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Bimodal force microscopy is a dynamic force-based method with the capability of mapping
simultaneously the topography and the nanomechanical properties of soft-matter surfaces
and interfaces. The operating principle involves the excitation and detection of two cantile-
ver eigenmodes. The method enables the simultaneous measurement of several material
properties. A distinctive feature of bimodal force microscopy is the capability to obtain quan-
titative information with a minimum amount of data points. Furthermore, under some con-
ditions the method facilitates the separation of the topography data from other mechanical
and/or electromagnetic interactions carried by the cantilever response. Here we provide a
succinct review of the principles and some applications of the method to map with nanoscale
spatial resolution mechanical properties of polymers and biomolecules in air and liquid.
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1. Introduction

The emergence of hybrid devices and materials made up
of nanostructures of different mechanical, chemical, electric
and/or magnetic properties requires the development of
non-invasive, high resolution and fast characterization
methods that combine high spatial resolution with compo-
sitional contrast. Ideally, those materials should be ob-
served in their native environment and state. The atomic
force microscope (AFM) [1] has significantly contributed
to our current understanding of soft-matter interfaces
[2–5]. Conversely, the evolution of the atomic force
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microscope (AFM) is being shaped by the need to provide a
full characterization of complex interfaces [6]. Images of
heterogeneous surfaces with high spatial resolution (sub-
5 nm range) in combination with compositional contrast
have been provided by dynamic AFM methods such as phase
imaging [4,7–17]. This method enables to identify and mea-
sure energy dissipation processes at the nanoscale [9–13]. In
general it is not straightforward to transform those images
into quantitative information about other nanomechanical
properties albeit some notable exceptions exist [7,9,14–16].

Force microscopy has provided a nearly continuous pro-
gress in high resolution imaging-nano, molecular or atomic-
of materials by experiencing multiple transformations. This
has led to the development a large variety of dynamic force-
based methods [6,18–24]. The common thread in those
methods is the detection of forces and the use a mechanical
cantilever-tip system as the transducer of the forces.

Bimodal force microscopy is an AFM method that uses
several eigenmode frequencies for excitation and detection
[19,25,26]. The different resonances act as signal channels
that allow accessing and separating material properties
such as topography, dissipation, Young modulus, viscosity
and short and long-range interactions.

To facilitate the understanding of bimodal AFM it is
convenient to distinguish between some of the major fre-
quency components carried out by the cantilever-tip re-
sponse, eigenmodes and harmonics. The cantilever-tip
ensemble, cantilever or probe for short, is a mechanical
system which has a number of discrete oscillations xj with
j = 1, 2, . . . that are determined the boundary conditions.
Those oscillations are variously termed ‘eigenmodes’, ‘nor-
mal modes’ or ‘resonances’. When the normal modes are
contained in a plane orthogonal to the main plane of the
cantilever they are called flexural modes. A higher har-
monic, on the other hand is a component of the oscillation
that vibrates with a frequency that is equal to an integer
multiple of the excitation frequency (xn = nx). In general,
higher harmonic and resonant frequencies do not coincide.
Subharmonics are components with a frequency that is a
submultiple of the excitation frequency. The harmonics
are introduced in the probe motion by the nonlinearities
in the interaction force. A more complete description of
eigenmodes and harmonics in the context of AFM can be
found elsewhere [6,27–29]. Fig. 1a shows the first two flex-
ural mode shapes of a rectangular cantilever that is
clamped at one end and free to oscillate at the other.

2. Bimodal AFM

2.1. Operating principles

The method uses two driving forces to excite the vibra-
tion of the cantilever. The excitation frequencies of the
driving forces are tuned to match two of the eigenmodes
of the cantilever, usually the first and the second flexural
modes of the cantilever,

Fexc ¼ F1 cos x1t þ F2 cos x2t ð1Þ

then the cantilever response can be expressed

z ¼ z0 þ A1 cosðx1t � /1Þ þ A2 cosðx2t � /2tÞ þ n ð2Þ
where Fi, xi = 2pfi, /i, Ai are, respectively, the excitation
force, angular frequency, phase shift and amplitude of the
eigenmode i. The last term n represents the deflection com-
ponents at frequencies different of the excited ones. Those
components are usually neglected.

A scheme of the addition of the first two modes and the
resulting excitation signal is shown in Fig. 1b and c. In the
most common experimental set-up, an output signal of the
first mode (either the amplitude or the frequency shift) is
used to image the topography of the surface while the out-
put signals of the second mode (amplitude, frequency shift
and/or phase shift) are used to measure changes in differ-
ent mechanical [30–38], magnetic [39,40] or electrical
properties [41–44] of the surface. This method is compati-
ble with both dynamic AFM modes, amplitude (AM) and
frequency modulation (FM) modes [45]. It can be operated
in air [25,26], liquid [31] or ultrahigh vacuum [46,47].

2.2. Bimodal AFM configurations

The variety of observables to record the tip-surface
force and to operate the feedback has produced several bi-
modal AFM configuration modes. This makes bimodal AFM
very flexible and, at the same time, the subtleties of the dif-
ferent configurations might be hard to follow.

Computer simulations laid the foundations [19] for the
experimental implementation of bimodal AFM. The first bi-
modal AFM prototypes had the feedback controlling the
amplitude of the 1st resonance while the parameters of
the second resonance were free to change (open loop)
[25,26]. This configuration is called amplitude modulation
(AM). By operating the feedback in the frequency shift of
the first mode instead of the amplitude a new bimodal con-
figuration is in place [48,56], this bimodal AFM configura-
tion is termed (FM). A combination of the feedbacks in the
amplitude of the first resonance and the frequency shift of
the second gives rise to the configuration known as AM–
FM [34]. Table 1 shows a classification of some of the cur-
rent bimodal AFM configurations.

Kawai and co-workers have proposed a bimodal AFM
operation scheme that involves the excitation of a flexural
mode and a torsional mode [48]. Solares and Chawla have
demonstrated that the cantilever excitation/detection
scheme could be extended to three normal frequencies.
They called this approach trimodal AFM [49,50].

2.3. The physics of bimodal AFM

The understanding of bimodal AFM contrast is still un-
der development [48,51–53]. This is partly due to the nov-
elty of the method. The intrinsic flexibility of bimodal AFM
operation to select the observable for material contrast
complicates the development of a coherent framework
that encompasses all the bimodal AFM variations [34].
Nonetheless, there are some established principles that ex-
plain the properties of bimodal AFM in terms of the force
sensitivity, the compositional contrast or the ability to sep-
arate the various forces acting on the cantilever.

Three main factors singularize bimodal AFM operation
[51]: the coupling between excited modes induced by the
nonlinear tip-surface force, doubling of the number of



Table 1
Bimodal AFM configurations.

Mode name Feedback mode 1 Feedback mode 2 Observables Quantitative observablesa Material property

Bimodal AM AM Open A1, A2, /1, /2 /1 Dissipation
Bimodal AM–FM AM FM A1, A2, /1, /2, Df2 Df2 Dissipation, stiffness, Young modulus,
Bimodal FM FM Open A1, A2, /1, /2, Df2 /1, A2, /2 Dissipation, stiffness, Young modulus

a Observables that have an analytical relationship with a nanoscale property.

Fig. 1. (a) Mode shapes of the first two flexural modes of tipless rectangular cantilever beam. (b) Scheme of the combination of two frequencies in bimodal
AFM and resulting tip excitation (c). (d) Diagram of bimodal AFM excitation and detection in the AM configuration.
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observables to record information on material properties
and the lack of feedback restrictions for the additional ex-
cited mode. The eigenmodes of a cantilever have different
force constants, quality factors and resonant frequencies
[6,27], consequently they do not offer the same sensitivity
to detect material properties.

Let’s start with a discussion about the origin of bimodal
AFM contrast in an heterogeneous surface. In general the
tip-surface force can be separated into conservative and
non-conservative (dissipative) components [54],

Fts ¼ Fcon þ Fdis ð3Þ

In amplitude modulation AFM, the use of time-averaged
models, usually expressed in terms of the virial and energy
conservation [45,55], enables the deduction of some ana-
lytical or semianalytical expressions connecting the
observables and the mean values of forces and energies
[51,52], for example, the phase shift of an excited mode
/i is expressed as,

/i ¼ /i½VtsðiÞ; EdisðiÞ� ð4Þ

where Vts(i) and Edis(i) are, respectively, the virial of the
force and the energy dissipated on the trajectory of mode
i. In amplitude modulation AFM, the amplitude of the first
mode remains fixed during imaging A1 = Asp and as a
consequence

/1ðx; yÞ ¼ /1½Edisð1Þ�ðx; yÞ ð5Þ

If the experiment is performed under the absence of non-
conservative forces or when non-conservative forces are
negligible with respect to the conservative forces.

/1 ¼ /1ðx; yÞ ¼ fixed ð6Þ

Consequently no changes in the phase shift will be ob-
served during imaging. However, in the bimodal AFM con-
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figuration where the second mode is free (either AM or FM
in Table 1) the above condition does not apply to the sec-
ond mode,

/2 ¼ /2½Vtsð2Þ�ðx; yÞ ð7Þ

Bimodal AFM operation facilitates to combine robust and
stable imaging conditions with quantitative and composi-
tional measurements by using different amplitudes for
the topographic imaging (usually A1) and for the additional
mode (quantitative). Optimum working operations have
been set to ratios of A1/A2 6 10 with A2 < 1 nm. The small
value of A2 with respect to the scale where the interaction
force changes might allow to develop an analytical rela-
tionship between the gradient of the interaction force
and phase shift of the second mode [56],

F 0ts;peakðzcÞ � C
k2A02

Q 2A2ðzcÞ
cos /2ðzcÞ ð8Þ

where Q2 and k2 are respectively the quality factor and
force constant of the second mode. Then by using Hertz
contact mechanics a relationship between the /2 and the
local Young modulus of the tip-surface interface Eeff (x, y)
is obtained,

F 0ts;peakðzcÞ � 2Eeff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rða0 � dminÞ

q
¼ 2Eeff rc ð9Þ

Eeff ¼
F 0ts;peakðzcÞ

2rc
ð10Þ

where

1
Eeff
¼ 1� m2

t

Et
þ 1� m2

s

Es
ð11Þ

whenever, the Young modulus of the tip (Et � 160 GPa) is
much larger than the Young modulus of the sample for
silicon Es, the effective Young modulus of the interface
can be approximated for that of the sample Eeff � Es. This
the common situation while imaging soft matter (ms � 0.4).

3. Nanomechanical mapping of soft-matter

The experimental bimodal AFM configuration used here
is the AM–FM (Table 1). In this configuration the topo-
graphic feedback is performed in the amplitude modula-
tion mode and it is confined to the first resonant mode
which means much greater stability. For example, if the
phase-locked loop (PLL) or automatic gain control (AGC)
keeping the response amplitude constant feedback control
loops operating on the second mode become unstable and
oscillate, it has little or no effect on the ability of the first
mode to track the surface topography. The second excited
mode is used to measure the Young modulus by following
frequency shifts. In particular, the frequency shift of a can-
tilever in frequency modulation mode is given by [57]

Df2 ¼ �f0;2
hFtszi
k2A2

2

ð12Þ

where f0,2 is the second resonant frequency measured at a
‘‘free’’ or reference position, Df2 is the shift of the second
resonant mode as the tip interacts with the surface, k2 is
the stiffness of the second mode and A2 is the amplitude
of the second mode as it interacts with the surface. As with
the expression for the loss tangent [58] since it involves a
ratio of amplitudes, it does not directly involve the optical
lever sensitivity. Thus, we can relate the measured fre-
quency shift to a tip-sample stiffness kts

kts �
2k2Df2

f0;2
ð13Þ

Since the frequency shift of second mode depends on the
interaction stiffness kts, the material modulus can be mea-
sured and mapped by applying a particular mechanical
model. One of the most simple models is a Hertz indenter
in the shape of a punch. In this case, the elasticity of the
sample is related to the tip-sample stiffness by the relation

kts ¼ 2Eeff rc ð14Þ

by combining Eqs. (13) and (14) the following expression is
deduced for the Young modulus

Eeff ¼
Df2

f0;2

k2

rc
ð15Þ

Thus if the contact area can be approximated by ðpr2
c Þ and

the spring constant are known, the sample modulus can be
calculated. Of course, other tip shapes could be used in the
model. Calibration of the tip shape is a well-known prob-
lem, beyond the scope of this paper. However, it is possible
to use a calibration sample that circumvents this process.
As a first step, we have used a traceable ultra high molec-
ular weight high density polyethelene (UHMWPE) [59] ref-
erence sample to first calibrate the response of the
cantilever. Eq. (15) can be rewritten as

Eeff ¼ C2Df2 ð16Þ

where C2 is a constant, measured over the UHMWPE refer-
ence that relates the frequency shift to the elastic modulus.
This can then be applied to unknown samples. The above
expressions can be generalized for cases where the second
excited mode is a higher cantilever mode different from
the second mode, by replacing the sub-index 2 by the in-
dex i of the higher excited mode.

Fig. 2 shows two bimodal AFM images of two different
polymer surfaces. A bimodal AFM image of a three compo-
nent blend of polypropylene (PP), polyethylene (PE), poly-
styrene (PS) in the relative proportion of 60% PE, 20%PS and
20% PP is shown Fig. 2a. Fig. 2b shows the bimodal AFM
image of a high density polyethelene surface. The bimodal
AFM image does not show any contrast because the surface
is homogeneous. The histogram in Fig. 2c shows the fre-
quency shift of the third mode of the different polymers.
The correlation of the effective Young modulus and the fre-
quency shift is shown in Fig. 2d.

The above method can also be performed at higher
speeds using small cantilevers. In this case the response
bandwidth of the ith resonant mode of a cantilever is

BWi ¼ pf0;i=Qi ð17Þ

where f0,i is the resonant frequency of the ith mode and Qi

is the quality factor. To increase the resonant frequency
without changing the spring constant requires the use on



PE

PP
PS

(a)

UHMWPE

(b)

PS
PP

PEUHMWPE

(c)

PE
PP

PS

UHMWPE

(d)

Fig. 2. Bimodal AFM images of polymer surfaces. The images are taken in the bimodal AM–FM configuration. (a) Bimodal AFM images of a polypropylene
(PP), polyethylene (PE), polystyrene (PS) ‘‘Ternary’’ blend and (b) ultra-high molecular weight Polyethylene (UHMWPE) surface acquired to provide a
reference value for the Young modulus. (c) Histogram of the third mode frequency shifts measured over the images (a and b). (d) Shows the expected
moduli plotted versus the third mode frequency, showing a roughly linear relation. The higher order resonances were measured while a feedback loop on
the tip-sample separation was operated to keep the first mode amplitude constant. An AC160 cantilever from Olympus has been used. Sample courtesy of D.
Yablon and A. Tsou, Corporate Strategic Research, ExxonMobil, New Jersey.
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small cantilevers [60]. In contrast to conventional ampli-
tude modulation AFM imaging, the second resonant mode
must still be accessible to the photodetector, requiring that
the frequency is below its maximum bandwidth [61]. An
example is shown in Fig. 3 where an ethylene propylene
diene monomer EPDM rubber/Epoxy cryo-microtomed
boundary is measured at a 2 Hz and 20 Hz line scan rates.
The main features observed in both images do not signifi-
cantly depend on the scan rates used for imaging. The
Young modulus of the softer region (�3 GPa) shows a small
displacement to a higher value (�3.5 GPa). The above
images were acquired with a cantilever with resonant fre-
quencies f0;1 � 1:3MHz; f0;2 ¼ 5:3MHz. Note that the fre-
quency shifts of the second mode in both cases were on
the order of 20 kHz, a small perturbation with respect to
the mode frequency.
4. Mapping protein flexibility with sub-2 nm resolution

Flexibility plays a central role in protein–protein bind-
ing. Current methods for the determination of protein flex-
ibility give results in a time scale of picoseconds [62] that
might not provide relevant information to the conditions
where proteins have conformational changes in physiolog-
ical conditions (micro- to milliseconds). Martinez-Martin
et al. have implemented the frequency modulation config-
uration to bimodal AFM to measure the local variations of
the elastic modulus of a single protein in liquid simulta-
neous with topography [56].

Fig. 4 shows a bimodal AFM image of the topography
and flexibility of a single IgM antibody. The flexibility
map is expressed as for the above cases in terms of the lo-
cal variations of the Young modulus Eeff (x,y). However, in



Fig. 3. Fast bimodal AM–FM elasticity images of a cryomicrotomed
epoxy/EPDM (ethylene propylene diene monomer) rubber bond imaged
at 2 Hz (a) bonded sandwich imaged at 2 Hz (a) and at 20 Hz (b) line scan
rates. (c) Elasticity histogram at the different imaging frequencies. Images
taken with an AC55 cantilever (Olympus corporation, Japan). The scan
size in both images is 5 lm.
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this case the Young modulus is determined by recording
A2(x, y) and /2(x, y) and using Eqs. (8)–(10) to determine
Eeff from the observables. The flexibility map shows a max-
imum of 19.0 ± 0.1 MPa and a minimum value of
8.2 ± 0.1 MPa. The uppermost part of the protein complex
is stiffer section as a consequence of the presence of j-chain
and the five Fc elements of each arm. Another stiffer is the
region of the Fab arms that is linked to the Fc. On the other
hand, low elastic modulus values are found in the last do-
main of the Fab arms. The above findings are consistent
with the orientation flexibility of the antibody complex
when its binds a cell surface antigen. Remarkably, the soft-
er regions are found at the end of the Fab arms. Those re-
gions are closer to the mica surface which has a Young
modulus about three orders of magnitude higher than
the protein. This illustrates that the measurements are
not affected by the elastic modulus of the mica surface. It
is remarkable to observe that values obtained here are
comparable to the values reported for packed arrays of
proteins (5–50 MPa) [23,63].
Fig. 4. Topography and flexibility map of a single IgM antibody. (a) Bimodal FM
A02 = 0.5 nm. (b) Flexibility map obtained simultaneously with the topography im
and flexibility (black) profiles along the lines marked, respectively, in a and b. D
A key factor to obtain the above map was the applica-
tion of very small maximum or peak forces (�50 pN). The
noninvasive character of the measurements was verified
by comparing the nominal height of the protein complex
(�8 nm) and the height measured by the AFM (�6–
7 nm). The difference between the observed and the nom-
inal heights can be explained by the deformation experi-
enced by the subunits of the protein complex due to its
adsorption on the mica surface.
5. Imaging superparamagnetic ferritin with a lateral
resolution of 5 nm

Bimodal AFM could be used to separate short and long-
range interactions by tuning each excited mode to be more
sensitive to a given interaction. Lin et al. have demon-
strated that bimodal AFM could image magnetic structures
in a single pass [39], in this way improving data acquisition
times with respect to standard magnetic force microscopy
(MFM) method (lift mode) that involves two passes, one
for the topography and the other for the magnetic interac-
tion [64].

The resolution and sensitivity of bimodal magnetic
force microscopy is illustrated by its ability to image mag-
netic nanoparticles with a lateral resolution in the sub-
10 nm range. Dietz et al. [40] have imaged magnetic polar-
ized single ferritin proteins in air and liquid with a spatial
resolution of 5 nm. Ferritin is a cage-shaped biomolecule
that accommodates an iron oxyhydroxide nanoparticle.
This protein is formed by a polypeptide hollow shell (apo-
ferritin) that encapsulates a superparamagnetic iron-based
core that can reach a maximum diameter of 7 nm.

Fig. 5 shows two images obtained in buffer (pH = 3) of a
mixture of ferritin and apoferritin molecules. The topogra-
phy shows a random distribution of nanoparticles. On the
other hand, the phase shift image /2 shows two different
morphologies, ring-like and flat disk structures (Fig. 5b).
The ring-like structure is associated with ferritin while
the flat-disk is associated with apoferritin. The phase shift
cross-section of the proteins (Fig. 5c) shows that apoferri-
tin is characterized by a rectangular shape while ferritin is
characterized by the presence of two peaks and a dip in be-
tween. The ring-like shape of ferritin in liquid is explained
by the interplay between magnetic and mechanical
–AFM image taken at Df = 40 Hz (peak force of 40 pN), A1 = 4.5 nm and
age by recording the bimodal parameters (A2, /2). (c) Topography (grey)

ata obtained from Martinez-Martin et al. [56].



Fig. 5. Topography and bimodal phase shift images in buffer (pH = 3) of a sample containing a mixture of ferritin and apoferritin molecules. (a) Topography
(A0,1 = 7 nm, Asp = 6 nm, A0,2 = 1.1 nm). (b) Bimodal phase shift image of (a). The phase image shows two different structures are observed, ring-like and full
nanoparticles. (c) Phase shift cross-section of the nanoparticles marked in (a) and (b). (d) Separation of the iron oxide core and apoferritin shell of the
nanoparticles. The phase shift of the iron oxide core has been obtained by subtracting the phase shift given A1 = 6 nm by the mechanical forces of the protein
shell and the one obtained in a ferritin nanoparticle (ring-like structure). Scale bar is 100 nm. Data obtained from Dietz et al. [40].
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interactions and the enhancement of magnetostatic inter-
actions in the bimodal phase shift [40]. Dynamic AFM
imaging in liquid is usually performed under a net repul-
sive force. When the tip is over an apoferritin molecule,
the short-range mechanical forces give rise to the topogra-
phy and the bimodal phase shift images. When the tip is
over a ferritin molecule, the short-range mechanical forces
control the amplitude decrease as in the apoferritin case
and the topography is recorded. However, the bimodal
phase shift is sensitive to the presence of both short-range
mechanical (repulsive) and long-range magnetic (attrac-
tive) forces. Those forces drive the bimodal phase shift in
opposite directions. When the tip is on top of the ferritin
the magnetic interaction is maximized and a depression
in the phase shift-cross section is observed. The recon-
structed image of the ferritin with its mechanical shell
and magnetic core is shown in Fig. 5d.

The above images show an improvement of the resolu-
tion to image and detect magnetic interactions (nanoparti-
cles) by a factor 2 with respect to conventional MFM. The
data also show that imaging magnetic interactions-in air
or liquid – with a spatial resolution of 1 nm could be
feasible.
6. Three-dimensional images of protein–liquid
interfaces

Molecular resolution images of solid–liquid interfaces
represents one of the frontiers in high resolution imaging.
The flexibility and the potential of bimodal AFM to bring
information about novel properties is exemplified by the
experiments performed to study the spatial and time-evo-
lution of water layers adsorbed on solid surfaces [65]. The
technique enables the three-dimensional imaging and
mapping of the hydration layers and forces on mica and
protein GroEL surfaces with 10 piconewton, 2 Å and 40 s
(whole volume) resolutions.

The approach developed by Herruzo et al. [65] mea-
sures the static and dynamic three-dimensional force field
of solid–water interfaces by detecting the changes in the
AFM observables with the xyz position of the probe. Those
changes are associated with variations in the forces acting
between the tip and the water interface which, in turns, are
related to changes of the solid–liquid interface such as the
local stiffness, the density of the water or the incoming of
an external nanoparticle.

In bimodal three-dimensional AFM the tip scans the xy
plane parallel to the sample surface as it is also displaced in
the perpendicular z axis (Fig. 6a). The feedback mechanism
acts on the amplitude A1. It establishes a mean tip-surface
distance zc for imaging like in regular amplitude modula-
tion AFM. Then the tip-surface separation is modulated
as the tip scans laterally as zc ± Dzm to generate the 3D
maps of the solid–liquid interface. During the modulation,
the observables will change following the changes of the
interface. In the above experiments the frequency of the
Dz modulation was 195 Hz which enables a 5 ms time
resolution.

Fig. 6c shows the full three-dimensional data obtained
on a mica–water interface. The 3D maps could be assem-
bled by either presenting the data from the xz or the xy
planes. Fig. 6b shows a 3D-AFM image of the mica-water
interface formed by gathering xz data. In the proximity of



Fig. 6. (a) Block diagram of bimodal excitation and 3D scheme for the tip motion. In bimodal 3D-AFM the microcantilever is driven simultaneously at the
frequencies of the first two flexural modes. Additionally a modulation is applied to the z-piezo (Dzm) at the same time that the tip is displaced over a xy
plane of the interface (rectangular waveform). (b) Scheme of the operation of the AFM in a solid–water interface. (c) 3D image of a mica–water volume. The
color scale shows variations of /2. The side view shows two hydration layers on mica. The contrast observed in /2 enables resolving atomic-resolution
features on the mica surface. (d) xz cross-section of the protein–liquid interface (/1 (x, y0, z)). The hydration layers follow the contours of four GroEL
molecules. The edges separating the proteins are resolved in the image. The dashed line marks the contours of the proteins. The inset shows a side view of
the GroEL structure as obtained by diffraction methods [66] (protein data bank 1KPO)[65].
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the mica, the phase shift shows some distinct oscillations.
Those oscillations are also seen in other observables. The
observed periodicity is close to the nominal size of a water
molecule which suggests the presence of hydration layers.
The 3D-AFM image also shows the atomic structure of the
mica. The bimodal 3D-AFM mode has also been applied to
study the formation of hydration layers on protein sur-
faces. GroEL proteins were chosen because they have a
well-defined ring structure [66] that tends to form orga-
nized two dimensional arrays when deposited on a mica
surface [67]. GroEL has 14 subunits arranged in two
back-to-back rings (cis and trans) made out of seven sub-
units each. The ring is 14 nm in diameter, 15 nm in height.
The internal channel is about 4.5 nm in diameter. The xz
cross-sections show the alternation of light and dark
stripes that are modulated by the contour structure of
the GroEL (�14 nm) (Fig. 6d). A pattern of light–dark
stripes indicate the presence of interfacial hydration layers
on top of the proteins. The average width of the light–dark
sequence is 0.31 nm, a value close to the diameter of a sin-
gle water molecule (�0.28 nm). The change in amplitude
between the light–dark regions for the 1st and 2nd hydra-
tion layers is 140 pm and 10 pm respectively. Those values
illustrate the compatibility of bimodal AFM with very high
vertical sensitivity.
7. Summary and outlook

Bimodal atomic force microscopy is an emerging dy-
namic AFM method that involves the simultaneous excita-
tion and detection of two cantilever modes. It is
characterized by rapid, gentle and reproducible imaging
at extreme high resolution. This advanced force micros-
copy method has the potential to materialize some long-
lasting goals of force microscopy such as the simultaneous
and fast quantitative imaging of topography and material
properties in air and liquid. Bimodal AFM has a variety of
configurations depending on whether the feedback is mod-
ulated in amplitude, frequency or both. Remarkably some
of the bimodal AFM configurations enable the deduction
of direct and relatively simply analytical relationships be-
tween the observables and the material properties.

We have described several applications involving poly-
mers and biomolecules in both air and liquid environments
that underlined some of the most innovative features
brought by this force microscopy method. The different re-
gions of a ternary polymer blend have been separated and
their respective Young modulus measured. Quantitative
nanomechanical mapping is compatible with fast scan
rates. This has been illustrated by measuring the elastic
modulus variations of a polymer surface at 2 and 20 Hz
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scan rates, yielding values of the Young modulus that are
independent of the scan rate.

The combination of quantitative and high resolution
imaging in liquid has been illustrated by imaging the flex-
ibility of an isolated antibody in water. Young modulus
variations between 8 and 19 MPa have been measured
with a spatial resolution of 2 nm. The above experiment
also illustrates the compatibility of bimodal operation with
imaging at sub-50 pN peak forces. Superparamagnetic pro-
teins have been imaged in liquid. The magnetic contribu-
tion from the iron oxide core has been imaged with a
lateral resolution of 5 nm. Those experiments illustrate
the ability of bimodal AFM to separate long-range mag-
netic from short-range mechanical interactions.

Quantitative and high resolution imaging by bimodal
AFM is not restricted to solid surfaces. The last application
described in this report shows the three-dimensional
imaging of mica and protein–water interfaces with atomic
spatial resolution and a 10 pN force sensitivity.
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