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Mapping stress in polycrystals with sub-10 nm
spatial resolution†

C. Polop, *a E. Vasco,b A. P. Perrinob and R. Garcia b

From aircraft to electronic devices, and even in Formula One cars, stress is the main cause of degraded

material performance and mechanical failure in applications incorporating thin films and coatings. Over

the last two decades, the scientific community has searched for the mechanisms responsible for stress

generation in films, with no consensus in sight. The main difficulty is that most current models of stress

generation, while atomistic in nature, are based on macroscopic measurements. Here, we demonstrate a

novel method for mapping the stress at the surface of polycrystals with sub-10 nm spatial resolution. This

method consists of transforming elastic modulus maps measured by atomic force microscopy techniques

into stress maps via the local stress-stiffening effect. The validity of this approach is supported by finite

element modeling simulations. Our study reveals a strongly heterogeneous distribution of intrinsic stress

in polycrystalline Au films, with gradients as high as 100 MPa nm−1 near the grain boundaries.

Consequently, our study discloses the limited capacity of macroscopic stress assessments and standard

tests to discriminate among models, and the great potential of nanometer-scale stress mapping.

Introduction

The intrinsic stress σ generated during the preparation and
processing of polycrystalline solids is a persistent problem and
common source of failure in present-day technology. This
stress originates from imperfections such as lattice defects,
interfaces and free surfaces, and significantly reduces material
performance. Polycrystalline coatings are particularly sus-
ceptible because their shapes with high surface-to-bulk
ratios are mechanically stabilized by moderated cohesion and
adhesion forces. Intrinsic stress in the order of those forces
can cause mechanical failures such as film fracture,
delamination/peel-off, crack propagation, and premature
thermo-mechanical fatigue.1–4

Three features make intrinsic stress particularly harmful for
these systems. (i) It is unavoidable: even a single-crystal solid
has non-zero defect density in its lattice due to entropy under
conditions of thermodynamic equilibrium. The defect density
is higher in films due to kinetic limitations caused by the
deposition conditions and substrate constraints. (ii) It is
reversible and cumulative: intrinsic stress can be regenerated

by residual stress in the system (the unreleased fraction under
normal temperature and pressure – NTP), and can accumulate
under conditions of heating, overpressure, and periodic loads.
(iii) It exhibits a non-uniform spatial distribution at the scale
of the solid lattice defects. In polycrystals, this scale
(∼10–100 nm) is far below the resolution of standard stress
tests. Macroscopic assessments are ineffective at detecting
these steep stress gradients, which can be higher than the
mechanical strengths required for commercial use (including
safety margins). Consequently, stress mapping at the nano-
scale is an irreplaceable tool for the study of material resist-
ance and nanomechanics.

The failure of current technology to investigate stress at the
inherent spatial scales of polycrystals is mirrored in the aca-
demic world, where the mechanisms responsible for stress
generation during film deposition and processing have gener-
ated intense conjecture and scientific activity.5–12 However, no
consensus has been reached so far. The main difficulty is that
current models of stress generation, most of which are atomis-
tic in nature, are only supported by data with, at best, sub-
micron resolutions. For example, techniques such as curva-
ture-based measurements, Raman spectroscopy, and X-ray
diffraction cannot reveal the stress distribution in films on
nanometer scales.

Atomic force microscopy (AFM) is a suitable tool for deter-
mining the mechanical properties of solids at the
nanoscale.13–15 In this work, we develop a method to map the
stress on the surface of polycrystals with sub-10 nm spatial
resolution. Our method maps the elastic modulus of the
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surface by two AFM techniques (Force Modulation Microscopy
and bimodal AFM), then transforms these data into a stress
map via the local stress-stiffening effect. The validity of our
method is supported by Finite Element Modeling (FEM) simu-
lations. Applying this method to Au films reveals a highly
heterogeneous distribution of intrinsic stress along grain dia-
meters, with stress gradients as high as 100 MPa nm−1 near
the grain boundaries (GBs). Consequently, our results call into
question the validity of stress assessments based on standard
tests and micrometer-scale characterization techniques.

Results and discussion
Elastic modulus maps

As a benchmark for the application of force modulation
microscopy (FMM) on materials with low stiffness contrast, we
first studied isolated Cu grains evaporated on Si(100) sub-
strates (Fig. 1). Fig. 1a and b show simultaneously taken topo-
graphy and FMM amplitude images, respectively, of several Cu
grains. The profiles (Fig. 1c) are measured along the dashed-
blue and continuous-red lines plotted in the images. In this
example, the Cu grains are about 20 nm in diameter and 2 nm
high. The cantilever vibration amplitude AFMM is lower over
the Cu grains than over Si, consistent with the fact that Cu has
a lower Young’s modulus (ECu = 130 GPa while ESi = 170 GPa).
This FMM amplitude contrast is consistent for all modulation
frequencies f < 0.7f01, where f01 is the resonance frequency of
the first mode of the cantilever. The fact that we can observe
variations in AFMM as small as 0.2 Å, due solely to minute
differences in the indentation amplitudes Δd, demonstrates
both the high sensitivity of FMM and its suitability for

imaging systems with low stiffness contrasts (see the Methods
section for details).

Fig. 2 shows the results of the FMM experiments measured
at dissimilar modulation voltage ΔV on Au films with two
different thicknesses: 600 nm in (a, c, e) and 1200 nm in (b, d,
f, g, h). For each experiment, we try three different modulation
voltages ΔV driving the probe vibration. The Methods section
describes how we estimate the corresponding force modulation
ΔF. Comparing the topography of both films (Fig. 2a and b), we
see that grain size increases with film thickness as expected
(note the different length scales). The grains with flat tops are
surrounded by deeper regions where GBs intercept the surface.16

The overlapping height distributions for different values of ΔV
(the histograms of Fig. 2a and b) demonstrate that the topogra-
phy measurements are independent of ΔF, and hence that the
average tip–sample contact geometry is preserved.

Fig. 2c and d show the corresponding FMM amplitude
maps, together with their Astiff-normalized histograms. The
meaning of Astiff is discussed below. In general, we observed
only slight variations in AFMM within grains (light areas).
However, the amplitude AFMM decreases dramatically near the
GBs (dark areas) and peaks inside the GBs (white areas). The
FMM amplitude images also reveal some small-scale morpho-
logical features such as vicinal surfaces (arrows in Fig. 2c and
d) with better resolution than the topography images. A poss-
ible explanation for this enhanced FMM resolution is provided
in the Methods section.

Once the FMM amplitude was measured, we mapped the
effective elastic modulus Eeff using the following novel pro-
cedure. For an FMM probe excited by a piezoelectric actuator
coupled to the cantilever base, the AFMM response is described
by the equation:17–21

AFMM

Astiff
¼ keff

k1 þ keff
ð1Þ

where Astiff is the amplitude of the cantilever vibration on an
infinitely stiff sample, k1 is the force constant of the first mode
of the cantilever, and keff denotes the effective force constant
of the tip–sample contact. keff is defined by a Taylor expansion
of the Hertz equation:

keff ¼ ½6FLEeff
2Reff �1=3 ð2Þ

where FL is the static load, Eeff = [(1 − νtip
2)/Etip + (1 − νsample

2)/
Esample]

−1 is the effective elastic modulus taking into account
deformations of both the tip and sample (νx is the Poisson

ratio of each material), and Reff ¼ ½1=Rtip þ κð~rÞ��1 is the
effective radius of contact expressing the competition between
the tip radius Rtip and the local curvature κð~rÞ of the sample.22

To estimate Astiff, we can either measure a reference FMM
amplitude on a much stiffer sample or measure the amplitude
on a region whose Esample is known exactly. Since the samples
are mostly relaxed at NTP, as measured by a multi-beam
optical stress sensor (MOSS, see the ESI†), we use the latter
method and assume that Esample = EAu = 78 GPa on the flat
regions interior to the grains (the light areas in Fig. 2c and d).

Fig. 1 Working principle of FMM in systems with low mechanical con-
trast. Simultaneously taken topography (a) and FMM amplitude (b)
images of isolated Cu grains deposited on Si(100). (c) Topography and
FMM amplitude profiles across the lines marked in (a) and (b). (d)
Schematic of the FMM setup (see the Methods section).
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Fig. 2 Mechanical characterization at the nanoscale by FMM. The panels (a, c, e) and (b, d, f, g, h) correspond to 600 nm and 1200 nm thick Au
films, respectively. The images are shown alongside histograms for the different ΔV. Panels (a, b), (c, d) and (e, f ) correspond to the topography, FMM
amplitude, and effective elastic modulus, respectively. The conversion of ΔV into force modulation ΔF is described in the Methods section. The FMM
amplitude images in (c, d) correspond to those acquired at ΔV = 0.75 V (with FL = 180 nN and f = 47 kHz) and ΔV = 0.10 V (with FL = 200 nN and f =
80.6 kHz), respectively. The arrows in (c, d) point out vicinal structures, while those in (e, f ) indicate abnormal broadening of the Eeff histograms.
Panel (g) plots characteristic profiles of the mapped magnitudes along the lines depicted in (b, d, f ). Dashed red lines identify the positions of topo-
graphy slope changes and labels Zi indicate regions with different mechanical behaviors as described in the text. Panel (h) shows a comparison of
the histogram of the FMM amplitude map in (d) with that calculated from considering only the topography contribution Atopo

FMM to such a map. Atopo
FMM is

calculated from the topography imaged in (b) assuming Eeffð~rÞ ¼ Ebulk
eff .
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Such regions comprise the majority of the imaged morphological
features by area, corresponding to the mode of the AFMM his-
tograms, mode(AFMM). Consequently, in these regions, the
effective elastic modulus is Ebulkeff = [(1 − νtip

2)/Etip + (1 − νAu
2)/

EAu]
−1 ≈ 63 GPa, the effective radius is Reff = Rtip, and the

effective force constant is kflat�surfaceeff = [6FL(Ebulk
eff )2Rtip]

1/3.

Eqn (1) then becomes Astiff ≈ (1 + k1/k
flat�surface
eff )·mode(AFMM),

which allows us to estimate an in situ value for Astiff. We dis-
carded the alternative approach, where Astiff is measured on a
much stiffer sample, because swapping samples would create
unavoidable changes in the experiment geometry.

At this point, we need to remove the topography contri-
bution from the FMM amplitude maps, because the rough
surface of the samples has an impact on the FMM amplitude
images (by changing the contact area of the probe). If we
assume that the intrinsic mechanical properties of the sample
are independent of its morphology (i.e., we reject potential
finite-size effects), the spatial dependence of Eeff can be
described as a perturbation E′ð~rÞ around its bulk value Ebulkeff ,

thus Eeffð~rÞ ¼ Ebulk
eff E′ð~rÞ. By substituting this form of Eeffð~rÞ

into eqn (2), we can express keff in terms of separable functions:

keffð~rÞ ¼ ktopoeff ð~rÞ � E′ð~rÞ2=3. Here, ktopoeff ð~rÞ ¼ 6FL Ebulk
eff

� �2
Reffð~rÞ

h i1=3

describes exclusively the morphology dependence of keff due to
the local curvature κð~rÞ of the surface. Thus, the effective elastic
modulus at each point on the image is calculated as follows:

Eeffð~rÞ ¼ Ebulk
eff keffð~rÞ=ktopoeff ð~rÞ� �3=2 ð3Þ

where keffð~rÞ is computed by eqn (1) from the FMM amplitudes
(raw FMM data) and ktopoeff ð~rÞ is calculated from the simul-
taneously measured topography (see above).

Fig. 2e and f show the Eeff maps for the Au samples together
with their histograms. Fig. 2g plots typical profiles across a GB
for the three mapped magnitudes (topography, AFMM and Eeff ).
The profile paths are the solid straight lines overlaid on the
maps. The Eeff maps reveal that the inner grain regions do
have homogeneous mechanical properties, with Eeff variations
being no more than 10% (region Z1 in Fig. 2g). The regions
near a GB are softer than the grain interior, with Eeff decreas-
ing to 48% of Ebulkeff (region Z2). The values of Eeff inside the
GBs (where AFMM peaks) are influenced by the difficulty of
accessing these narrow gaps with the probe tip and we do not
analyze them. The decrease in Eeff near the GBs is significant
and reproducible for different Rtip (we used both standard and
ultrasharp tips, with nominal Rtip = 10 and 2 nm) and different
scanning angles.

Examining Fig. 2g, we see that the AFMM and Eeff profiles
(middle and bottom panels) do not follow the shape of the
height profile (top) around the GB. In particular, the positions
where the topography slope changes (marked by red dashed
lines) do not coincide with major variations in AFMM. The fact
that both profiles are scanned simultaneously rules out the
possibility that this shift is caused by potential artifacts of
measurement or topography. Additionally, we calculated the
normalized topography contribution to the FMM amplitude,

AtopoFMM = ktopoeff /(k1 + ktopoeff ), and compared it with the experimental
AFMM maps. The corresponding histograms are shown in
Fig. 2h. The degree of overlap between the histograms indi-
cates the amount of contrast in the AFMM maps that originates
from topography effects. If the majority of the AFMM contrast is
due to topography, we would also obtain flat Eeff maps (fixed
to the value Ebulkeff ) after removing the topography contribution.
Fig. 2h reveals that the hypothesis fails: the AFMM histogram is
significantly wider and preferentially spread to lower (i.e.,
softer) values. The following conclusions can be drawn: (i) the
topography contribution predicts a more homogeneous mech-
anical response than what we actually measured; and (ii) the
surface measured by FMM is more compliant than expected
from the topography contribution alone. Consequently, we can
conclude that topography plays a minor role in the contrast of
the AFMM maps, which is removed in the Eeff maps.

Increasing ΔV beyond a certain threshold, which is defined
by the condition ΔF > FL/2, causes an abnormal broadening of
the Eeff histograms (see arrows in Fig. 2e and f). We know that
this broadening is not related to changes in the average
contact geometry, such as tip deformation or plastic regime,
because those would also be visible in the topographic images
(note that the height histograms still overlap). Two possible
explanations for the histogram broadening are anharmonic
distortions in the mechanical response of the sample17 (prob-
ably responsible for the high-Eeff tail in the histogram of
Fig. 2e) and/or small slips of the tip on steep regions18 (the
low-Eeff tail in the histogram of Fig. 2f).

To validate our method, Fig. 3 compares the inferred Eeff
results obtained by FMM (b) with Eeff maps obtained indepen-
dently by bimodal AFM (a), for different regions of the
1200 nm thick Au film. The latter method determines the
effective elastic modulus without any prior assumptions.23–26

Fig. 3 Comparison of bimodal AFM (a) and FMM (b) maps of the elastic
modulus, taken from the different regions of the same 1200 nm thick Au
film. (c) Comparison between the Eeff profiles along the red and blue
lines plotted in (a, b). (d) Comparison of the corresponding Eeff
histograms.
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The general features of the Eeff maps obtained by both tech-
niques agree with regard to: (i) the low dispersion of mechan-
ical properties within the grain interiors (Eeff ≈ Ebulkeff ± 6% for
bimodal AFM), (ii) the fact that regions close to a GB are softer
(Eeff decreases to 42% of Ebulk

eff in the bimodal AFM map) and
(iii) the observed peak in Eeff at the GBs. This qualitative agree-
ment between the three types of regions and their behaviors is
supported by the two GB-crossing profiles depicted in Fig. 3c.
Fig. 3d compares the corresponding Eeff histograms. The
difference in the modes, which are 60 GPa and 63 GPa for
bimodal AFM and FMM, respectively, is within the error gener-
ated during calibration of the cantilever force constants. The
good agreement between the results obtained by the two
different AFM techniques with dissimilar tip–sample inter-
actions (while the FMM requires a strong continuous contact,
the bimodal AFM is based on weaker intermittent contact),
using two different setups (see the Methods section) supports
our proposed procedure for Eeff mapping by FMM experiments
on stiff polycrystalline films.

Stress maps

The fact that the elastic modulus Esample is a cooperative lattice
property allows us to correlate its variation at the nanoscale
with the strain field in a solid. The macroscopic elastic
modulus of a material is highly sensitive to massive defects27

such as voids, incohesive grain bonds, and the inclusion of
non-crystallized particles. In contrast, microscopic Esample

varies only by a few percent even in the presence of major
deformations, dramatic atomic rearrangements, and intense
fields of intrinsic stress. This is because the lattice of a crystal-
line solid admits only small perturbations. For example, the
lattice anharmonicity effect in fcc-metal films changes the
microscopic Esample by less than 5% for equibiaxial intrinsic
stresses as high as σi = ± 1 GPa.27 However, the Eeff maps in
Fig. 2 and 3 involve spatial variations of 20–50%. This is much
higher than expected, and also higher than the intrinsic
Esample values measured by contactless (optical) techniques.
Large variations in microscopic Esample have only previously
been reported in Au–Ni and Cu–Pd multilayers with compo-
sition modulation wavelengths lower than 3 nm (supermodu-
lus effect).28 Conversely, in our study, large variations in
Esample are observed on the free surfaces of films with submic-
rometer thicknesses.

The high variability of Eeff observed in our study suggests
that the elastic moduli measured by FMM and bimodal AFM
are affected by the tip–sample contact (note that this does not
happen with optical techniques). In this case, the spatial vari-
ation in Esample is mostly due to a stress-stiffening effect (also
known as geometric nonlinearity). This process is typical of
stressed membranes when the deformation produced by a
normal load generates out-of-plane contributions of the stress
force that counteract such a load. In our case, the membrane
corresponds to the outermost sublayer of the film, the normal
load is FL, the out-of-plane deformation is the indentation
depth d (as defined by the Hertz model), and the stress in the
membrane corresponds to the biaxial intrinsic stress in the

film σ. Thus, as sketched in Fig. 4a and b, the indentation of a
region under compression (with σ < 0, dashed red arrows)
creates a stress force Fσ that strengthens FL. On the other
hand, the indentation of a region under traction (σ > 0) creates
a stress force Fσ that counters FL. The fact that we calculate Eeff
from FL instead of FL ± Fσ implies an underestimation (overesti-
mation) of the applied load, and means that the regions under
compression (traction) are displayed as softer (stiffer): i.e.,
Eeff < Ebulkeff (Eeff > Ebulkeff ).

Fig. 4c (symbols) shows the load-indentation curves com-
puted by FEM for σ-stressed isotropic Au films under a normal
load FL exerted by a Si tip.29 The curves for different values of σ
follow a power law of the form FL ∝ d1.5±0.1, in agreement with
the Hertz model. As previously discussed, the indentation
depth for a given FL increases as σ decreases (considering the
sign). The σ-dependence of Eeff is calculated by fitting each
curve to the Hertz model. This dependence is plotted in the
inset of Fig. 4c (symbols), together with the Eeff variations due
to changing σ expected from the lattice anharmonicity effect in
Au(111) films30 (dashed curve). The FEM results show a stron-
ger σ-dependence (e.g., Eeff changes up to 20% for σ ≤ ±1 GPa)
than that estimated for the lattice anharmonicity effect, which
predicts changes in Eeff only up to 4%. Consequently, the Eeff
variation with σ found by FEM appears to be consistent with

Fig. 4 Stress-stiffening effect. (a, b) Diagrams of the tip–film contact
geometry in regions under stress of compression and traction respect-
ively, showing the parameters of the stress-stiffening model. (c) Load-
indentation curves computed by FEM (symbols) and by the stress-stiff-
ening model (continuous lines) for σ-stressed isotropic Au films under a
load exerted by a Si tip.29 The inset shows the σ-dependencies of Eeff
computed from the fit of the FEM results to the updated Hertz model
(symbols), the stress-stiffening model (solid line), and the lattice anhar-
monicity effect estimated for Au <111> films (dashed curve).30
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the spatial dispersions in the Eeff maps (Fig. 2 and 3), since
local residual stress σ of at most a few GPa is expected. It
should be remembered that the Au films are macroscopically
relaxed (as measured by MOSS, see the ESI†). Therefore, the
stresses causing the Eeff dispersion correspond to local residual
fractions of the growth intrinsic stress that survives at NTP.

By taking into account the σ-dependence of Eeff found by
FEM, we can now transform the Eeff maps into σ maps using
the following analytical model of stress stiffening. The film
indentation caused by the tip pressure breaks the in-plane
film symmetry. The biaxial intrinsic stress σ in the film there-
fore contributes an amount Pσ = β(σ·ẑ) to the normal pressure,
where β is a factor describing the stress field geometry31 and ẑ
is the unit vector normal to the film plane. This contribution
can be estimated as ðσ�ẑÞ � σ cos arctan 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rtip=d

p� �� �
, whereffiffiffiffiffiffiffiffiffiffi

Rtipd
p

is the radius of the contact surface A (shaped like a
spherical cap). Pσ generates a stress force on the tip:

Fσ ¼ A�Pσ ¼ πRtipd�βσ cos arctan 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rtip=d

q� �h i
ð4Þ

Hence, the resulting force becomes FT = FL − Fσ. Updating
the Hertz model to take stress stiffening into consideration, we

obtain FT ¼ 4
3
Ebulk
eff Reff

1=2d3=2. Now, if we interpret the spatial

FT variation due to the stress field Fσð~rÞ/ σð~rÞ in terms of the
Eeff variation, we get:

ΔEeffðσÞ ¼ EeffðσÞ � Ebulk
eff ¼ Ebulk

eff
Fσ

FL � Fσ
ð5Þ

where Eeff(σ = 0) = Ebulkeff . From eqn (4) and (5), the regions
under compression (σ < 0 → Fσ < 0) seem to be softer (ΔEeff < 0)
than they really are, while those under traction (σ > 0 → Fσ > 0)
seem to be stiffer (ΔEeff > 0). The continuous lines in Fig. 4c
and its inset show the load-indentation curves and the
σ-dependence of Eeff obtained from our analytical model. The
good agreement between our model and the FEM simulations
(the model overestimates ΔEeff by 2–3%) supports the key role
played by stress stiffening in the measured Eeff dispersion.

Eqn (5) allows us to transform the Eeff maps into Fσð~rÞ.
Then, by substituting Fσ into the updated Hertz model, we can
compute the σ maps shown in Fig. 5a and b for the 600 nm
and 1200 nm thick Au films, respectively. Since the σ contri-
bution to Fσ (eqn (4)) depends on the indentation depth,
deeper indentations induced by higher force modulations ΔF
of the tip load are required to sense lower stresses. However,
increasing ΔF beyond a certain threshold also produces abnor-
mal broadening of the Eeff histograms, as discussed above.
Thus, the practical ΔF maximum determines the amount of
uncertainty in the stress resolution δσ. This uncertainty is
defined as the minimum σ variation required to produce a
change in d greater than the experimental error in determining
the indentation depth δd (see the Methods section).

Because the intrinsic stress modifies the indentation depth
nonlinearly, the analytical model determines a series of uncer-
tainties δσi for different measurement ranges. The uncertainty
varies with both the sign and the magnitude of the intrinsic

stress. These uncertainties are used to determine the statistical
properties of the σ maps, and correspond to the bin widths of
the histograms in Fig. 5c and d. As specified in the histo-
grams, the intrinsic stress measurements are grouped into five

Fig. 5 Residual stress (σ) maps on the nanoscale. (a, b) σ maps of
600 nm and 1200 nm thick Au films, calculated from FMM images
obtained at ΔV = 0.75 V and 0.10 V, respectively. (c, d) Histograms iden-
tifying the major stress levels in the two films, namely: relaxed regions
(0, green), areas under low and high compression (A and A’, dark and
light red), areas under low and high traction (B and B’, dark and light
blue). 〈σ〉 averaged over each map is reported above the corresponding
histogram together with the σ uncertainties around the relaxed state δσ0.
Note that δσi (width of the histogram bins) depends on both the sign and
the magnitude of σ as described in the text. (e, f ) Compression–traction
maps of the Au films, using the discrete color scale defined in the histo-
grams (c) and (d). (g) Stress profile (continuous black line) along the line
plotted in (a) and its corresponding 1D gradient (dashed magenta line
referred to the right axes).
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levels (colors): 0-green, A-dark red, A′-light red, B-dark blue
and B′-light blue. The green bins represent the relaxed area,
while the red (blue) bins collect measurements from areas
under compression (traction). Dark (light) colors correspond
to the areas under low (high) stress. Fig. 5e and f redraw the σ

maps using this discrete color scale, to improve the contrast
between regions with different stress levels. In addition, these
figures illustrate the GB mesh with white lines, calculated by
applying a tessellation filter to the topography images.32 The
line thickness in the figure is similar to the diameter of the tip–
sample contact area (≈5.5–5.7 nm), providing a visual estimation
of the areas inaccessible to the AFM tip. We call this simplified
representation a “compression–traction map” hereafter.

Typical values of δσi obtained under our experimental con-
ditions are a few hundred MPa. For example, the average
uncertainties in the σ maps around the relaxed state (level 0)
in Fig. 5a and b are δσ0 ≈ 170 and 158 MPa, respectively. This
stress uncertainty also reduces the spatial (lateral) resolution
of the σ maps. The spatial resolution is theoretically limited by
the diameter of the contact area (2

ffiffiffiffiffiffiffiffiffiffi
Rtipd

p � 5:5� 5:7nm for
both maps), but worsens to δσi/∇σ where ∇σ is the magnitude
of the stress gradient to be resolved. For example, given the
statistics of the σ maps in Fig. 5a and b, we can estimate their
average stress gradients as 〈∇σ〉 = 26.6 and 25.8 MPa nm−1,
respectively. This implies that the maps have average spatial
resolutions of δσ0/〈∇σ〉 ≈ 6.4 and 6.1 nm, respectively. Since
these resolutions (below 10 nm) are smaller than the inherent
length scales of the lattice imperfections in polycrystals
(∼10–100 nm), the method of stress mapping proposed here is
good enough to image residual stress gradients in polycrystal-
line films. In particular, the method is suitable to sense the
stress within the outermost sublayer with thickness in the order
of the indentation depth d (∼1 nm for FL of a few hundred nN).
Note that this sublayer plays a key role in the mechanical pro-
perties of systems with a high surface-to-volume ratio.

The compression–traction maps reveal that the stress distri-
bution in polycrystals is highly heterogeneous: relaxed areas
alternate with regions under compression and traction. Some
regions exemplifying the different stress regimes are high-
lighted in Fig. 5e and f. While the inner vicinal surfaces of the
grains are mostly relaxed (0-green areas), most of the regions
near the grain boundaries are under compression (A and A′-
red areas). Annular areas with traction stress (B-blue areas)
appear frequently in between the previous two regions. Fig. 5g
shows a typical stress profile measured across a GB, performed
along the black line in Fig. 5a. The corresponding 1D gradient
(right axis) demonstrates that residual stress gradients as high
as 100 MPa nm−1 persist along the grain diameters in macro-
scopically relaxed films.

These results are directly connected to the generation of
compressive stress at the post-coalescence stage (i.e., once the
GBs are formed) during the deposition of polycrystalline films,
which is extensively discussed in the literature.5–12 Although
we are mapping residual stresses rather than in situ growth
stresses, it is reasonable to assume that the two quantities are
related in a straightforward way by stress-relaxation thermo-

dynamics. Thus, after deposition stops, the accumulated
growth stress relaxes progressively until it reaches a steady
state (residual stress), wherein the strain energy generated by
the residual stress is lower than the activation energy of the
relaxation mechanism. Subsequently, two preliminary con-
clusions can be drawn from our results. (i) Neither force–
dipole interactions between morphology features5 nor adatom
insertion between ledges6 at vicinal surfaces are responsible
for post-coalescence compression, since those areas are mostly
relaxed. (ii) The fact that compression regions mostly decorate
GB edges indicates that GBs are involved in the generation of
the post-coalescence compression, as proposed in ref. 7, 10
and 12. We will address the physical origin of the stress gradi-
ents along the grain diameter in a forthcoming work.

Finally, note that the heterogeneous distribution of stress
over the surface of polycrystalline films, as resolved here in the
sub-10 nm stress maps, is undetectable by the standard tech-
niques and tests used for stress analysis. Such techniques,
which have sub-micron spatial resolutions at best, are only
sensitive to the average stress over the entire displayed areas in
Fig. 5a and b: 〈σ〉 ≈ −33 MPa and −14 MPa, respectively.
Besides, these values correspond to the macroscopically
relaxed samples, as discussed above. Furthermore, average
stresses hide the existence of steep gradients (as high as 100
MPa nm−1 in Au) which can be greater than the mechanical
strengths required by many applications.33 Consequently, we
hope that stress mapping at the nanoscale becomes an irre-
placeable tool for the study of material resistance. More gener-
ally, this and other nanomechanical technologies will change
our perception about the atomistic nature of stress in crystal-
line solids.

Conclusions

We have presented a method to map mechanical stresses on
the surface of polycrystals with sub-10 nm spatial resolution.
The method directly observes spatial variations in the elastic
properties of a crystalline solid over its surface, in particular,
the elastic modulus maps provided by AFM techniques. We
transform these values into stress maps using an analytical
model of stress-stiffening. The consistency of this model is
supported by FEM simulations. The application of this
method to the study of evaporated Au films up to 1 micron in
thickness reveals a strongly heterogeneous distribution of the
intrinsic stress, with gradients as high as 100 MPa nm−1 along
the grain diameters. Such extreme values, which occur near
grain boundaries, could compromise the mechanical reliability
of polycrystalline films in many applications.

Methods
Sample preparation

The Au films were deposited by thermal evaporation on mica
substrates at room temperature. Films with thicknesses within
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the range of 200–1200 nm were grown at 0.1 nm s−1 under a
pressure of 10−7 mbar. The samples were ex situ characterized
by scanning electron microscopy, X-ray diffraction and AFM
microscopy. All the films exhibited a [111]-textured columnar
microstructure without in-plane order (see the ESI†).

Force modulation microscopy

Background. FMM (also called ‘modulated nanoindenta-
tion’34) is an AFM technique used to study materials with
intermediate stiffness (1 GPa < Esample < hundreds of GPa).
Using a standard AFM set-up, FMM measures the amplitude of
vibration in a cantilever whose tip is held in continuous
contact with the surface of the sample (see Fig. 1d). As it
moves across the surface, the cantilever vibrates at a frequency
f lower than its first resonance f01.

17–21,34 This vibration is
induced by applying a modulation voltage ΔV to a piezoelectric
element at the base of the cantilever or the sample (acoustic
excitation). This process results in a load modulation ΔF
around the static load FL used to hold the continuous contact.
The amplitude of the cantilever vibration AFMM is measured by
a four-sector photodiode operating in a frequency-locked loop
(FLL). Relatively high static load values (FL ∼ several hundred nN)
are required to ensure that adhesion forces can be ruled out.

The Hertz model predicts FL ¼ 4
3
EeffReff

1=2d3=2 for a spherical

tip. From a Taylor expansion of the Hertz model for small
force modulations, the force balance corresponding to harmo-
nic FMM quasi-static vibration can be estimated as k1AFMM ≈
keffΔd for an indentation amplitude Δd = Astiff − AFMM. Thus, a
decrease (increase) in the measured value of AFMM is expected
on more compliant (stiffer) areas (see Fig. 1d).

The resulting FMM equation keff/k1 = 1/(Astiff/AFMM − 1), as
clarified in eqn (1), relates the contrast in the vibration ampli-
tude map ½Astiff � AFMMð~rÞ�=AFMMð~rÞ to the ratio between the
force constants of the cantilever and the tip–sample contact.
This ratio depends on the mechanical properties of the sample
and tip. This equation offers a straightforward interpretation
of the mechanical properties of soft materials with flat
surfaces. In systems with stiffness much lower than that
of the tip and negligible roughness, keff ≈ {6FL[Esample/
(1 − νsample

2)]2Rtip}
1/3 is independent of the sample topography,

and any deformation of the tip can be neglected. Consequently,
contrast in the FMM images can be attributed almost
exclusively to gradients in the mechanical properties of the
sample, in particular, to variations of Esample since the spatial
dependence of νsample is smoother.

However, when the target surface is a metal or ceramic poly-
crystalline film grown by the Volmer–Weber (V–W) mechan-
ism, interpreting the FMM images is a more complex task.
These films are composed of grains with non-negligible rough-
ness, which implies high curvature gradients. Ceramic and
metal grains may also have stiffnesses comparable to that of
the tip. Therefore, the sample topography and tip deformation
become non-negligible factors, as we describe in the main text.
Our procedure to remove the topography contribution from
the FMM amplitude maps and inferred material properties of

the surface is related to other research studies35 with similar
aims, in particular with respect to features with sizes in the
order of the tip radius.

Experimental. The FMM experiments were performed with a
commercial AFM (Nanotec Electronica S.L.) in a dry N2(g) atmo-
sphere.36 The environmental humidity was held below 10% in
order to avoid capillary forces. The modulation voltage ΔV was
applied to a piezoelectric element at the base of the cantilever.
Si cantilevers (PPP-NCHR Nanosensors) with k1 = 40 N m−1,
Rtip = 10 nm and f01 = 300 kHz were used. Topographic images
and FMM amplitude images were acquired simultaneously. In
order to remain within the linear elastic regime of the
material, the static load FL and modulation voltage ΔV were
chosen to produce indentations of only a few Å. The relation-
ship between ΔV and ΔF for each experiment was estimated
from the static and dynamic calibrations of the photodiode
(namely, photodiode response in nm V−1 and signal gain at
the modulation frequencies). Specifically, for the 600 nm
and 1200 nm thick Au films, we obtain FL ± ΔF ≈ 180[nN] ±
131[nN V−1] × ΔV[V] and FL ± ΔF ≈ 200[nN] ± 839[nN V−1] ×
ΔV[V] respectively. The frequency-locked loop (FLL) fixed to
the modulation frequencies ( f = 47 kHz for 600 nm and
80.6 kHz for 1200 nm) allowed us to determine the harmonic
indentation amplitude Δd with an experimental error of δd =
0.2 Å, as shown in Fig. 1 for systems with low stiffness con-
trast. The FLL mode improves the FMM resolution by attenuat-
ing inelastic responses to the tip–sample interactions. Also, in
FLL mode, FMM exhibits enhanced resolution on abrupt
hollow features18 (e.g., GBs and steps at vicinal surfaces) where
the effective radius Reff of contact diverges for κð~rÞ ! �1=Rtip.
The data were processed assuming the following mechanical
properties: EAu = 78 GPa and νAu = 0.44 for the sample, and
ESi = 170 GPa and νSi = 0.28 for the tip material.

Bimodal AFM

Bimodal AFM is a nanomechanical spectroscopy method that
enables simultaneous and accurate maps of material
properties.23–26 The bimodal AFM measurements were per-
formed with a Cypher S microscope (Asylum Research, Oxford
Instruments) operating in the AM–FM configuration.23,24 We
used Si cantilevers PPP-NCH (Nanosensors) characterized by
f01 = 293 kHz, f02 = 1848 kHz, Rtip = 2 nm, k1 = 40 N m−1 and
k2 = 2164 N m−1.37–39 In the AM–FM configuration, the feed-
back acts on the amplitude of the first eigenmode and on the
frequency shift of the resonant frequency of the second. Thus,
the driving frequency of the first flexural mode f01 is fixed
during imaging, while the oscillation amplitude A1 is used as
the feedback parameter to track the topography of the sample.
In the second mode, changes in the resonant frequency Δf02
are recorded while imaging. The oscillation amplitude of the
second mode A2 is kept constant during this process. To keep
track of changes in Δf02 over the surface, we keep the phase
shift locked at 90° with a phase-locked loop (PLL). These feed-
back loops provide the experimental observables that are trans-
formed into Eeff for the Hertz model, through analytical
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expressions.26 The images were taken at Asp = 10 nm, with free
amplitudes of A01 = 20 nm and A02 = 0.4 nm.
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