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Abstract
We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experi-

ments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM.

It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters

relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample

deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics

models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear

viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select

the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-

experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last

18 years.
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Introduction
Numerical simulations have played a pivotal role to advance the

understanding and, in the process, to improve the performance

of amplitude modulation atomic force microscopy (AM-AFM),

usually known as tapping mode AFM. The following discus-

sion provides some examples. Simulations provided the first

estimation of the forces and deformations involved in tapping

mode AFM [1,2]. They explained the origin of the phase

contrast observed on heterogeneous samples by tapping mode

AFM in air [3] and liquid [4,5]. In the process, simulations vali-

dated the theory of AFM phase imaging in air [6,7], its use to

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:r.garcia@csic.es
http://dx.doi.org/10.3762%2Fbjnano.6.36


Beilstein J. Nanotechnol. 2015, 6, 369–379.

370

identify energy dissipation processes [7] or to measure the

energy dissipated in the sample [8-10]. Numerical simulations

have provided critical insight to understand the subtle nonlinear

dynamics aspects present in AM-AFM, such as the existence of

multiple interaction regimes [11-13] or the presence of chaotic

tip motion [14]. Similarly, simulations have linked the presence

of higher harmonic components in the tip motion with the pres-

ence of nonlinear interactions [15]. In the process, the cross talk

between modes and harmonics has been clarified [16-20]. The

complicated cantilever motion in liquid and the differences

observed between the excitation methods have been analyzed

by simulations [21-23].

The tip–surface force controls the cantilever motion, however,

the force itself is not an observable. Numerical simulations have

been used to derive parametric approximations [24], scaling

laws [25] and insights about the role of different material prop-

erties [25-27] in obtaining the maximum force. Simulations can

generate maps that provide the estimation of the peak forces for

a large variety of conditions [27,28]. The range of applicability

of the force reconstruction methods has also been verified by

numerical simulations [29]. The spatial resolution and contrast

of different dynamic AFM methods has also been studied by

simulations [28,30,31]. Finally, the emergence of multifre-

quency AFM [32] in particular bimodal [33,34], trimodal [35],

intermodulation [36] or torsional harmonics [37] has been

supported by simulations [38]. In the case of bimodal AFM,

numerical simulations [39] preceded and paved the way to its

experimental development [33,40].

The complexity of amplitude modulation AFM makes it diffi-

cult to develop reliable code accessible for both the large

community of tapping mode AFM users and the emerging

community of multifrequency AFM. The future applications

and understanding of dynamic AFM operation will be enhanced

if accurate simulators are easily accessible to the experimen-

talist. These factors promote the development of AFM simula-

tion platforms such as VEDA [41,42].

Here we present a dynamic AFM simulator (dForce), which is

based on the experience and knowledge accumulated from

nearly 20 years of simulations. The interactive simulator has a

modular structure that allows AFM users from the unexperi-

enced to the most advanced to simulate a wide variety of

experimental conditions and/or operational modes. The code is

valid for air or liquid environments, soft or hard materials, small

or large amplitudes, conservative and non-conservative forces

and single or bimodal excitation modes. Its accuracy has been

tested against previous numerical simulations. The dForce

simulator will be useful to either devise the optimal experi-

mental conditions in terms of amplitudes, peak forces, material

property sensitivity and spatial resolution, or to explain the

experimental data in standard and non-standard dynamic AFM

configurations.

The code is written in Python/SciPy, which is embedded with

open source features. It can be run on Windows, Mac and Linux

operating systems. It can be freely downloaded from our

website [43]. The user interface has been designed to mimick

some of the main steps of an amplitude modulation AFM

experiment (Figure 1).

The dForce user must be aware that the accuracy of the simula-

tions to describe an experiment cannot be better than the accu-

racy of the model used to describe it. In addition, the use of

dForce should be accompanied by an understanding of the

physics of dynamic AFM methods. There are many instances

where a poor selection of the different parameters in the code

could generate incorrect results without producing errors in

either the model or the code.

Results and Discussion
Cantilever–tip dynamics
In amplitude modulation AFM the equation of motion for the

microcantilever–tip system is approximated by using the point-

mass model [11],

(1)

where m is the effective mass of the cantilever tip, ω0 is the

angular resonant frequency, Q the quality factor, k the spring

constant of the fundamental resonance (first flexural mode) and

Fts is the tip–sample interaction force. The above equation is

applicable when the contributions from higher modes to the

cantilever motion are negligible [15].

The presence of higher flexural modes in the the cantilever–tip

motion can be described by using a continuos beam theory

[15,16]. The extended Euler–Bernoulli equation considers the

cantilever as a continuous and uniform rectangular beam under

the action of external forces,

(2)

where E is the Young modulus of the cantilever, I the area

moment of inertia, α1 the internal damping coefficient of the
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Figure 1: Graphical user interface of dForce. (a) Main menu. It is divided in three sections, two horizontal and one vertical. The top tabs contain all
panels relevant for AFM simulations. The bottom panel enables selection of the output plots. The vertical panel contains the tabs for running the
program and managing the output. (b) Force panel that shows the different tip–surface force models implemented in dForce. (c) Example of the input
panel for the DMT model.

cantilever, ρ the cantilever mass density, b, h and L are the

width, thickness and length of the cantilever, respectively, α0 is

the hydrodynamic damping of the medium, and w(x,t) is the

time-dependent, vertical displacement of the differential beam’s

element placed at the x position. To numerically solve the above

equation, we replace it by a system of point-mass equations, one

for each relevant mode, n = 1, 2, etc. as described by [16,44,45]

(3)

with m = 0.25·mc and 1 + cos (κn) cosh (κn) = 0, where κn is the

nth positive real root of the above equation and mc is the real

mass of the cantilever. Additionally, the quality factor is

defined as

(4)

where

(5)

Tip–sample interaction forces
The simulator includes a variety of models and tip–surface

force interactions. The interactions are separated in long range

and short range. The user has the option of combining a long

range with a short range interaction to produce the full
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tip–surface force. It is also possible to add one or several non-

conservative interactions such as adhesion hysteresis and/or

viscoelasticity. We briefly describe the resulting expressions.

van der Waals
The van der Waals interaction between a sphere and a half-

space is calculated by [46]

(6)

where Rt is the tip radius, H is the Hamaker constant, d is the

distance between the tip’s apex the sample surface and a0 is the

intermolecular distance (0.165 nm).

Derjaguin–Landau–Verbey–Overbeek (DLVO)
The DLVO force [46] describes interactions in liquid by

including the contributions from the electrical double layer and

the van der Waals interactions. The DLVO force is given by

(7)

where λD is the Debye length, ε is the relative permeability, ε0

is the vacuum permeability, σt is the tip–surface charge density

and σs is the sample surface charge density.

Hertz contact mechanics
The elastic contact between the tip and sample is usually

modelled with the Hertz model [46] whereby for a spherical tip

and a half-space sample the force is given by

(8)

where δ is the indentation and Eeff is the effective Young

modulus of the interface defined by

(9)

where Et and Es are the Young’s modulus of the tip and sample,

respectively, and υt and υs are the Poisson coefficients of the tip

and sample, respectively.

Derjaguin–Mueller–Toporov contact mechanics
(DMT)
The DMT model is valid for describing stiff and small contacts

with low adhesion forces. The DMT model [47] considers an

elastic term given by Hertz contact mechanics as

(10)

and an adhesion force that acts outside the contact area given by

(11)

where γ is the sample surface energy.

Johnson–Kendall–Roberts contact mechanics (JKR)
The JKR model is applied to describe contacts characterized by

a relatively small Young modulus, and large adhesion and

contact area [48]. In this model the force is calculated as an

implicit equation of the indentation

(12)

where

(13)

and

(14)

Tatara contact mechanics
The Tatara contact mechanics are applied to describe a sample

with a finite size with respect to the tip. It releases the vertical

load into both vertical and lateral deformations [49]. The defor-

mation is symmetrically generated on both sides of the sample,

one that is in contact with the tip and the one in contact with the

substrate. The force is calculated by

(15)

with

(16)
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Table 1: Parameters used to compare the performance of the numerical integration algorithms LSODA and Runge–Kutta 4 (RK-4) for zc = 4 nm.

AFM configuration R (nm) f1 (kHz) k1 (N/m) Q1 A01 (nm) f2 (kHz) k2 (N/m) Q2 A02 (nm) Es (Pa) H (J)

AM-AFM 2 48.9 0.9 100 5 – – – – 1 G 0
Bimodal AM 20 48.9 0.9 100 5 282 28 200 1 1 G 0

(17)

(18)

where Rt and Rs are the tip and the sample radius, respectively.

Bottom effect cone correction (BECC)
This model was recently introduced by Gavara and Chadwick to

suppress the influence of the stiffness of the substrate on the

stiffness measured by AFM on very soft and thin materials

deposited on them [50]. The expression is valid when the

Young modulus of the substrate is several orders of magnitude

higher than that of the sample. The force is calculated by

(19)

where θ is the half-cone angle and hs is the thickness of the

sample.

Linear viscosity force
The linear viscosity force deduced by Garcia and San Paulo

[51] combines the relationship between the stress and strain

given by the Kelvin–Voigt model and the sample deformation

given by Hertz contact mechanics as

(20)

where η is the viscosity coefficient.

Standard linear solid viscoelastic model (SLS)
The SLS model is considered to represent the time-dependent

behavior of a viscoelastic material without residual strains [52].

The model characterizes a viscoelastic material as an elastic

element, which is coupled in series with a system that includes

another elastic element and a viscous response. The equivalent

mechanical system is a spring in series with a spring and a

dashpot. By assuming a contact mechanism as described by

Hertz contact mechanics, we deduce the force as

(21)

where E0 and E∞ represent the Young’s modulus of the ma-

terial at fast and slow loading rates, respectively.

Customized force
The code also enables the definition of other types of forces.

For that purpose, the advanced user could use any of the vari-

ables and/or parameters defined in the above force models, or

could use any or several of the four undefined parameters P1,

P2, P3 and P4 allowed by the code. In this manner, the code has

the capability to simulate the dynamics of the microscope under

a force that includes any of the variables of the above models

and up to four new parameters generally defined as

(22)

Numerical integration methods
To obtain the cantilever–tip motion in AM-AFM we have

considered a point-mass model with the parameters of the first

flexural model of the cantilever. For bimodal AM we have

considered a system of equations involving the first three flex-

ural modes [39,45]. Each mode was described by a point-mass

model. In this system the modes are coupled by the tip–sample

interaction force. The equations of motion were integrated

numerically using the Livermore solver for ordinary differen-

tial equations (LSODA) of the scipy library (scipy.ode) [53-55].

LSODA uses an algorithm to adapt the integration step for a

given numerical tolerance of the numerical integration [51]. We

have chosen this numerical method because it offers faster inte-

gration times as compared to the commonly used fourth-order

Runge–Kutta algorith (RK-4) [56]. We have compared the

numerical integration for AM-AFM and bimodal AM

microscopy examples (see Table 1). The results presented in
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Table 3: Summary of the parameters used in the numerical simulations described in Figures 2–5.

Figure R (nm) f1 (kHz) k1 (N/m) Q1 A0 (nm) Es (Pa) H (J) η (Pa·s)

2 2 49.9 0.9 100 1 1 G 0.8 × 10−20 0
3 (air)
(water)

2 48.9 0.9 255
2

10 1 G 2 × 10−20

0
0
0

4 2 48.9 10 100 10 50 G (hard)
50 M (soft)

0 0

5 2 49 0.9 50 10 50 M 0 100

Table 2 show the performace of LSODA with respect to RK-4.

In all the cases, LSODA performs the simulations significantly

faster than RK-4. In fact, when higher accuracy is demanded

(higher m values), LSODA also performs better. We note that

the comparison applies only to the part of the code that involves

the integration methods and not to the code as a whole, which

involves other operations such as data storing and visualization.

Table 2: Comparison between two different numerical integration algo-
rithms, LSODA and RK-4. The numbers indicate the factor by which
LSODA is faster than RK-4 for two dynamic AFM configurations (see
Table 1); m is the number of points per period to represent the oscilla-
tion.

m = 128 m = 256 m = 512

AM-AFM 2.8 4.3 6.5
Bimodal AM 4.5 7.3 11.1

For the simulations, it is important to choose appropriate values

for the numerical integrator, in particular the number of periods,

interval of periods (to calculate the steady state), and the

average tip–surface distance step to guarantee that the simula-

tions reflect the proper oscillation conditions. In general, the

main interest is in the steady state solutions, that is, when the

transient term has practically vanished [46]. For a driven and

damped harmonic oscillator, the transient terms are reduced by

a factor of 1/e after a time t = QT/π where T is the natural period

of the oscillation. Consequently, the number of periods should

be at least 2–5 times larger than Q/π for quality factors above

30. For a smaller Q values, it should involve about 30 periods.

The interval of periods to calculate the steady state solution

refers to the number periods in the oscillation that will be used

in the calculations. These are the last periods of the total num-

ber of periods and typically 8 periods are sufficient. The last

key parameter is the tip step. This refers to the amplitude of the

motion of the tip (phase shift) versus distance curves. Smaller

steps will give better results but they imply larger computation

times. A 1 nm zc step is a good starting value, however, smaller

values could be necessary depending, for example, on the coex-

istence of attractive and repulsive interaction regimes.

Graphical user interface
The graphical user interface is divided into three main sections:

microscope input data, the output section and the toolbar for

running the program and handling files. Figure 1a shows a

screenshot of the interface. In the AFM data panel some tabs

facilitate the introduction of the relevant information for the

simulation such as the type of AFM configuration (AM-AFM

versus bimodal AFM) or the model to describe the tip–surface

forces. By activating any of the tabs a new panel will show the

available options. Figure 1b shows the options available to

model the tip–surface interactions. An example of force data

panel is shown in Figure 1c.

Amplitude modulation AFM simulations
The results presented in this section describe steady-state condi-

tions. Consequently, the numerical integration values have been

adjusted to integrate the tip’s deflection once the transient

component has faded away [57]. The parameters characterizing

the AFM operation used in the Figures of this section are

summarized in Table 3.

Figure 2 shows the tip motion under the influence of a force that

includes van der Waals and Hertz contact mechanics (see

Table 3 for the parameters). The instantaneous tip deflection,

velocity and force are shown. The tip oscillates between

±0.47 nm while the velocity changes between zero and

141 μm/s. The instantaneous force shows the presence of a non-

interacting region for distances larger than the set point ampli-

tude, the region of the attractive force and the region of repul-

sive forces. In this case, attractive and repulsive peak forces are

about −92 and 112 pN, respectively. One useful feature

provided by dForce is the capability to combine different data in

a single plot. Figure 2d shows the cantilever deflection, the

velocity and the force.

Coexistence of interaction regimes
The existence of different interaction regimes in AM-AFM is a

direct consequence of the nonlinear character of the tip–surface

force [11,46]. The amplitude versus the average tip–surface dis-

tance zc curve shows a sudden increase at zc = 9.3 nm
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Figure 2: dForce simulation of AM-AFM for a tip–surface force that includes van der Waals and DMT. (a) Instantaneous tip deflection. (b) Instanta-
neous velocity. (c) Instantaneous force. (d) Combining different plots in a single figure. Deflection (blue), velocity (green) and force (red). The simula-
tions were performed for zc = 0.5 nm.

(Figure 3a).This increase marks the transition between a tip

oscillation dominated by attractive forces to a tip oscillation

dominated by repulsive forces. The increase in the amplitude

curve is also reflected in the phase shift curve (Figure 3b) where

the phase shift changes from about 110° to 65°. The initial

values of the deflection, position and velocity determine the zc

value where the jump occurs. The inset (Figure 3a) shows the

coexistence of two amplitude values for the same zc. This coex-

istence generates a hysteresis loop [11]. We note that in the

attractive regime, the phase shift increases from the non-inter-

acting value (90°) with decreasing zc. However, in the repul-

sive regime,  decreases with decreasing zc.

Low versus high Q values
The above considerations apply for environments with rela-

tively high Q values (10–500), which experimentally usually

implies air environments. For simulations performed in liquid,

Q ≈ 1–5, and the tip motion is markedly different [20,22-24,58].

First, the AFM operation is controlled by repulsive forces

because the attractive forces are highly screened in liquid. The

absence of an attractive regime in liquid implies that the phase

shift decreases by decreasing zc. Second, for the same instru-

ment, the noise in the amplitude is higher in liquid. This

happens because the noise is proportional to 1/(dA/dzc) [47].

The slope of the amplitude curve in liquid is 0.7 while in air for

the same system it is 1 (Figure 3a). Third, in liquid the observed

cantilever motion depends on the microcantilever excitation

method [22,58]. The code is written to simulate the dynamics of

directly excited microcantilevers (photo-thermal or magnetic

excitation).

The amplitude spectrum also depends on the medium (zc =

5 nm). The anharmonicity of the motion is higher in liquid

[20,59]. For all the frequencies except the fundamental, the

amplitude of the harmonics is higher in water (Figure 3c).

Imaging soft and hard materials
The cantilever dynamics in AM-AFM shows some subtle differ-

ences depending on the effective Young’s modulus of the inter-

action. Figure 4 shows the amplitude, phase shift and harmonic

components for two materials characterized by an Es of 50 MPa

and 50 GPa. The amplitude curve shows a significant differ-

ence in the slope. In the stiffer material the slope is nearly 1

while for the softer material the slope is about 0.7. Because the

noise in the amplitude depends on the slope as 1/slope, the

smaller value of the slope implies that in softer materials it is

more difficult to achieve high resolution. The phase shift

(Figure 4b) decreases more rapidly with the average distance in
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Figure 3: AM-AFM comparison of cantilever dynamics, air versus
liquid. (a) Amplitude versus average tip–surface distance curves for
low and high Q values. The inset shows the details of the hysteresis in
the amplitude (approaching and retraction cycles). (b) Corresponding
phase shift curves. (c) Spectra of the amplitude components taken at
zc = 7 nm. The approaching (continuous line) and retraction curves
(dots) are also shown in (a) and (b) for Q = 255.

the stiffer material. The amplitude spectrum shows that strength

of the higher harmonics also depends on the material. Higher

components are observed in the stiffer material (Figure 4c).

Viscoelastic materials
Experiments involving soft matter usually imply the existence

of a viscoelastic response. Figure 5a shows the viscoelastic

force calculated with the Garcia–San Paulo expression (Equa-

tion 20). Far from the sample surface, the force is zero (not

including long-range forces) and upon contact, the repulsive

Figure 4: AM-AFM comparison of cantilever dynamics, hard versus
soft materials. (a) Amplitude versus average tip–surface distance
curves for hard and soft surfaces. (b) Corresponding phase shift
curves. (c) Spectra of the amplitude components taken at zc = 5 nm.

force increases until a maximum is reached. During retraction,

an attractive force appears due to the viscoelastic response of

the material. Then the force depends on the direction the tip

motion. The thick blue line shows the elastic component of the

force.

The tip deflection is shown in Figure 5b. The amplitude is

slightly smaller in presence of viscous material and the oscilla-

tion is phase shifted with respect to the absence of a viscoelastic

response. The instantaneous force shows a region of attractive

force when the tip withdraws from the sample surface

(Figure 5c). This effective attractive force originates from the

viscoelastic interactions.
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Table 4: Summary of the parameters used in the numerical simulations of bimodal AFM described in Figure 6 and Figure 7.

Figure R (nm) f1 (kHz) k1 (Nm) Q1 A01 (nm) f2 (kHz) k2 (Nm) Q2 A02 (nm) Es (Pa) H (J)

6 1 50 0.9 10 10 310 35.2 62.7 1 1 G 4 × 10−20

7 20 48.9 0.9 255 17 306.6 35.2 1000 1 1 G 4 × 10−20

9 × 10−20

Figure 5: AM-AFM simulations for a viscoelastic material.
(a) Force–distance curve for the linear viscous model. The blue curve
represents the conservative force given by the Hertz model. (b) Tip
deflection as a function of time for an elastic and a viscoelastic ma-
terial. (c) Instantaneous force at zc = 0.2 nm.

We have also compared dForce and VEDA simulations [41,42]

for several AM-AFM cases. Both simulators give similar results

with some minor numerical differences. The compatibility of

dForce with different operating systems (Windows, Mac and

Linux), the autonomy of running dForce without internet

access, and the flexibility by offering customizable plots and

interactions forces, highlight several advantages dForce offers.

Bimodal AM
The simulations were performed for the bimodal AM configur-

ation where the first two flexural modes are excited and an

amplitude modulation feedback controls the amplitude of the

first mode [33]. The parameters used in the bimodal AM simu-

lations are presented in Table 4.

Figure 6 shows the tip response under the influence of excita-

tion and the tip–surface interactions. The periodicity of the

signal occurs at a frequency that is a multiple of both the first

and the second modes. The instantaneous force shows the

region of attractive and repulsive forces and the variation of the

peak forces over different periods of the first mode.

In bimodal AM, the phase shift of the second mode is the

observable used in heterogeneous samples to separate regions of

different material properties. Figure 7 shows the dependence of

the phase shift as a function of the set-point amplitude and the

material properties (changes in the Hamaker constant). The

phase shift  (attractive regime) has a sudden increase that it is

followed by a region where the  seems to saturate but then

suddenly increases for small zc values. The shape of the curve is

reproduced for other materials (H values).

To illustrate the differences with the AM-AFM operation we

also plot the phase shift for the same values of H (in this case

). The phase shift in AM-AFM is not sensitive to changes in

the conservative terms of the interaction. We remark that the

above result holds for a system without dissipative elements [5].

Conclusion
We have developed an interactive simulation environment,

based on open source code, to simulate the full cantilever

dynamics in both amplitude modulation and bimodal AM force

microscopies. The code is both robust and numerically accurate.

It incorporates the most relevant interaction force models that

apply for dynamic AFM experiments in air and liquid. The

simulator has been tested over the years on a wide variety of

different AFM conditions.
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Figure 6: Bimodal AFM tip motion. The tip oscillation (blue), instantaneous force (red) and velocity (green) are shown. Notice that in this particular
case the period of the oscillation is 6 times the period of the first mode. Data obtained at zc = 9 nm.

Figure 7: Material contrast in bimodal AFM. Phase shift as a function
of the set-point amplitude in bimodal AFM (  versus A1). To illustrate
the bimodal effect, we show the simulations for regular AM-AFM (
versus A1).

The simulator will help to clarify and understand any arising

complexity in the tip motion found in both amplitude modula-

tion and bimodal AFM and, in the process, to establish the rela-

tionship between material properties, forces and observables for

a given experiment. Because this is open source software, the

advanced user could incorporate additional libraries as desired.

Finally, the use of dForce must be accompanied by an under-

standing of the physics behind the simulations in order to select

appropriate input parameters that will generate meaningful and

correct results.
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