a similar explanation. The simulations show the
presence of a maximum in the indentation as a function of
the amplitude ratio (Fig. 9c). The amplitude ratio at which the
indentation has a maximum coincides with the amplitude
ratio that gives the maximum in the dynamic-dissipation
curves.

The dynamic-dissipation curves of the normalized energy
show a very small dependence on the tip radius, the force
constant or the free amplitude. This suggests that their influence
on the dissipated energy can be factorized independently from
the dependence on the amplitude ratio. In fact, we have derived
Fig. 9. Minimum tip–surface distance curves for different tip–surface interactions: (a) S

R=10 nm. (b) Long-range forces with (solid line) and without (dotted line) dissipation;
an analytical expression for the dissipated energy that applies for
long-range dissipative forces that supports the above results. In
the appendix we deduce

Edis ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1�A

2
� �

3

r
ð8Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Da3k2A3

0

ðaaþarÞ
2Q2

3

s
¼DaA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2

ðaaþarÞ
2Q2

3

s
� EdisðmaxÞ ð9Þ

then

Edis ¼
Edis

EdisðmaxÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1�A

2
� �

3

r
ð10Þ

5. Conclusions

We develop a theoretical framework that explains the use of
phase shifts in amplitude modulation AFM to measure and
identify energy dissipation processes. The method requires the
determination of the energy dissipated on the sample surface as a
function of the amplitude while the tip approaches towards the
surface. The representation of the dissipated energy and, in
particular, its derivative with respect to the amplitude ratio
characterizes the dissipation process. Those curves are called
dynamic-dissipation curves. Surface energy hysteresis, viscoelas-
ticity and long-range dissipative interfacial interactions processes
have been studied. The numerical simulations show that the
dynamic-dissipation curves (normalized) are practically indepen-
dent of some experimental parameters such as the tip radius,
force constant or quality factor. Specifically, for long-range
dissipative processes, we have derived an analytical relationship
that supports the independence of the normalized dynamic-
dissipation curves with the experimental parameters.

A more general tip–surface interaction could involve the
contribution of several non-conservative processes. The simula-
tions show that the resulting dynamic-dissipation curves could be
considered a combination of the individual dissipative processes.
This, in turns, enable us to separate each respective contribution.
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hort-range forces with (solid line) and without (dotted line) dissipation; A0=10 nm,

A0=20 nm, R=10 nm. (c) Viscoelastic process for two values of A0.
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Fig. 10. Comparison between numerical simulations (solid line) and the analytical

solution described by Eq. (A.10) (dashed line). For a long-range interfacial

dissipative force.
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Appendix

In the following, we derive an analytical expression for the
dependence of the dissipated energy on the amplitude ratio. The
dissipated energy can be obtained integrating the non-conserva-
tive force over one period. In particular, for a non-conservative
force given by Fdis=a(t)/z2 [23] where the strength of the force
depends on the direction of the tip movement:

Edis ¼

I
Fnc dz¼Da 1

d1
�

1

d2

� �
¼

2DaA0A

ðzcþz0Þ
2
�A

2
A2

0

¼
2DaA0A

L
ðA:1Þ

where a(t) is a function that varies with time in a step-like
manner; a=aa when the tip is approaching towards the
sample, and a=ar when is retracting from the sample. A is the
amplitude ratio A¼ A=A0; d1 and d2 are, respectively, the
maximum and minimum tip–sample distance defines as
d1=zc+z0+A and d2=zc+z0�A; L is the product of the above
distances.

Alternatively, the dissipated energy could be obtained by
expressing the non-conservative force in terms of the other forces
and integrating over one period:

Edis ¼

I
Fnc dz¼

ZT

0

mzþb_zþkz�F cosot�Fcð Þ_z dt

¼
pkA2

0

Q
Asinf�A

2
� �

ðA:2Þ

In addition, the virial theorem can be used to derive a
complementary expression that links the phase shift with the
average force per period ‘‘Fts’’ and the virial of the force ‘‘Ftsz’’ [31]:

cosf¼
2Q

kAA2
0

/Fts
2S

k
�/FtszS

" #
ðA:3Þ

On the other hand,

Fts ¼
1

T

I
Fts dt¼�

ðaaþarÞ

2

zcþz0

ðzcþz0Þ
2
�A

2
A2

0

h i3=2
¼�
ðaaþarÞ

2

zcþz0

L3=2

ðA:4Þ

/FtszS¼
1

T

I
Ftszdt¼

ðaaþarÞ

2

A
2
A2

0

ðzcþz0Þ
2
�A

2
A2

0

h i3=2

¼
ðaaþarÞ

2

A
2
A2

0

L3=2
¼�

A
2
A2

0

zcþz0
/FtsS ðA:5Þ

In many experimental situations, the mean deflection
of the cantilever is negligible with respect to the amplitude
(z0{AA0), then by substituting Eqs. (A.3)–(A.5) into Eq. (A.2), we
obtain,

Edis ¼
pkA2

0A

Q
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2Q

kA2
0A

/FtszS

( )2
vuut

2
64

3
75

¼
pkA2

0A

Q
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

A
2

L3

Q aaþarð Þ

k

� �2

vuut
2
64

3
75 ðA:6Þ
By combining (A.1) and (A.6) we deduce an equation that
relates the dissipated energy with the amplitude ratio (A),

E3
dis

3NA
þS2 E2

dis

A
2
þ2SEdisþ A

2
�1

� �
¼ 0 ðA:7Þ

with

N¼
8Da3k2A3

0

3ðaaþarÞ
2Q2

ðA:8Þ

S¼
Q

pkA2
0

ðA:9Þ

The real solution of the above third order equation gives

Edis ¼
N

A
IðAÞþ

S4�2SA
3
=N

IðAÞ
�S2

" #
ðA:10Þ

where

IðAÞ ¼


1

N2
3A

3
S3N�

3

2
A

4
A

2
�1

� �
�S6N2þA

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
A

4
A

2
�1

� �2
�A

3
A

2
�9

� �
S3N�3S6N2

r" #
3

vuut
ðA:11Þ

The curves obtained with numerical simulations and the
values given by using Eq. (A.10) are in very good agreement
(Fig. 10). This validates the analytical expression.

A more simplified expression can be obtained by assuming
that A044 nm, k42 N/m and R43 nm, then

Edis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3NA 1�A

2
� �

3

r
¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1�A

2
� �

3

r
ðA:12Þ

E�dis ¼
Edis

EdisðmaxÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1�A

2
� �

3

r
ðA:13Þ

where

C ¼
ffiffiffiffiffiffiffi
3N

3
p

ðA:14Þ

Eq. (A.13) reproduces the result given by the numerical
simulations, that is, the normalization curves render a unique
dynamic-dissipation curve. We have estimated that 10% max-
imum error in the values given by Eq. (A.13) with respect to those
given by (A.10).
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