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Fast, accurate and robust nanomechanical measurements  are intensely searched in 
materials science, applied physics and molecular biology. Amplitude modulation  force 
microscopy (tapping mode) is the most established nanoscale characterization technique 
of surfaces for air and liquid environments. However, its quantitative capabilities lag 
behind its high spatial resolution and robustness. We develop a general method to 
transform the observables into quantitative force measurements. The force 
reconstruction algorithm has been deduced on the assumption that the observables 
(amplitude and phase shift) are slowly varying functions of the tip-surface separation. 
The accuracy and applicability of the method is validated by numerical simulations and 
experiments. The method is valid for liquid and air environments, small and large free 
amplitudes,  compliant and rigid materials, conservative and non-conservative forces.  
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I. INTRODUCTION 

The evolution of force microscopy (AFM) [1] is shaped by the transition from a 
high spatial resolution technique [2-7] to a method that provides spatially resolved maps 
of mechanical or chemical properties [8-15]. Those maps have found applications in life 
sciences to understand the relationship between protein flexibility and biological 
function [14-16]; polymer sciences to develop novel ultra-thin polymer blends [17] or in 
biomedicine as a finger-prints of malignant cells and tissues [18]. The mechanical and 
chemical properties are deduced from the force-distance curves. The standard approach 
to obtain a force-distance curve uses the static AFM configuration. This approach 
requires recording the dependence of the cantilever deflection versus the tip-surface 
distance for the different (x, y) positions of the surface [14-19]. This approach measures 
forces in quasi-static equilibrium, consequently only conservative or adhesion hysteresis 
forces can be measured.  

Tapping mode AFM, also known as amplitude modulation AFM (AM-AFM), 
remains the most widely used method for nanoscale characterization of  surfaces in air 
and liquid [3, 20]. Furthermore, high speed in combination with high resolution imaging 
has been implemented by incorporating, among other advances, a feedback loop in the 
amplitude  [4, 5]. AM-AFM has been very successful in providing compositional 
contrast images of heterogeneous surfaces and measuring energy dissipation [21, 22], 
however, the technique does not provide the interaction force. Consequently, it cannot 
directly measure properties such as the stiffness, the elastic modulus or the viscoelastic 
coefficient [23].  This is in contrast with frequency modulation AFM, where its ability 
to recover the interaction force has been established more than ten years ago [24, 25]. 

 In fact, several aspects of AM-AFM are still under development, in particular, 
the transformation of observables into quantitative force measurements [26-31] or the 
tip wear during imaging [32]. In dynamic AFM experiments the forces are not direct 
observables because the observables are averaged over one or several oscillation cycles 

[20, 33]. As a consequence the observables are provided as a function  of the probe-
sample separation instead of the instantaneous tip-surface distance. The latter distance is 
the relevant one to determine the force curve.  

The limitations of tapping mode AFM to determine the forces acting on the tip 
have fundamental and practical implications. They could point out the existence of an 
intrinsic limitation of the technique. It has  been argued that the transition between 
attractive and repulsive interaction regimes [20] would prevent recovering the whole 
force curve [33]. On the other hand, the field of nanomechanical spectroscopy would be 
expanded and simplified if the force curve could also be obtained from tapping mode 
AFM experiments.  

Let’s first examine the attempts  to recover the force in conventional AM-AFM 
(single frequency). Those methods can be broadly classified into two categories: (i). 
Methods that recover the time-varying force by measuring the time-varying  deflection 

[34-37]. The data in these methods is recorded at a fixed probe-surface separation. (ii). 
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Methods that provide, for a given probe-surface separation, the force value at the closest 
tip-surface distance of the steady-state oscillation cycle [38-41]. Then the procedure is 
repeated for different probe-surface separation to obtain the whole force curve.  

The methods of the first category rely on the determination of the higher 
harmonics and the cantilever transfer function. The accuracy of these approaches has a 
strong dependence on the number of harmonics. In general more than 20 harmonics are 
needed to render a satisfactory force reconstruction. In addition, the generation of 
harmonic components above the noise level is not compatible with high resolution 
imaging. Torsional harmonic AFM offers an alternative [37, 42, 43] to address the 
above issues although it requires to modify the instrument and the use of special 
cantilevers where the tip is offset from the main cantilever axis. The above methods 
reconstruct the force curve at a fixed probe-surface separation.  The force reconstruction 
methods based on intermodulation excitation could also be included in the above 
category [26,27,44]. These methods are performed at a fixed probe-surface separation 
and require the measurement of several frequency components.   

The methods of the second category start from the integral equations provided 
by the virial (in-phase) and energy balance (quadrature) equations [45]. To solve the 
integral equations involves several intermediate steps and approximations such as to 
express the force in terms of its inverse Laplace transform [39] or the expansion of the 
force in terms of Chebyshev polynomials of the first kind [40].  Both cases involve the 
determination of a large number of parameters which makes those approaches 
unpractical. Holscher’s approach simplifies the integral equation by considering that the 
amplitudes in AM mode are  larger than the interaction range of the tip-sample force 

[38,46] while Katan et al.  method [41] is based on an ad hoc equivalence between 
frequency and amplitude modulation AFM observables that lacks a rigorous  
demonstration. Recently, Platz et al. introduced a force reconstruction method that 
incorporates some features of both categories [47]. 

 Here we develop a force reconstruction method that is general because is valid 
for small and large amplitudes; operation in air and liquid; compliant and rigid 
materials, conservative and non-conservative interactions alike. The method is based on 
assuming that the amplitude and the phase shift of the oscillation are slowly varying 
functions of the probe-surface separation. For any probe-surface separation, the method 
assumes a sinusoidal steady-state solution.  In addition, the tip motion retains is 
harmonic form (sinusoidal) during the variation of the probe-surface separation. The 
response of the tip to variations in the probe-surface separation and, consequently, to the 
interaction forces is reflected by the changes of the amplitude and the phase shift.  

II. THEORY 

The slowly varying  approximation in combination with the virial-dissipation  
equations allows us to derive two integral equations with little restrictions on the 
dependence of the force with the distance. The integral equations are solved by using 
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several intermediate steps, namely the use of  Laplace transforms [48], modified Bessel 
functions and fractional integrals and derivatives [49].  

The analysis of amplitude modulation AFM requires being familiar with several 
distances and/or displacements. Figure 1  illustrates the definition of  the tip deflection  
z(t),  the distance at the closest approach d which could either be positive or negative 
(indentation), the probe-surface separation zc, the average tip deflection z0 which could 
be positive (repulsive regime) or negative (attractive regime) [20]. We note that the 
probe-surface separation will coincide with the average tip-surface distance whenever z0 
is negligible with respect A. 

The experimental implementation of the method requires the acquisition of  the 
dependence of the amplitude and phase shift with respect to the tip-surface distance. 
These curves are called, respectively, amplitude (phase) curves. In this process, the tip 
oscillates as it is approached towards the surface (at a fixed lateral position) by the 
action of a piezo-ceramic (z-piezo) Δz. This causes a change in the probe-surface 
separation. The z-piezo displacement involves frequencies in the 1-10 Hz range while 
the tip oscillation happens in the 10-400 kHz range.  Consequently, it is a good 
approximation to consider that at each position of the curve the tip has reached its 
steady-state solution.  

  The cantilever tip-system is modelled as a driven and dampen point-mass 
oscillator that is under the influence of conservative  Fc and non-conservative  Fnc 
forces.  

𝑧̈𝑧 + 𝜔𝜔0
𝑄𝑄
𝑧̇𝑧 + 𝜔𝜔0

2𝑧𝑧 = 𝜔𝜔0
2𝐹𝐹𝑡𝑡𝑡𝑡
𝑘𝑘

+ 𝜔𝜔0
2𝐹𝐹𝑑𝑑
𝑘𝑘

            (1) 

 
 𝐹𝐹𝑡𝑡𝑡𝑡 = 𝐹𝐹𝑐𝑐 + 𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝑐𝑐(𝑧𝑧) + Λ(𝑧𝑧)𝑧̇𝑧      (2) 

 

we assume a steady-state solution given by  

𝑧𝑧 = 𝑧𝑧0 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔 − 𝜙𝜙)                    (3) 

where A and ϕ are respectively the amplitude and the phase shift; ω0 and ω are, 
respectively, the (angular) resonant  and driving frequencies of the oscillator; k and Q 
are, respectively, the force constant and the quality factor of the cantilever-tip system; 
Fd is the driving force and z0 is the average tip deflection; we assume that z0 can be 
neglected with respect to A.  

In the process of recording the amplitude and phase shift curves, we assume that the 
oscillation keeps the form given by equation (3) while both A and ϕ are slowly changing 
with time when the probe-surface separation goes from zc1 to zc2 in a time Δt. Let’s also 
assume that the separation between zc1 and  zc2 is much smaller than the amplitude A. 
The above hypothesis lead to   
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𝑧̇𝑧 = 𝐴̇𝐴 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜔𝜔𝜔𝜔 − 𝜙𝜙) − 𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 − 𝜙𝜙) + 𝐴𝐴𝜙̇𝜙 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 − 𝜙𝜙) = −𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 − 𝜙𝜙)  
           (4) 

𝑧̈𝑧 = −𝐴̇𝐴𝜔𝜔 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜔𝜔𝜔𝜔 − 𝜙𝜙) − 𝐴𝐴𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 − 𝜙𝜙) + 𝐴𝐴𝐴𝐴𝜙̇𝜙 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 − 𝜙𝜙)     (5) 

by introducing equations (4) and (5) into equation (1) and applying the virial and the 
energy balance considerations we obtain two integral equations. The virial theorem 
leads to an expression for the conservative force while the application of the energy 
balance over a period leads to an expression for the non-conservative forces.  

 

𝐹𝐹𝑐𝑐(𝑑𝑑) = 2𝑘𝑘 ∫ 𝑋𝑋∞
𝑑𝑑 𝑑𝑑𝑑𝑑 + 2𝑘𝑘 ∫ 𝛼𝛼√𝐴𝐴

�𝜋𝜋(𝑥𝑥−𝑑𝑑)
𝑋𝑋∞

𝑑𝑑 𝑑𝑑𝑑𝑑 − 2𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ � 𝐴𝐴3/2

�2(𝑥𝑥−𝑑𝑑)
𝑋𝑋�𝑑𝑑𝑑𝑑∞

𝑑𝑑      (6a)  

𝐹𝐹𝑐𝑐(𝑑𝑑) ≈ 2𝑘𝑘 ∫ 𝑋𝑋𝑋𝑋𝑋𝑋 − 2𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ � 𝐴𝐴3/2

�2(𝑥𝑥−𝑑𝑑)
𝑋𝑋�∞

𝑑𝑑
∞
𝑑𝑑 𝑑𝑑𝑑𝑑       (6b) 

 

Λ(d) = 2𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝑌𝑌𝑌𝑌𝑌𝑌 + 2𝑘𝑘 𝜕𝜕

𝜕𝜕𝜕𝜕 ∫
𝛼𝛼√𝐴𝐴

�𝜋𝜋(𝑥𝑥−𝑑𝑑)
𝑌𝑌𝑌𝑌𝑌𝑌 − 2𝑘𝑘 𝜕𝜕2

𝜕𝜕𝑑𝑑2
∞
𝑑𝑑 ∫ 𝐴𝐴3/2

�2(𝑥𝑥−𝑑𝑑)
𝑌𝑌 𝑑𝑑𝑑𝑑∞

𝑑𝑑
∞
𝑑𝑑              (7a) 

Λ(d) ≈ 2𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝑌𝑌𝑌𝑌𝑌𝑌 − 2𝑘𝑘 𝜕𝜕2

𝜕𝜕𝑑𝑑2 ∫
𝐴𝐴3/2

�2(𝑥𝑥−𝑑𝑑)
𝑌𝑌 𝑑𝑑𝑑𝑑∞

𝑑𝑑
∞
𝑑𝑑        (7b) 

with  

𝑋𝑋 = 𝐴𝐴0
2𝑄𝑄𝑄𝑄

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1
2
�𝜔𝜔0

2−𝜔𝜔2

𝜔𝜔0
2 �                   (8)  

𝑌𝑌 = 𝐴𝐴0
2𝑄𝑄𝑄𝑄𝑄𝑄

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
1

2𝑄𝑄𝜔𝜔0
                              (9) 

where A0 is the free oscillation amplitude and α≈1/8.  The derivation of the simplified 
equations (6b) and (7b) will be explained below. The intermediate steps to deduce the 
above equations are explained in the Appendix.  

Equations (6) and (7) provide, respectively,  the conservative and non-
conservative components of the force at the point of the oscillation where the tip is 
closest to the surface.  For each d the input data are the A and ϕ. In each of the above 
equations, the right hand side is decomposed in three integrals. The meaning and 
relevance of those terms will be discussed in the next sections.  

The method of slowly varying parameters has previously been used to calculate 
the average force [28], to derive an state-space model of a cantilever under feedback 
control [50] or to discuss high-resolution imaging with different feedback architectures 

[51]. 

III.  METHODS 
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The accuracy of the method is analyzed by (1)  using a tip-surface model force, (2) the 
model force is used to solve numerically equation of motion. This enables to determine  
A and ϕ as a function of the tip-surface separation. (3) The amplitude and phase shift 
curves deduced in step 2 are used as inputs in the equations (6) and (7) to reconstruct 
the force curve. Finally the force reconstructed from the theory is compared with the 
model force. On the other hand, the applicability of the theory is demonstrated by 
reconstructing the force from experimental data while its validity to measure 
nanomechanical data is tested against conventional and bimodal force spectroscopy 
measurements.  

A. Simulations  

The numerical solution of equation (1) was calculated by using a fourth-order Runge-
Kutta algorithm. The simulations have been performed for two different cantilevers, one 
that applies for air and the other for measurements in water. The values used for the 
resonant frequency, force constant and quality factor of the cantilevers are, respectively,  
300 kHz, 30 N/m and 300 (air) and 30 kHz, 1 N/m and 2 (liquid). For the tip-sample 
interaction we simulated four different tip-surface interfaces (cases I to IV) , 
characterized by the Young modulus Es, Hamaker constant H and Poisson coefficient ν. 
Case I: Es=10 GPa, H=10-19 J, ν=0.4 and  Rtip = 2 nm.  Case II: Es=0.1 GPa, H=10-20 J 
and  ν=0.35, Rtip = 5 nm.  Case III: Es=10 GPa, H=0 J, ν=0.4 and  Rtip = 2 nm.  Case IV: 
Es=0.1 GPa, H=0 J,  ν=0.35 and Rtip = 5 nm. To simulate dissipation in air we use  
Es=100 MPa, H=0.5×10-20 J, ν=0.4, A0=10 nm, η= 100 Pa.s   and  Rtip = 5 nm; in the 
liquid, Es=100 MPa, H=0 J, ν=0.4, A0=10 nm, η= 100 Pa.s   and  Rtip = 5 nm.  For all the 
cases the tip was characterized by Etip=160 GPa, ν=0.45. The intermolecular distance 
was set at 0.165 nm.   

 

B. AFM measurements 

The AFM data was acquired with a Cypher (Asylum Research Inc.). For air, we use 
PPP-NCLAuD cantilevers (Nanosensors) with Q= 440, k=22.4 N/m and the 1st resonant 
frequency f0=150.418 kHz. For water, we use PPP-NCSTAuD cantilevers 
(Nanosensors) with Q= 5.4, k=6.5 N/m and f0=60.41 kHz. The optical lever sensitivities 
were determined by acquiring static and dynamic curves on a stiff surface (mica) in the 
same medium as the experiments. The Q and f0 were measured by using the thermal 
method at relatively close distances from the sample surface (~3 µm). 

C. Polymer samples 

 The experiments have been performed on a polymer blend made of polystyrene 
(PS) regions (EPS≈2.0 GPa) and polyolefin elastomer (ethylene-octene copolymer) 
regions (LDPE) (ELDPE≈0.1 GPa). In both cases nominal values.  The polymer blend is 
commercially available from Bruker (PS-LDPE-12M). The sample for liquid was a 
layer of Polystyrene (MW =13600 g/mol) on Silicon.  The polymer was dissolved in 
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toluene (1wt %) and spin coated (1500 min−1) onto a polished silicon(100) substrate, 
which was cleaned in three cycles with a solution of 1:1:2 in volume of Amonium 
Hydroxide(30%), Hydrogen Peroxide(30%) and pure water  by ultrasonic treatment for 
10 min each. 

IV. RESULTS  

Figures 2(a) and 2(d) show the amplitude and phase shift curves versus the zc, 
respectively, for Q=300 (air) and Q=2 (water). Those curves have been obtained by 
modelling the tip-surface conservative force for a stiff surface Es= 10 GPa (Case I and 
III, see Methods) and then solving the equation of motion. The amplitude shows a 
monotonic decrease with the probe-surface separation independent of the nature of the 
force while the shape of the phase shift curve is sensitive to the sign of the force 
(attractive versus repulsive). Panels 2(b) and 2(e) show the same data but now plotted 
with respect to the closest tip-surface distance. We observe that A and ϕ are multivalued 
functions of d. We also observe that A and ϕ changes are confined to a small range of 
tip-surface distances. In water, the long-range van der Waals force is screened which 
implies that the amplitude is reduced by short-range repulsive forces. The force curves 
are plotted in figures 2(c) (air) and 2(f) (water). The agreement between the actual 
interaction force used in the simulation and the force reconstructed from the amplitude 
and phase shift curves is remarkable. It is relevant to observe that in some 
circumstances the observables are multivalued functions of d . In those cases, the force 
reconstruction method could be still applied for d values that go from distances far from 
the sample to the minimum d value.   

The method also enables to reconstruct the force curve on soft surfaces. To 
illustrate this  we have performed some simulations for a material with a Young 
modulus of 100 MPa (Case II and IV, see Methods). Figure 3 shows the comparison 
between the actual and reconstructed force curve for both air and water environments. 
Again, there is a good agreement between the force of the model and the force 
reconstructed by using equation (6).  

We have also calculated the relative error between the model force and the 
reconstructed force for different free amplitudes, oscillation amplitudes, tip-surface 
interaction regimes and sample material properties (Tables I to III). The relative error is 
below 5% for most common conditions. The error comes from several sources such as 
the deviation of the actual motion from a sinusoidal oscillation or in the determination 
of the dependence of A with amplitude ratio (y) that is needed to solve the integrals of 
equations (6) and (7). 

In liquid (Table I) the relative error is below 5% in most of the cases. We 
observe that the error decreases with decreasing the free amplitude and it increases with 
decreasing A. For high Q values (air) the relative error in the repulsive regime is below 
5% for the relevant operating range (A≥0.8A0).  In the attractive regime (Table III) the 
relative error is always rather small (below 2%). 
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TABLE I. Relative error in the force reconstruction (water) 

y=A/A0           Es=100 MPa              Es=10 GPa 
A0= 1 nm A0= 10 nm A0= 1 nm A0= 10 nm 

1-0.9 1.1% 5% 0.4% 10% 
0.89-0.8 3.6% 4% 0.4% 6% 
0.799-0.7 4.5% 3% 2.1% 2% 
0.699-0.6 12% 3% 12% 2% 
0.599-0.5 17% 6% 16% 10% 
 

TABLE II. Relative error in the force reconstruction in air (repulsive regime) 

y=A/A0           Es=100 MPa               Es=10 GPa 
A0= 10 nm A0= 50 nm A0= 10 nm A0= 50 nm 

1-0.9 2% 1.4% 1.9% 6.1% 
0.89-0.8 7% 2.7% 1.9% 3.9% 
0.799-0.7 7% 12% 4.5% 2% 
0.699-0.6 11% 15% 4.5% 11% 
0.599-0.5 20% 25% 5.5% 12% 
 

 

 

TABLE III. Relative error in the force reconstruction in air (attractive regime) 
                                             
y=A/A0          Es=100 MPa               Es=10 GPa 

A0= 10 nm A0= 50 nm A0= 10 nm A0= 50 nm 
1-0.9 0.2% 1.0% 0.2% 2% 

 

V. DISCUSSION 

 

To understand the relative contributions of the three integrals presented on the 
right hand side of equation (6a) we plot them separately  for  simulations performed in 
air (A0=10 nm,  Q=300) and water (A0=5 nm , Q=2). In both cases  Es=50 MPa. Figure 
4(a) shows that for high Q values (air), the third integral is the dominant term in the 
force reconstruction process. Only at relative high indentations some very minor 
differences appear. For low Q environments (water)  the force reconstruction curve 
carries contributions from the 1st and the 3rd integral. The 3rd term still dominates but the 
contribution from the 1st integral cannot be neglected.  In all the cases, the 2nd integral 
gives negligible contributions. This happens because at  large distances the prefactor in 
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the 2nd integral goes to zero. On the other hand, when the tip is close to the surface X 
goes to zero faster than the prefactor goes to infinity. Consequently,  the force 
reconstruction algorithm becomes more compact with just two integrals (equation (6b)).  
The derivatives are very sensitive to small changes of the variable, then it is reasonable 
to find that the dominant term of the force reconstruction is the one that involves the 
partial derivative in the third integral.   

We also compare the present method with the non-polynomial methods 
proposed to reconstruct the force [38, 41]. Figure 4(c) shows the force reconstruction 
obtained in air (Q=300). Four curves are shown, the model force, the force 
reconstructed by the present (reconstructed), Katan [41] and Holscher [33,38] methods. 
The method proposed here matches the model force and gives a good agreement with 
the model in the repulsive regime for all the range. We note that for stiffer surfaces the 
differences between the three reconstruction methods and model force decrease. Katan’s 
overstimates the attractive region and underestimates the value of the force in the 
repulsive region.  Holscher method provides a good approximation to the force curve in 
the attractive region. However, the force reconstruction does not cover the complete 
range of tip-surface separations. The method is not applied in the region where the tip 
jumps from the repulsive to the attractive regime.  

In water (Fig. 4(d)) the force reconstruction matches the model for all the 
indentation range. This has also been verified by using other parameters in the 
simulations. Holscher method departs from the model force as the indentation increases. 
This happens because Holscher method is based on the assumption that the amplitude is 
larger than the indentation. This assumptions could fail on soft matter because the 
indentation could be comparable to the amplitude. Katan method offers a good 
agreement with the model. Only at high indentation some differences appear.  

The force reconstruction method proposed also applies to recover non-
conservative interactions.  In particular, we analyse the case of a dissipative force 
proportional to the velocity. Two comparisons are performed (air and water) (Fig. 5).  
First we evaluate the relative contributions of the three terms shown in equation (7a). 
Similarly to the findings  for the conservative forces, the method only requires 
contributions from the 1st and the 3rd integral.  In both cases there is a very good 
agreement between the ‘real’ term and the reconstructed term. Some minor differences 
appear by increasing the indentation (Fig. 5(c),(d)). In liquid at 2 nm there is hardly any 
error and at 4 nm the relative error is about 10%.  

Next we have applied the method to reconstruct the force from experiments 
performed on a polymer blend (Fig. 6(a)). The blend is made of two regions, a mildly 
stiff region (PS) of about 2 GPa that encloses moderately soft regions (LDPE) of about 
100 MPa.  Figure 6(b)  shows the amplitude and phase shift curves obtained in air on a 
polystyrene region of the blend. The raw experimental data are recorded as a function of 
the z-piezo displacement (Δz). To express those curves in terms of the actual tip-surface 
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distance we use the following  relationship between the minimum tip-surface distance d 
and the z-piezo displacement (Fig. 6(c)) 

𝑧𝑧𝑐𝑐 ≈ ∆𝑧𝑧 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜      (10) 

𝑑𝑑 = 𝑧𝑧𝑐𝑐 + 𝑧𝑧0 − 𝐴𝐴          (11) 

When there is not an attractive regime, d=0 is taken at the position where the amplitude 
starts to decrease (A=0.99A0). If there is an attractive regime, d=0 is taken at the 
position where the phase shift has a maximum (Fig. 6(c)). Figure 6(d) shows the 
amplitude and phase curves versus the distance. The presence of negative values 
indicates that the tip is indenting the material. Figure 6(e) shows the force reconstructed 
from the experimental data. The amplitude and phase shift curves show the presence of 
attractive and repulsive interaction regimes. Those regimes are reflected in the force 
curve that shows the presence of attractive and repulsive regions.  

The strength of the attractive region is greatly decreased by performing the 
experiments in water. Figure 6(j)-(n) shows the results for an experiment performed on 
PS in water. The panels k-n illustrate the sequence to transform the observables into the 
force curve.  

To validate the method we have also compared the values of the Young modulus 
deduced from the above force curves with the nominal values of the sample and with 
the values  measured by conventional force spectroscopy and bimodal AFM [52-53]. In 
both cases there is a good agreement. In particular, for the PS we have obtained an 
effective Young modulus in the 1.5-2 GPa range (2 GPa nominal reference value) while 
for the LDPE we have obtained values in the 0.11-0.2 GPa range (0.1 GPa nominal 
reference value).  The Young modulus is obtained by fitting the repulsive part of the 
force curve to the Hertz contact mechanics model for a sphere with a radius of  15 nm.   

Equations (6) and (7) also provide a unified description of  amplitude and 
frequency modulation AFM force reconstruction methods. In both methods the 
reconstruction involves the sum of three integrals. In AM-AFM the amplitude changes 
with distance. This is reflected in the existence of a derivative of A in the third integral. 
In frequency modulation AFM where the amplitude is held constant [24] there is a term 
that contains a derivative of the frequency shift [25, 48]. The resemblance of the 
integrals happens despite  that the derivation of the equations are based on different 
mathematical approaches.  

The forces involved in amplitude modulation force microscopy measurements 
have a non-linear dependence with the distance, consequently the tip motion could show 
some non-linear dynamics features [54]. Those effects as well as the difference observed 
between the actual and observed tip displacement have not been considered in the force 
reconstruction method. However, high resolution and non-invasive imaging 
experiments need to be performed in situations that involve a quasi-harmonic motion. In 
addition, the transient components have disappeared during the measurements because 
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the oscillation period in the 10-103 kHz range and the amplitude and phase shift curves 
are acquired in 1-10 Hz range.   

VI. CONCLUSION 

We have developed a method to reconstruct the force from amplitude 
modulation (tapping mode) AFM experiments. The two integral equations, in-phase and 
quadrature, require as experimental inputs the amplitude and phase shift curves. The key 
technical features  of the method are the assumption that the oscillation is a slowly 
varying function of the probe-surface separation and the use of fractional calculus 
methods. The force reconstruction method involves three terms, however, for many 
cases relevant only two terms are needed which makes the final formulas more compact.  

We have compared this approach with other force reconstruction methods. The 
method provides force curves that are closer to the model force.  The accuracy and 
applicability of the method is validated by numerical simulations and experiments. The 
method is valid for liquid and air environments, small and large amplitudes, compliant 
and rigid materials, conservative and non-conservative forces. The agreement between 
the model force and the method is good (relative error  below 10% ) for amplitudes 
amounting 0.7 of the free amplitude. It takes a few milliseconds to reconstruct the force 
curve once the experimental data has been recorded.  This force reconstruction method 
will expand the capabilities of tapping mode AFM to enable a robust, fast and accurate 
determination of the mechanical properties of soft-matter interfaces.  
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CSD2010-00024 and the European Research Council ERC-AdG-340177 
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APPENDIX:  DEDUCTION OF THE INTEGRAL EQUATIONS  
 
The cantilever-tip motion in amplitude modulation AFM is approximately described by 
 
𝑧̈𝑧 + 𝜔𝜔0

𝑄𝑄
𝑧̇𝑧 + 𝜔𝜔0

2𝑧𝑧 = 𝜔𝜔0
2𝐹𝐹𝑡𝑡𝑡𝑡
𝑘𝑘

+ 𝜔𝜔0
2𝐹𝐹𝑑𝑑
𝑘𝑘

                              (A1) 
 
we assume a sinusoidal solution,   
 
 𝑧𝑧 = 𝑧𝑧0 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔 − 𝜙𝜙)               (A2) 
 
where 
 
 𝐹𝐹𝑡𝑡𝑡𝑡 = 𝐹𝐹𝑐𝑐 + 𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝑐𝑐(𝑧𝑧0 + 𝑧𝑧𝑐𝑐 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔 − 𝜙𝜙)) + Λ�𝑧𝑧0 + 𝑧𝑧𝑐𝑐 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔 − 𝜙𝜙)�𝑧̇𝑧  

                                                                                                                          (A3) 
 
𝐹𝐹𝑑𝑑 = 𝐴𝐴0𝑘𝑘

𝑄𝑄
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                    (A4) 

 
The key hypothesis is to consider that 𝐴𝐴 and 𝜙𝜙 are slowly varying functions of time 
when the probe-surface separation distance is changed.  
 
By taking the time derivative of the displacement in equation (A2) 
 
𝑧̇𝑧 = 𝐴̇𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝜙̇𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴                                            (A5) 
 
where 
 
𝛽𝛽 = 𝜔𝜔𝜔𝜔 − 𝜙𝜙                      (A6) 
 
from equation (A5) we get 
 
𝐴̇𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝐴𝐴𝜙̇𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                  (A7) 
 
by taking the time derivative in equation (A5), the tip acceleration is obtained  
𝑧̈𝑧 = −𝐴̇𝐴𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝐴𝐴𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐴𝐴𝜙̇𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                              (A8) 
 
By substituting equations (A5) and (A8) into (A1) and with the assumption that 𝑧𝑧0 is 
much smaller than A we get 
−𝐴̇𝐴𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔 − 𝐴𝐴𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐴𝐴𝜙̇𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐴𝐴𝜔𝜔𝜔𝜔0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑄𝑄
+ 𝐴𝐴𝜔𝜔0

2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜔𝜔0
2

𝑘𝑘
𝐹𝐹𝑡𝑡𝑡𝑡 + 𝜔𝜔0

2

𝑘𝑘
𝐹𝐹𝑑𝑑     (A9) 

 
A. Conservative forces 
 
 
By multiplying equation (A9) by cosβ and integrating the resulting equation in one 
period we obtain (in the steady-state the time derivatives of  A and ϕ are zero)  
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∫ 𝐹𝐹𝑡𝑡𝑡𝑡(𝑧𝑧𝑐𝑐 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∫ 𝐹𝐹𝑐𝑐(𝑧𝑧𝑐𝑐 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝜋𝜋 𝑘𝑘𝐴𝐴0
𝑄𝑄
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +2𝜋𝜋

0
2𝜋𝜋
0

𝜋𝜋𝜋𝜋𝜋𝜋 �𝜔𝜔0
2−𝜔𝜔2

𝜔𝜔0
2 �       

                                                                                                         (A10) 
 
We note that the over one period the integrals that involve 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are zero. 
 
Now we define the variable   
 
𝑢𝑢 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                     (A11) 
 
 Then equation (A10) is transformed into  
 

∫ 𝐹𝐹𝑐𝑐
1
−1 (𝑧𝑧𝑐𝑐 + 𝐴𝐴𝐴𝐴) 𝑢𝑢𝑢𝑢𝑢𝑢

√1−𝑢𝑢2
= ∫ 𝐹𝐹𝑐𝑐

1
−1 (𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴) 𝑢𝑢𝑢𝑢𝑢𝑢

√1−𝑢𝑢2
= −𝜋𝜋 𝑘𝑘𝐴𝐴0

2𝑄𝑄
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜋𝜋𝜋𝜋𝜋𝜋

2
�𝜔𝜔0

2−𝜔𝜔2

𝜔𝜔0
2 � 

                                 
                                 (A12)                       
 
To solve the above equation we introduce the definition of the Laplace transform of the 
force  [48] 
 
𝐹𝐹𝑐𝑐(𝑑𝑑) = ∫ 𝐹𝐹𝑐𝑐(𝜆𝜆) exp(−𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑∞

0                        (A13)                                                            
   
into equation (A12) 
 
 
∫ 𝐹𝐹𝑐𝑐
1
−1 (𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴) 𝑢𝑢𝑢𝑢𝑢𝑢

√1−𝑢𝑢2
= −𝜋𝜋∫ 𝐹𝐹𝑐𝑐(𝜆𝜆)𝑇𝑇(𝜆𝜆𝜆𝜆) exp(−𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑∞

0    (A14) 
 
with 
 

𝑇𝑇(𝜆𝜆𝜆𝜆) = �𝑒𝑒𝑒𝑒𝑒𝑒�−𝜆𝜆(𝐴𝐴 + 𝐴𝐴𝐴𝐴)�
𝑢𝑢

√1 − 𝑢𝑢2
𝑑𝑑𝑑𝑑

1

−1

 

                                                                            (A15) 
 
which leads to 
 
 
 ∫ 𝐹𝐹𝑐𝑐(𝜆𝜆)𝑇𝑇(𝜆𝜆𝜆𝜆) exp(−𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑 = 𝑘𝑘𝐴𝐴0

2𝑄𝑄
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑘𝑘𝑘𝑘

2
�𝜔𝜔0

2−𝜔𝜔2

𝜔𝜔0
2 �∞

0                             (A16)  
  
  
where  T(λA) can be expressed in terms of the modified Bessel function of the first kind 
of order one 𝐼𝐼1(𝜆𝜆𝜆𝜆)   
 
 
𝑇𝑇(𝜆𝜆𝜆𝜆) = 𝐼𝐼1(𝜆𝜆𝜆𝜆)exp (−𝜆𝜆𝜆𝜆)                             (A17) 
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To facilitate the solution of the above integral, an approximate function is constructed 
for T(λA) by considering its known asymptotic limits as 𝜆𝜆𝜆𝜆 → 0 and 𝜆𝜆𝜆𝜆 → ∞ and using 
the Padé approximant [25] 
 

𝑇𝑇(𝜆𝜆𝜆𝜆) ≅ 𝜆𝜆𝜆𝜆
2

(1 + 𝛼𝛼√𝜆𝜆𝜆𝜆 + �𝜋𝜋
2

(𝜆𝜆𝜆𝜆)3/2 )−1         0.1 ≤ 𝛼𝛼 ≤ 0.4                      (A18) 

 
where 
 

�
𝜆𝜆𝜆𝜆 → 0                            𝑇𝑇(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆

2

𝜆𝜆𝜆𝜆 → ∞                  𝑇𝑇(𝜆𝜆𝜆𝜆) = 1
√2𝜋𝜋𝜋𝜋𝜋𝜋

                                                                                    

              (A19) 
 
the exact analytical solution for Fc(d) is 
 

 𝐹𝐹𝑐𝑐(𝑑𝑑) = 𝐿𝐿 � 1
𝑇𝑇(𝜆𝜆𝜆𝜆)

𝐿𝐿−1 �𝑘𝑘𝐴𝐴0
2𝑄𝑄

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑘𝑘𝑘𝑘
2
�𝜔𝜔0

2−𝜔𝜔2

𝜔𝜔0
2 ���                                   (A20) 

 
where the operators L and L-1 refer to the Laplace and inverse Laplace transforms, 
respectively. By defining 
 
 𝑋𝑋 = 𝐴𝐴0

2𝐴𝐴𝐴𝐴
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1

2
�𝜔𝜔0

2−𝜔𝜔2

𝜔𝜔0
2 �                                                        (A21) 

 
and applying fractional integrals and derivatives as it is done in [49], the conservative 
force can be calculated as 
 

 𝐹𝐹𝑐𝑐(𝑑𝑑) = 2𝑘𝑘 �∫ 𝑋𝑋𝑋𝑋𝑋𝑋∞
𝑑𝑑 + 𝛼𝛼√𝐴𝐴𝐼𝐼−1/2𝑋𝑋 + �𝜋𝜋

2
𝐷𝐷−1/2𝐴𝐴3/2𝑋𝑋�                                    (A22) 

 
where 
𝐼𝐼−1/2Ψ(𝜆𝜆) = 1

Γ(1/2)∫
Ψ(𝑡𝑡)

(𝑡𝑡−𝜆𝜆)1/2 𝑑𝑑𝑑𝑑
∞
𝜆𝜆                                                                        (A23) 

 
𝐷𝐷−1/2Ψ(𝜆𝜆) = −1

Γ(1/2)
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫

Ψ(𝑡𝑡)
(𝑡𝑡−𝜆𝜆)1/2 𝑑𝑑𝑑𝑑

∞
𝜆𝜆                                                                   (A24) 

 
where Γ(𝑛𝑛)is the gamma function. 
 
which gives 

𝐹𝐹𝑐𝑐(𝑑𝑑) = 2𝑘𝑘 ∫ 𝑋𝑋∞
𝑑𝑑 𝑑𝑑𝑑𝑑 + 2𝑘𝑘 ∫ 𝛼𝛼√𝐴𝐴

�𝜋𝜋(𝑥𝑥−𝑑𝑑)
𝑋𝑋∞

𝑑𝑑 𝑑𝑑𝑑𝑑 − 2𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ � 𝐴𝐴3/2

�2(𝑥𝑥−𝑑𝑑)
𝑋𝑋�𝑑𝑑𝑑𝑑∞

𝑑𝑑         (A25)  

 
B.  Dissipative forces 
 
By multiplying equation (A9) by sin β and integrating over one period we obtain    
 
∫ 𝐹𝐹𝑡𝑡𝑡𝑡(𝑧𝑧𝑐𝑐 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∫ 𝐹𝐹𝑛𝑛𝑛𝑛(𝑧𝑧𝑐𝑐 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝜔𝜔0𝑄𝑄
2𝜋𝜋
0 + 𝜋𝜋 𝑘𝑘𝐴𝐴0

𝑄𝑄
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜋𝜋

0   
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                                                                                                                          (26) 
 
We note that the over one period the integrals that involve 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are zero. 
 
We consider the following type of non-conservative  
 
𝐹𝐹𝑛𝑛𝑛𝑛(𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴) = Λ(𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴)𝑧̇𝑧 = −Λ(𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴                      (A27) 
 
where Λ(d, A, ω) is  a generalized damping coefficient , then 
 
∫ Λ(𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴)𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠2𝛽𝛽𝛽𝛽𝛽𝛽 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝑄𝑄𝜔𝜔0
− 𝜋𝜋𝜋𝜋𝐴𝐴0

𝑄𝑄
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜋𝜋

0                                            (A28) 
 
Now we use the change of variable given in equation (A11)  
 
∫ Λ(𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴)√1 − 𝑢𝑢2𝑑𝑑𝑑𝑑 = 𝜋𝜋𝜋𝜋

2𝑄𝑄𝜔𝜔0
− 𝜋𝜋𝜋𝜋𝐴𝐴0

2𝑄𝑄𝑄𝑄𝑄𝑄
1
−1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                     (A29) 

 
Equation (A29) can be transformed using integration by parts into 
 
∫ 𝐵𝐵(𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴) 𝑢𝑢

√1−𝑢𝑢2
1
−1 𝑑𝑑𝑑𝑑 = 𝜋𝜋𝜋𝜋𝜋𝜋

2𝑄𝑄𝜔𝜔0
− 𝜋𝜋𝜋𝜋𝐴𝐴0

2𝑄𝑄𝑄𝑄
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                       (A30) 

 
where we have introduced two intermediate functions 
 
 𝑝𝑝 = √1 − 𝑢𝑢2           (A31) 
         
𝐵𝐵(𝑥𝑥) = 2∫ Λ(𝑥𝑥)𝑑𝑑𝑑𝑑∞

𝑥𝑥                                                                                                 (A32) 
 
To solve the above equation we introduce the definition of the Laplace transform of B 
 
𝐵𝐵(𝑑𝑑) = ∫ 𝐵𝐵(𝜆𝜆) exp(−𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑∞

0                        (A33)                                                            
   
into equation (A30) 
 
∫ 𝐵𝐵1
−1 (𝑑𝑑 + 𝐴𝐴 + 𝐴𝐴𝐴𝐴) 𝑢𝑢𝑢𝑢𝑢𝑢

√1−𝑢𝑢2
= −𝜋𝜋∫ 𝐵𝐵(𝜆𝜆)𝑇𝑇(𝜆𝜆𝜆𝜆) exp(−𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑∞

0                (A34) 
 
with 
 
𝑇𝑇(𝜆𝜆𝜆𝜆) = ∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜆𝜆(𝐴𝐴 + 𝐴𝐴𝐴𝐴)� 𝑢𝑢

�1−𝑢𝑢2
𝑑𝑑𝑑𝑑1

−1                                                                 (A35) 
       
which leads to 
 
 
 ∫ 𝐵𝐵(𝜆𝜆)𝑇𝑇(𝜆𝜆𝜆𝜆) exp(−𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑 = − 𝐴𝐴𝐴𝐴

2𝑄𝑄𝜔𝜔0
+ 𝑘𝑘𝐴𝐴0

2𝑄𝑄𝑄𝑄
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∞

0                                            (A36) 
   
  
where  T(λA) can be expressed in terms of the modified Bessel function of the first kind 
of order one  𝐼𝐼1(𝜆𝜆𝜆𝜆)    
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𝑇𝑇(𝜆𝜆𝜆𝜆) = 𝐼𝐼1(𝜆𝜆𝜆𝜆)exp (−𝜆𝜆𝜆𝜆)                             (A37) 
 
To facilitate the solution of the above integral, an approximate function is constructed 
for T(λA) by considering its known asymptotic limits as 𝜆𝜆𝜆𝜆 → 0 and 𝜆𝜆𝜆𝜆 → ∞ and using 
Padé approximant [25] 
 

𝑇𝑇(𝜆𝜆𝜆𝜆) ≅ 𝜆𝜆𝜆𝜆
2

(1 + 𝛼𝛼√𝜆𝜆𝜆𝜆 + �𝜋𝜋
2

(𝜆𝜆𝜆𝜆)3/2 )−1         0.1 ≤ 𝛼𝛼 ≤ 0.4                             (A38) 

where 
 

�
𝜆𝜆𝜆𝜆 → 0                            𝑇𝑇(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆

2

𝜆𝜆𝜆𝜆 → ∞                  𝑇𝑇(𝜆𝜆𝜆𝜆) = 1
√2𝜋𝜋𝜋𝜋𝜋𝜋

                                                                               

                                            (A39) 
the exact analytical solution for B(d) is 
 

 𝐵𝐵(𝑑𝑑) = 𝐿𝐿 � 1
𝑇𝑇(𝜆𝜆𝜆𝜆)

𝐿𝐿−1 �− 𝑘𝑘𝑘𝑘
2𝜔𝜔0𝑄𝑄

+ 𝑘𝑘𝐴𝐴0
2𝜔𝜔𝜔𝜔

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��                                                         (A40) 

 
by defining 
 
 𝑌𝑌 = 𝐴𝐴0

2𝑄𝑄𝑄𝑄𝑄𝑄
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1

2𝑄𝑄𝑄𝑄0
                                                                                    (A41) 

 
and applying the fractional integrals and derivatives as it is done in [49], the damping 
coefficient  is given by  
 

 Λ(𝑑𝑑) = 2𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕
�∫ Ydx∞

d + 𝛼𝛼√𝐴𝐴𝐼𝐼−1/2𝑌𝑌 + �𝜋𝜋
2
𝐷𝐷−1/2𝐴𝐴3/2𝑌𝑌�                                            (A42)  

 
which gives 
 
Λ(𝑑𝑑) = 2𝑘𝑘 𝜕𝜕

𝜕𝜕𝜕𝜕 ∫ 𝑌𝑌𝑌𝑌𝑌𝑌 + 2𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

𝛼𝛼√𝐴𝐴
�𝜋𝜋(𝑥𝑥−𝑑𝑑)

𝑌𝑌𝑌𝑌𝑌𝑌 − 2𝑘𝑘 𝜕𝜕2

𝜕𝜕𝑑𝑑2
∞
𝑑𝑑 ∫ 𝐴𝐴3/2

�2(𝑥𝑥−𝑑𝑑)
𝑌𝑌 𝑑𝑑𝑑𝑑∞

𝑑𝑑
∞
𝑑𝑑     (A43) 
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Figure Captions 

FIG. 1.  Scheme of distances and observables in tapping mode AFM. (a) The amplitude 
and phase shift are the observables to obtain the force curve. (b) z  is the instantaneous 
tip deflection; zc is the probe-sample separation; d is the tip closest approach to the 
sample surface (it can have negative values); z0 is the average tip deflection. In the 
scheme it is depicted a case where the average force is negative (attractive regime), then 
z0 is below the equilibrium position of the cantilever in the absence of any force. When 
the tip deflection is negligible with respect to the A, zc coincides with the average tip-
surface distance. 

FIG.  2.  Conservative force reconstruction for a rigid material (10 GPa) in air and water 
(simulations). (a) Amplitude and phase shift versus probe-surface separation (air). (b)  
Amplitude and phase shift versus tip-surface distance (air). (c) Comparison between the 
interaction force (model) and the reconstructed force by using equation (6) (air). (d) 
Amplitude and phase shift versus probe-surface separation (water). e, Amplitude and 
phase shift versus tip-surface distance (water). (f) Comparison between the interaction 
force (model) and the reconstructed force by using equation (6) (water). 

FIG. 3.  Conservative force reconstruction for a compliant material (100 MPa)  in air 
and water (simulations). (a) Amplitude and phase shift versus probe-surface separation 
(air). (b) Amplitude and phase shift versus tip-surface distance (air). (c) Comparison 
between the interaction force (model) and the reconstructed force by using equation (6) 
(air). (d) Amplitude and phase shift versus probe-surface separation (water). (e) 
Amplitude and phase shift versus tip-surface distance (water). (f) Comparison between 
the interaction force (model) and the reconstructed force by using equation (6) (water). 

FIG.  4.  Comparison among the different force reconstruction terms (conservative 
forces). (a) Total force and contributions from the different terms of equation (6a) (air). 
(b) Total force and contributions from the different integrals of equation (6a) (water). 
(c) Comparison among different force reconstruction models (air). (d) Comparison 
among different force reconstruction models (water). 

FIG.  5.  Comparison among different force reconstruction terms (dissipation). (a) 
Contributions of the different terms of equation (7a) to the dissipative coefficient (air). 
(b) Contributions of the different terms of equation (7a) to the dissipative coefficient 
(water). (c) Comparison between the reconstructed dissipative coefficient and the model 
(air). (d) Comparison between the reconstructed dissipative coefficient and the model 
(water). 

FIG.  6.  Force reconstruction (conservative) on polymer surfaces.  (a) AFM image of a 
PS-LDPE polymer blend . The crosses indicate the positions where the data have been 
acquired. (b) Amplitude and phase shift versus z-piezo displacement (zc, probe-surface 
separation). (c) Minimum distance versus zc. (d) Amplitude versus tip-surface distance. 
(e) Tip-surface force reconstruction on PS (air). (f) Amplitude and phase shift versus z-
piezo displacement. (g) Minimum distance versus zc. (h) Amplitude versus tip-surface 
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distance. (i) Tip-surface force reconstruction on LDPE (air). (j) AFM image of a PS 
region in water. (k) Amplitude and phase shift versus zc. (l) Minimum distance versus 
zc. (m) Amplitude versus tip-surface distance. (n) Tip-surface force reconstruction for 
PS (water).  
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