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We develop a theory that explains the origin of the high force sensitivity observed in multifrequency
force microscopy experiments. The ability of the microscope to extract complementary information on the
surface properties is increased by the simultaneous excitation of several flexural cantilever modes. The
force sensitivity in multifrequency operation is about 0.2 pN. The analytical model identifies the virial and
the energy dissipated by the tip-surface forces as the parameters responsible for the material contrast. The
agreement obtained among the theory, experiments and numerical simulations validates the model.
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Progress on spatial resolution and compositional sensi-
tivity is one of the dominant driving forces that both
stimulates and shapes the evolution of force microscopy
methods (AFM). The technique has evolved from moni-
toring the static deflection of the cantilever to the dynamic
excitation and detection of the cantilever-tip oscillation [1–
6]. The need for higher compositional resolution and sen-
sitivity at the molecular level has lead to explore AFM
imaging with higher harmonics as well as with other
flexural or torsional cantilever modes [7–19]. More re-
cently, the AFM is experiencing the evolution from single
to multifrequency excitation and detection schemes of the
cantilever-tip motion [20–28].

Multifrequency AFM has shown a remarkable enhance-
ment of sensitivity of the microscope to image in a gentle
manner and with high spatial resolution a variety of het-
erogeneous materials. Compositional maps of conjugated
molecular materials show a contrast that is about 1 order of
magnitude higher than the one achieved in amplitude
modulation AFM (the most popular among the various
dynamic AFM modes) [22]. Proksch has shown that
dual-frequency excitation produces maps of the surface
of graphite that can be related to its electronic properties
[21]. Stark et al. have used this method to minimize the
cross talk between mechanical and electrical interactions
while imaging charge patterns in electrets [23]. The sensi-
tivity of multifrequency AFM has been exploited to mea-
sure subnanometer displacements in microelectro-
mechanical devices [25]. Maximum tip-molecule forces
of 35 pN have been reported while imaging antibodies
[27]. In liquids, Basak and Raman have shown that the
second flexural mode is excited by the tip-surface inter-
actions [28]. Multifrequency excitation has also been re-
ported to control nonlinear dynamics effects in force
microscopy imaging [26].

In multifrequency AFM the cantilever-tip ensemble is
simultaneously excited by several driving forces [22].
Usually the excitation signal involves two different driving
forces (bimodal operation), although excitation over a band
of frequencies has also been reported [24]. Our study will

be focused on studying bimodal-frequency excitation ex-
periments. The excitation frequencies are tuned to match
two of the flexural modes of the cantilever, usually the first
and second resonances. The output signal of the amplitude
of the first mode is used to image the topography of the
surface, similarly to tapping mode AFM. An output signal
of the second mode, usually the phase shift, is used to map
changes in mechanical, magnetic or electrical properties of
the surface. The technique offers a straightforward ap-
proach to separate topography from other interactions
influencing the tip motion. Thus the different modes act
as signal channels that separate the sample properties. The
technique, on the other hand, can be easily implemented in
existing AFMs.

The rationale for using AFM schemes based on the
simultaneous excitation of several higher modes relies on
numerical simulations [11]. It has also been loosely for-
mulated in terms of the higher quality factor, optical sen-
sitivity and force constant of the higher modes [27].
However, none of the above factors nor their combination
explains the observed contrast.

In this letter we develop a theory of bimodal-frequency
AFM imaging that identifies both the virial of the conser-
vative tip-surface forces and energy dissipation processes
as the parameters that carry information on the coupling of
the excited modes. The second excitation enhances the
coupling between modes, which in turns, enables to in-
crease the force sensitivity to mechanical, magnetic or
electric interactions of the microscope. In contrast with
regular AM-AFM operation, the material contrast persists
even in the absence of energy dissipation processes.
Furthermore, the theory also shows that any representation
of the phase shift of one mode with respect to the other can
be used to enhance the sensitivity of the instrument. The
quantitative agreement obtained among theory, numerical
simulations and experiments performed on mica samples
supports the theory.

To describe the dynamics of the cantilever-tip system in
force microscopy we model the cantilever as a rectangular
beam [8,14,27]. To develop analytical expressions, the
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Euler-Bernoulli partial differential equation of the AFM is
approached by a system of n second order differential
equations, one for each eigenmode of the cantilever. We
also assume that dynamics of the system is mostly con-
tained in the lower eigenmodes. Then we obtain a system
of two differential equations,

 m�z1 � �k1z1 �
m!1

Q1
_z1 � F1 cos!1t� F2 cos!2t

� Fts�z1 � z2�; (1)

 m�z2 � �k2z2 �
m!2

Q2
_z2 � F1 cos!1t� F2 cos!2t

� Fts�z1 � z2�; (2)

where m is the effective mass of the cantilever; Qi, ki, A0i,
Fi, and !i � 2�fi are, respectively, the quality factor,
force constant, free amplitude, external excitation force
(Fi � kiA0i=Qi), and angular frequency of the i eigen-
mode. The solution of the above system can be approached
by,

 z�t� � z1�t� � z2�t� �O�"�

� A1 cos�!1t��1� � A2 cos�!2t��2�; (3)

where Ai is the amplitude and ’i is the phase shift of the
�i� eigenmode; O�"� is a term that carries the contribu-
tion of the other modes and harmonics.

The virial theorem and energy-conservation principles
can be used to derive analytical relationships in dynamic
AFM [29–31]. In this system the virial of the tip-surface
interaction can be decomposed in the eigemode virials,

 Vts �
1

T

Z T

0
Fts�t�z�t�dt � Vts�1� � Vts�2�; (4)

where the virial is expressed as the sum of the tip-surface
eigenmode virials.

 Vts�i� �
1

T

Z T

0
Fts�t�zi�t�dt � �

1

2
FiAi cos�i: (5)

When there is not dissipation on the sample surface
(Ets � 0), the virial of the interaction can also be expressed
as,

 Vts �
1

2

�
F1A1

������������������������
1�

�
A1

A01

�
2

s
� F2A02 sin�2 cos�2

�
: (6)

In the above equations we have not included the con-
tribution from the static deflection of the cantilever.
Manipulation of Eqs. (1) to (5) leads to the following result
[32]

 �i � � arctan
�
1�

������������������������������������
1� �4vi�

2 � 4�i
p

4vi

�
; (7)

where �i � QiVts�i�=�kiA
2

0i� and �i � QiEts�i�=
��kiA

2
0i�. �i is proportional to the energy dissipated per

cycle by the mode i on the surface. The virial term carries

information on conservative processes. It can be shown
that the virial of velocity dependent forces is zero.

Equation (7) links observables such as ’i with conser-
vative (Vts�i�) and nonconservative interactions (Ets�i�). At
this point we would like to emphasize that the above
expressions are valid for any kind of tip-surface interaction
as long as Eq. (3) remains a good approximation.

To compare theory, simulations and experiments at very
low forces, we focus on long-range attractive tip-surface
interactions given by Fts � ��HR=6d2	 where H is the
Hamaker constant, R the tip radius and d the instantaneous
tip-surface distance. We consider a cantilever that has a
length L, width b and thickness h of 225 �m, 40 �m,
1:8 �m respectively; its Young’s modulus E and mass
density � are 170 GPa and 2320 kg=m3 respectively. The
force constants, resonance frequencies and quality factors
of modes 1 and 2 are 0:9 N=m, 35:2 N=m, f1 �
48:913 kHz, f2 � 306:194 kHz, 255 and 1000, respec-
tively. The tip radius R is 20 nm. To solve the Euler-
Bernouilli equation we have followed the protocol de-
scribed in Refs. [11,27].

The dependence of the amplitude on the average tip-
surface distance for single (conventional case) and bimodal
frequency excitation are shown in Fig. 1. For single ex-
citations (monomodal hereafter), the amplitude decreases
from its free value either A01 � 10 nm or A02 � 1 nm
rather linearly with the distance. The amplitude of both
modes under monomodal excitation shows a similar be-

FIG. 1. (a) Cantilever geometries of the first (left) and second
flexural modes (right). (b) First mode amplitude curve for
monomodal (open dots) and bimodal-frequency excitations
(dark dots). (c) Second mode amplitude curve for monomodal
(open dots) and bimodal (dark dots) excitations. (d) First mode
and (e) second mode phase shifts. A01 � 10 nm, A02 � 1 nm;
H � 9:03
 10�20 J. See cantilever description in the main text
for the other parameters. The same applies for Figs. 2–4.
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havior. Figure 1(b) shows that the amplitude of the first
mode is almost independent on the excitation method
(monomodal vs. bimodal). This is a consequence of the
amplitude ratio used here A02=A01 � 0:1. More impor-
tantly, it indicates that under bimodal excitation, the am-
plitude of the first mode can be used as a feedback
parameter to track the topography. On the other hand, the
amplitude of the second mode shows a marked dependence
on the excitation mode [Fig. 1(c)]. Similar conclusions can
be drawn for the respective phase shifts [Fig. 1(d) and
1(e)]. Under bimodal excitation, the second mode probes
the tip-surface interactions at larger tip-surface average
distances. This property explains the ability of the AFM
under bimodal excitation instrument to acquire images by
applying maximum forces below 100 pN. The force sensi-
tivity under bimodal excitation can be estimated by calcu-
lating the smallest force change that produces a phase shift
variation above the noise level (’i � 0:05–0:1�). In this
way we obtain a value of 0.2 pN.

Figure 2 shows the time dependence of the tip deflection
under bimodal excitation in the absence of tip-surface
forces (free case) (A01 � 6 nm, A02 � 1 nm). The fast
Fourier transform (FFT) of the oscillation shows two peaks
corresponding to the first two eigenmodes of the cantilever
[Fig. 2(b)]. In the presence of tip-surface interaction forces,
the nonlinear forces introduce higher order harmonics that
distort the oscillation. In Fig. 2(c) the tip has been ap-
proached to reach an amplitude of A1 � 4:4 nm. Besides
the above peaks we also observe several minor peaks
[Fig. 2(d)]. We found that the frequency of those peaks
can be expressed as mf1 � nf2, where fi is the flexural
frequency of mode i and m and n are integer numbers.
Nonetheless, the amplitude of those peaks is below the
noise level in AFM (�10�2 nm). The comparison between

Figs. 2(a) and 2(b) with 2(c) and 2(d) shows that the
amplitude ratio A2=A1 increases by reducing the set-point
amplitude. This is explained by comparing the slopes of
the two flexural modes under bimodal excitation dA1=dz

dA2=dz in the 4 to 12 nm range [Figs. 1(b) and 1(c)].

The validity of Eq. (7) is demonstrated by comparing its
results with numerical simulations of the adapted Euler-
Bernoulli differential equation for AFM [Fig. 3(a)] and
with experimental results performed on a mica surface
[Fig. 3(b)]. In both cases there is a good quantitative
agreement. The curves are determined by recording the
phase shift and amplitude signals while the tip is ap-
proached towards the sample surface. In the calculations
we have used two different Hamaker constants, H � 1

10�20 and H � 9:03
 10�20 J. The latter corresponds to
the interaction of a silicon dioxide tip with a mica surface.
The shape of the curves do show a noticeable dependence
on the strength of the interaction, however, the analytical
expression does reproduce both cases.

Figure 4 emphasizes the importance of using crossed
plots to achieve material contrast, and at the same time, it
establishes that the observed contrast is an intrinsic prop-
erty of multifrequency AFM. Figures 4(a) and 4(b) show
the dependence of the virial of the first mode under bimo-
dal excitation with respect to the modal amplitudes. The
virial data is easily transformed into the experimental
observable (’i) by using Eq. (7) (here �i � 0). The curves
overlap when the virial 1 is plotted against its amplitude.
On the other hand, material contrast is obtained when the
representation involves the amplitude of the second mode.
Identical results are obtained when the virial of the second
mode is plotted with respect to the modal amplitudes
[Figs. 4(c) and 4(d)]. This result is analytically expressed
in Eq. (6), where the variables of the different modes are
coupled through the total virial of the system. We conclude
that material contrast is readily obtained when the virial of
one mode is plotted versus the amplitude of the other. The
materials simulated have H � 9:03
 10�20 J and 4:7

10�20 J. They correspond, respectively, to the interaction

FIG. 2. (a) Time dependence of the tip deflection under
bimodal-frequency excitation in the absence of tip-surface
forces. (b) FFT of the wave form shown in (a). (c) Time de-
pendence of the tip deflection under bimodal-frequency excita-
tion for a tip that interacts with a surface, A1 � 4:4 nm. (d) FFT
of the signal shown in (c) A01 � 6 nm, A02 � 1 nm, H �
9:03
 10�20 J.

FIG. 3. Dependence of the second mode phase shift with
respect to the amplitude of the first mode as given by numerical
simulations, analytical model and experiments. (a) Comparison
between the numerical solution and the analytical expression
[Eq. (7)]; H � 1
 10�20 J. (b) Comparison between theory
and experimental measurements on mica H � 9:03
 10�20 J
(adapted from Ref. [27]) and results given by the analytical
equation.
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of a silicon dioxide tip with a mica surface and, with a
surface formed by a few monolayers of water adsorbed on
mica [33].

The analytical expressions together with numerical
simulations allow us to propose an explanation for the
enhanced sensitivity provided by multifrequency AFM.
Under bimodal-frequency excitation, the different eigen-
modes of the microcantilever are coupled by the virial of
the tip-surface forces. Then, the second mode can probe the
tip-surface forces in a way that is not hindered by the
feedback mechanism as it happens in conventional ampli-
tude modulation AFM. The simultaneous excitation ena-
bles the microscope to increase its information channels
from two to four. The consequence of this approach is
twofold. First, it enables to probe the material properties
at larger distances and thus in turn to enhance the sensi-
tivity. Second, material contrast could be obtained for
exclusively conservative interactions. This in turns sup-
press or minimizes surface damage.
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FIG. 4. Dependence of the virial for two different materials,
open dots H � 4:7
 10�20 J, dark dots H � 9:03
 10�20 J.
(a) First mode virial with respect to the first mode amplitude.
(b) First mode virial with respect to the second mode amplitude.
(c) Second mode virial with respect to the first mode amplitude.
(d) Second mode virial with respect to the second mode ampli-
tude.
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