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Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation(tapping mode)
force microscopy
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Amplitude-modulationtapping modg atomic force microscopy is a technique for high resolution imaging
of a wide variety of surfaces in air and liquid environments. Here by using the virial theorem and energy
conservation principles we have derived analytical relationships between the oscillation amplitude, phase shift,
and average tip-surface forces. We find that the average value of the interaction force and oscillation and the
average power dissipated by the tip-surface interaction are the quantities that control the amplitude reduction.
The agreement obtained between analytical and numerical results supports the analytical method.
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Amplitude-modulation force microscopy, usually known AFM can be approximately described by the differential
as tapping mode AFM is the most extensively used dynamiequation
force microscopy method for nanometer-scale characteriza-
tion and modification of surfaces in air and liquid environ-
ments. High resolution images of protein membranes-

lated proteins, and polymerShave been obtained as well as The total force that governs the tip motion includes the elas-

true atomic resolution images of inorganic surfatet tic response of the cantilever, the hydrodynamic dampin
amplitude-modulation force microscopy the tip is excited atWith thl?e medium. the ti -sam’ le inte¥actio¥1 force and pthg
a frequency close to its resonance value with a free oscilla- ' P P

tion amplitude ranging between 5 and 100 nm. The tip—per.iOdiC driving force.Q, k;, andw, are the quality factor,
cantilever ensemble is approached towards the sample ungP'ing constant, and angular resonance frquency of the free
the oscillation amplitude reaches a set point value. An imaggantllever, respectivelf, andw are the amplitude and an-

is formed by scanning the tip across the sample while thgulag :reguencyEozlghe dr|V|”ng fot:]cq Th(ta'f'aptp.)rommatlgns
amplitude is kept at a set point value. used to derive Eq(1) as well as their justification can be

The experimental results have prompted a series of therund elsewhere _ .
retical studies aiming to provide a framework to understand . The, steady.- state oscillation can be approximated by a
the tip 5mlcz)tion under the influence of an interaction sinusoidal oscillation,
potential?~*“ However, the theoretical analysis of large am- _ _
plitude dynamic AFM is not straightforward. The force gra- 220, 1) =20(2) + Az cOg 0t~ $(Ze) ], @
dient may change considerably during an oscillation, whichwherez,, A, and ¢ are the mean deflection, amplitude, and
compromises the use of harmonic approximatith®n the  phase shift of the oscillation, respectively. We denntes
other hand, the tip-surface force contains nonlinear termghe equilibrium tip-sample separation in absence of interac-
which may introduce nonlinear features in the dynamics ofions. The above approximation has been applied success-
the tip motion'* Furthermore, dissipative processes such agully by several authors. Wang found a good agreement be-
surface adhesion hysteresis, viscoelasticity or electronic digween theoretical and experimental amplitude versus
sipation may also be involved. As a consequence most thedrequency curves on a polyethylene sampl@uantitative
retical studies have involved some kind of numerical simu-agreement between phase shifts and energy dissipation mea-
lations. They have established the existence of two differensurements on biological membranes was also obtained by
interaction regimesattractiveandrepulsive In the attractive Tamayo and Garar™® Using an impact model for the tip-
regime, a negative average interaction force dominates th&ample interaction Salapalet al. found that for standard
amplitude reduction while in the repulsive regime, the aver-operating conditions the tip evolves into a stable periodic
age interaction force is repulsivé. orbit with a period equal to the period of the forcitfy.

In this paper we apply energy conservation principles and According to the virial theorem the time averaged kinetic
the virial theorem to derive analytical expressions to describenergy of the tip is equal to its viridl,
the amplitude and phase shift dependencies with the average
value of the interaction force and oscillation and the average (Ky=3m(z?)=— 3 (F-2). (3)
power dissipated by the tip-sample interaction. These expres-
sions have been applied to study amplitude curves that show The combination of Eqs(l), (2), and(3) yields the fol-
a continuous transition between the attractive and repulsivl®wing relationship:
interaction regimes. We also discuss the operation of

mwo

Q

mz=—k.z— z+Fs+Fycoqwt). (1)

2 2

amplitude-modulation AFM for a tip-surface interaction cosg= 2Q [(Fis) —(F -z>+1k A2 1_“’_

dominated by long range attractive van der Waals forces. kAAy | ke s 2°° ws) |
The dynamics of the tip motion in amplitude-modulation 4
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where Ag=QFy/k. is the free oscillation amplitude and

(Fis)=(LT)$Fdt. 60'(3)'
On the other hand, it can be shown that —
£
(Fis) =k(2)=KcZ0. 6) 8 or
=] Numerical
In many experimental situations, the mean deflectigris 3 20l —Oo—Aprox. | (Eq.9) ]
negligible compared to the oscillation amplitude Then, g iﬁiiﬁi ::u((EEq4.111s))
A>z, in combination with Eq(5) implies : . : :
(Fu? go|(b)
F —_
" =(Fis) - 20<(Fis2). 6) E 4o}
K¢ >
5 O
The above approximations ang= wg turn Eq.(4) into 4 _40\/
u'_ﬂ
2Q(Fis2) R S ]
COS¢p~ — W (7) 20 0 20 40 60 -

Tip-surface separation (nm)
An additional relationship betweeA, ¢, and the tip-
sample interaction force is obtained by assuming that the
external excitation coincides with the energy dissipated ir{n
qros 1518 h
the oscillatio®

FIG. 1. () Amplitude curve for a compliant and viscoelastic
aterial. The solid line represents the numerical simulation while
e symbols correspond to the different analytical expressidms.
Numerical determination offs- z).

ind Aw N 2QPys ®
Sing~ —— , A
Agwy  KAAw sing= A (14
wherePs=(F- ) is the power dissipated by the tip-sample °
interaction. Finally, the combination of Eq$13) and(14) gives
The combination of Eq97) and(8) gives a relationship o
between the amplitudéF,s-z) and P F 1
p QFIS > ts A%A0(1—4<<Fts> ) ) (15)
0

1/2
Amﬁ(l_zpth\/1_4PIS_16(<FtS'Z>>2) o

V2 Prmed Prmed FoAo The amplitude and cas dependence off - z) are remi-
niscent of the relationship found by Giesstto describe

wherePeqis the power dissipated by hydrodynamic damp-frequency shifts in frequency modulation AFM. Based on the

ng Harmonic-Jacobi formalism it was found that the shift in the
) resonance frequency wabsf«(F-z). This points out the
= _wokcAo (10 close relationship between frequency and amplitude-
med™2Q modulation AFM modes.

» ) ) Numerical calculations have extensively been used to
The positive sign of th?msquarle root in E) corresponds to - gimylate the tip motion in amplitude-modulation AFM. To
AlAg=>(1/2=Pis/Prmed ™, while l}pe negative sign Corre- estaplish their range of applicability, the above expressions
sponds toA/Ag<<(1/2— Pis/Pmed ~“. o are compared with numerical simulations. For a given tip-
_ Equation(9) can be. ;lmpllfled for conservatlvc_e |ntergc— surface interaction force the quantitigs.s), (Fis-z) andP,s
tions (Pis=0) or negligible tip-sample power dissipation are optained by numerical integration. Those values are in-
(Pis<Pmed, troduced in the corresponding expressions for the amplitude
and phase shift. The results obtained by the application of the
2\1/2 . . . . .
(Fis2) 11 analytical approximations are compared with those obtained
FoAo (11) independently by direct numerical integration of the motion
equation.
For oscillations with small contact timés-0.2 T or les Figure 1 shows the amplitude as a function of the tip-
it can be shown that surface distance for a compliant and viscoelastic material.
The solid line represents the numerical solution while the
(Fis:2)~—A(Fs). (120  symbols are the results obtained with the different equations.

) o . The tip-surface interaction force includes long-range attrac-
Small contact times and conservative interactions allow ong,e van der Waals force and short-range repulsive forces

Ao
A~—|1=+/1-16
V2

to express the phase shift as given by the JKR contact mechanf@The values used for
E the resonance frequency, spring constant and quality factor

cosdw2< ts) , (13 of the cantilever ard ;= wy/27=350kHz, k.=40 nm, and
Fo Q=400, respectively. The sample is characterized by a
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E‘J FIG. 3. () Amplitude curve for a stiff and elastic material. Solid
g line is the numerical simulation while the symbols have been ob-
= 05y tained by Eq.(15). (b) Tip-sample contact time.
O
«
S contact time is a sizeable fraction of the oscillation period
ooor | . . . . [Fig. 2(b)]. .
20 020 40 60 For the same external parameters the contact time de-
Tip-surface separation (nm) creases with the stiffness of the sampiEhen, good agree-

ments could be expected between numerical simulations and

FIG. 2. (a) Amplitude curve for a compliant and elastic material. . ] . .
The solid line represents the numerical simulation while the sym-Eq' (15) for stiff materials. Figure @) shows the amplitude

bols correspond to the different analytical expressidmsNumeri- curve for a, material witlE=1 GPa and no V,'Scos'ty' The
cal determination ofFy- 2). (c) Tip-sample contact time. agreement is excellent except for very small tip-surface sepa-

rations where the contact time shows a sharp incrgaige

Young's modulus of 7 MPa, surface energy of 30 nfJ/m 3(b)]. In this case the DMT contact mecharficwas used to
viscosity » of 1 Pas and a Hamaker constant of 6.16 model the tip-surface repulsive forcésee Ref. 22 for dis-
X 107°J. The tip radius i)R=30nm and the free amplitude cussion about the use of contact mechanics models in)AFM
is Ag=60nm. It has been previously demonstrated the existence of

An excellent agreement is obtained between @®y.and Steady state oscillations that do not involve tip-surface
the numerical solution. In both cases the amplitude curvesontact®-2>Assuming a sphere-plane geometry, the average
extremes are a consequence of the competition between aulated analytically,
tractive and repulsive forces to control the amplitude reduc- 1 § _HRz HR (Zc)z 1}_3,2
of a maximum in the quantityF - z) [Fig. 1(b)]. The local 6 A '
maximum happens when the argument of the square root in (16)
approximately coincides withFs-z)=0. The discrepancies petween the amplitude and the equilibrium tip-surface sepa-
observed when Eq$11) and(15) are used are not surprising ration

show a local minimum and a local maximum. These localvalue of the van der Waals force and oscillation can be cal-
tion. Mathematically the minimum is related to the existence (F ...72\==~ ¢ ——  dt= —

(Frow 2)= 5 9 52,4279 6a
Eq. (9) achieves a maximum. For the parameters used here it The combination of Eq€16) and(11) gives a relationship
due to the conservative character of the interactions consid-

ered in both equations. e A 1+C( AV (AN TR 17
Figure Za) shows the amplitude curve for the same sys- A, Ao Ao Ao ’

tem when inelastic processes are not allowed-Q Pas). hereC is a dimensionless parameter given by

Excellent agreements are obtained among numerical simuYy

tions and Eqs(9) and(11). The amplitude curve shows local HR |23

extremes. Here the maximum reaches the free oscillation am- - 3F,A2 (18)

plitude. This result is related to the absence of tip-sample

inelastic interactions. Equatidrl) allows us to associate the ~ SinceF is the maximum of the driving force, the term
local minimum to a maximum in the dependence (&, FoAZ can be related to the strength of the driving force while
-Z) on separation. The maximum happens wRéns-z) HR can be related to the strength of the attractive interaction.
=0. On the other hand, Eq15) does not reproduce the For a given tip geometry and Hamaker constant, high values
observed amplitude curveaumerical solutioh because the of C correspond to a high van der Waals interaction relative
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determine theC value that produces the best fit to the experi-
mental curve. The last step involves the use of @8@) to
deduce the Hamaker constant.

In summary, we have deduced several analytical expres-
sions to study the tip motion in amplitude-modulation atomic
force microscopy. Those expressions have been derived by
the application of the virial theorem and energy conservation
principles. Direct comparisons between numerical and ana-
Iytical results have confirmed the validity of the analytical
approach. The analytical approach states that the average in-
teraction force times the deflection and the tip-sample energy

FIG. 4. Reduced amplitude versus reduced tip-surface separlissipation are the quantities that control the amplitude re-

tion for a tip oscillating without tip-surface mechanical contact.

to the driving force C ranges between 10 and 1bfor com-
mon experimental conditions, k,e[20—-50 N/m, H
~10 %3, Re[5-50 nm, Q=400, andA, e [1-20 nm.
Amplitude vs distance curves f@€=2, C=0.2, andC
=0.02 are shown in Fig. 4. The above values®torre-
spond toAy=1.3nm, 4 nm, and 12 nm, respectivéparam-

eters as in Fig(1)]. The symbols are the results obtained by
Eq. (17) while the numerical simulations are shown by solid

duction. The dependence on average quantities is a direct
consequence of a tip motion that experiences different values
of the tip-surface force per cycle.

Those expressions have been applied to study smooth
transitions between attractive and repulsive interaction re-
gimes. Those transitions are characterized by the presence of
a local maximum in amplitude curves. In the absence of
inelastic interactions the local maximum coincides with the
value of the free oscillation amplitude. This rather surprising
result emphasizes the simultaneous contribution of attractive
and repulsive forces to the tip motion.

lines. The agreement obtained between the above equation o 3 yan der Waals interaction a relationship is obtained

and the numerical results is excellent.

The amplitude curve foE=0.02 shows an abrupt change

between the oscillation amplitude and the tip-surface separa-
tion. This relationship is parametrized by the ratio of the

of slope az.=A,. For smaller separations, the slope takes arengths of attractive and external driving forces. For small

constant value very close to unity. On the other hand, th

fatios a one to one correspondence between the amplitude

slope of the amplitude curve fo£=0.2 varies smoothly 504 average tip-surface separation is found. The above ex-

frqm zero at large separations to unity at intermediate SeP3yression also suggests a new method to determine the Ha-
rations, and then back to zero at small separations. The Nosaker constant.

linear dependence of the amplitude on tip-surface average

distance is more evident for higher valuesfsee curve for
C=2).
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