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The atomic force microscope (AFM) has been a key instru-
ment in the development of nanoscience and nanotechnol-
ogy over the past 25 years1. Unlike most forms of imaging, 

it does not rely on electrons or photons to probe a sample. Rather, 
in atomic force microscopy we measure the deflection of a probe 
(an extremely sharp tip attached to a flexible cantilever) as it is 
scanned across the surface of a sample. In the early days of the 
AFM the tip was always in mechanical contact with the surface, 
and the first images taken with ‘contact AFM’ barely hinted at the 
nanoscale spatial resolution of which the technique was capable1. 
Since then the AFM has undergone a number of improvements, 
and the introduction of optical methods to measure the deflection2 
paved the way for the manufacture of commercial AFM systems.

In dynamic AFM3,4, which first emerged a few years after con-
tact AFM, the probe is excited at a single frequency while being 
scanned across the sample. A feedback loop keeps one of the 
parameters of the oscillation — either the amplitude or the fre-
quency shift — at a fixed value. The oscillation parameters depend 
on the separation between the tip and the surface, and therefore 
atomic or nanoscale changes in topography cause changes in this 
distance and, in turn, the oscillation parameters of the probe. 
By compensating for these changes, the feedback loop generates 
high-resolution images of the surface topography. Dynamic AFM 
has four advantages over contact AFM. First, it is easier to image 
at small forces (such as in the 1 nN range) especially in air, and 
this allows soft materials to be imaged. Second, lateral forces are 
suppressed. Third, observables such as the amplitude, the phase, 
the frequency or the cantilever deflection are available and can be 
used to extract information on the properties of a material. Finally, 
atomic resolution imaging of reactive surfaces in ultrahigh vac-
uum can be achieved through control over the mechanical contact 
between the tip and the surface atoms.

The reduction of the force exerted by the tip on the sample has 
been essential in allowing a variety of soft materials, such as DNA, 
proteins, cells or polymers5–8, to be studied with relative ease. 
The reduction of the force has also led to atomic- and molecular-
resolution images in a variety of environments9–14. Furthermore, 
dynamic AFM has provided a suitable experimental set-up to 
combine topography with the mapping of electrostatic15 or mag-
netic16 properties.
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In atomic force microscopy a cantilever with a sharp tip attached to it is scanned over the surface of a sample, and information 
about the surface is extracted by measuring how the deflection of the cantilever — which is caused by interactions between the 
tip and the surface — varies with position. In the most common form of atomic force microscopy, dynamic force microscopy, 
the cantilever is made to vibrate at a specific frequency, and the deflection of the tip is measured at this frequency. But the 
motion of the cantilever is highly nonlinear, and in conventional dynamic force microscopy, information about the sample 
that is encoded in the deflection at frequencies other than the excitation frequency is irreversibly lost. Multifrequency force 
microscopy involves the excitation and/or detection of the deflection at two or more frequencies, and it has the potential to 
overcome limitations in the spatial resolution and acquisition times of conventional force microscopes. Here we review the 
development of five different modes of multifrequency force microscopy and examine its application in studies of proteins, the 
imaging of vibrating nanostructures, measurements of ion diffusion and subsurface imaging in cells.

The impact of force microscopy also goes beyond the field 
of high-resolution imaging. In particular, it has led to a renais-
sance in mechanics, or more accurately, nanomechanics, which 
can be used to explain the operation and the performance of the 
AFM3,17–19. Moreover, AFM can be used to precisely measure the 
binding forces between individual biomolecules or the local stiff-
ness of biomaterials (force spectroscopy)20,21. For example, force 
spectroscopy has been used to study the nanomechanical proper-
ties of cells22, which could be relevant to analysing the progression 
of tumours23. In addition, AFM technology has led to the develop-
ment of very sensitive micro- and nanomechanical devices24,25.

Despite the success of AFM, the technique currently faces limi-
tations in terms of spatial resolution, quantitative measurements 
and data acquisition times. Atomic- and molecular-resolution 
imaging in air, liquid or ultrahigh vacuum is arguably the most 
striking feature of the instrument. However, high-resolution 
imaging is a property that depends as much on the mechanical 
properties of the material under study as it does on the sensitiv-
ity and resolution of the microscope. Molecular-resolution images 
are either hard to obtain or, in the case of very soft materials such 
as those with an effective elastic modulus below 10  MPa (iso-
lated proteins, cells, some polymers), have not been obtained yet. 
Similarly, it is hard to combine the exquisite force sensitivity of 
force spectroscopy with molecular-resolution imaging, and it is 
therefore challenging to obtain simultaneous high spatial resolu-
tion and material properties mapping.

The conventional AFM is a surface characterization technique, 
and the non-invasive imaging of buried structures (subsurface 
imaging) is not considered a mainstream activity. Similarly, pro-
cesses, such as subsurface ion diffusion in batteries, have been 
beyond the realm of the AFM either because of a lack of sensitivity 
or because of difficulties in separating elastic from non-conserva-
tive components in the measured force.

To expand the capabilities of the AFM and to overcome its cur-
rent limitations, two principles need to be considered: (1) all the 
information about the properties of a sample are encoded in the 
probe’s motion; and (2) the dynamics of the cantilever are highly 
nonlinear, and therefore the harmonics and lower eigenmodes 
components are integral parts of the tip’s motion. Conventional 
dynamic AFM methods involve the excitation and detection of 
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a single frequency component of the tip’s motion. Therefore, the 
information about the properties of a sample that is included in 
the other frequency components is irreversibly lost.

Multifrequency AFM methods involve the excitation and/or 
detection of several frequencies of the probe’s oscillation. Those 
frequencies are usually associated with either the higher har-
monics of the oscillation or the eigenmodes of the cantilever. 
Multifrequency excitation/detection schemes provide higher 
sensitivity and resolution because these methods are specifically 
designed to decode the information generated by the nonlinear 
regions of the tip–surface interaction force.

The physics of multifrequency AFM methods
There are two main dynamic AFM methods3,4,26. In amplitude-mod-
ulation AFM (AM-AFM), the probe is excited at a fixed frequency 

and the amplitude is held constant by the feedback loop while tak-
ing an image. In frequency-modulation AFM (FM-AFM), a single 
resonant frequency is used for excitation and detection, and the fre-
quency shift is held constant by the feedback loop. The purpose of 
any dynamic AFM experiment is to recover the information about 
the sample’s properties encoded in the cantilever dynamics. The 
cantilever dynamics are highly nonlinear3,18,19,26 because the ampli-
tude of the oscillation is higher than the decay lengths of the interac-
tion forces. For atomic- and molecular-resolution images the decay 
lengths are about 0.5 nm, whereas the amplitudes are in the range 
1–10  nm. To be precise, the nonlinear effects relevant for high-
resolution imaging and mapping of material properties are exam-
ples of mild nonlinear dynamics. In some situations, the cantilever 
could experience very complex trajectories18,19. But the presence 
of extreme nonlinear behaviour in force microscopy can be easily 
avoided by proper selection of the operational parameters.

The presence of several frequency components in the oscilla-
tion of the cantilever has been known for several years27–32. The 
role of those components in the spatial resolution and in time-
dependent processes and sensitivity to material properties has, 
however, been either overlooked or neglected because of at least 
three factors. First, those components were observed by applying 
large tip–surface forces, which are not suitable for high-resolution 
imaging32. Second, in typical experimental conditions, the higher 
harmonics components are several orders smaller than the funda-
mental frequency component32,33. To observe them requires either 
improving the signal-to-noise ratio of the instrument or develop-
ing specific experimental methodologies to enhance them. Finally, 
a comprehensive theory to decode the information about the sam-
ple properties in terms of the frequency components is complex 
and was not initially in place.

The cantilever in an AFM is a mechanical system (Fig. 1). As 
such it is characterized by its eigenmodes and their respective 
properties33–45. The eigenmodes are also called normal modes or 
resonances, and are characterized by four parameters: the effective 
stiffness kj (force constant), the resonant frequency ωj = 2πfj, the 
quality factor Qj and the optical sensitivity σj. For a rectangular 
cantilever without a tip, there are several relationships among the 
above parameters (Table 1). The relationships are approximations 
to describe real AFM cantilevers. The mass of the tip, the presence 
of a picket-shape at the end of the cantilever, or a non-uniform 
cantilever’s cross-section along its length could introduce signifi-
cant changes in the mode shape38,45,46 that would limit the validity 
of the analytical expressions.

The nonlinearities in the interaction force introduce higher 
harmonics components in the probe’s motion. Thus, the tip–sur-
face force is encoded in the frequency spectra of the tip motion. 
The harmonics vibrate with a frequency equal to an integer multi-
ple of the excitation frequency (nω) (Box 1). The amplitude of the 

Different degrees of accuracy and complexity can be applied to 
describe the steady-state deflection of the cantilever. The most 
common assumption is to consider the expression

  z = z0 + A cos(ωt – ϕ) (1)

where A, z0 and ϕ are, respectively, the amplitude, the static com-
ponent of the deflection and the phase shift with respect to the 
driving force. Equation (1) neglects any multifrequency compo-
nents. The next approximation level considers the presence of 
high-frequency components (harmonics). The harmonics are 
naturally generated when the vibrating probe is exposed to the 
nonlinear regions of the interaction force: then

 (2)

where An is the amplitude of the harmonic with angular fre-
quency nω. Equations (1) and (2) are compatible with a point-
mass description of the cantilever.

A more precise description is achieved by considering the 
extended character of the cantilever. In that case, the deflection 
of the probe contains contributions from all its eigenmodes (qj), 

      (3)

In Eq. (3) the eigenmodes have been expressed in terms of the 
different harmonics (An).

An cos(nωt – ϕn)+z = z0
n = 1

N

∑

An cos(nωt – ϕn)+qj(t) = z0
n = 1

N

∑+z = z0
j = 1

M

∑

Box 1 | Approximations for the cantilever deflection.

Table 1 | Cantilever properties.

Eigenmode 
(flexural)

κj Frequency Force constant Quality factor 
(no internal damping)

Optical sensitivity 

j 

1 1.875 ω1  = ω0  k1 Q1 σ1

2 4.694 6.27 ω0 39.31 k1 6.27 Q1 3.473 σ1

3 7.855 17.55 ω0 308 k1 17.55 Q1 5.706 σ1

4 10.996 34.39 ω0 1183 k1 34.39 Q1 7.985 σ1

Adapted from refs 26, 32 and 45. The eigenmodes of the AFM cantilever are characterized by four parameters: the effective stiffness kj (force constant), the resonant frequency ωj = 2πfj, the quality factor Qj and 
the optical sensitivity σj. For a rectangular cantilever without a tip there are several relationships among these parameters, which are approximations to describe real AFM cantilevers. κj are the  real roots of a 
characteristic equation of the cantilever (1 + cos κj  cosh κj =  0)26. φj is the shape of the jth eigenmode at the free end of the cantilever.

ωj ω1=
κ1

κj
2

kj k1=
2

ω1

ωj Qj Q1ω1

ωj= σj σ1φ'1

φ'j=
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higher harmonics is proportional to the convolution of the force 
over the harmonic waveform47 (Box  2). The theoretical analysis 
also shows that the amplitude of the higher harmonics decreases 
with the order as ~1/n2. When the oscillation amplitude is compa-
rable to the range of the short-range forces, the higher harmonics 
are proportional to the higher force gradients48,49. 

The higher harmonics act as effective driving forces that excite 
the vibration of the higher eigenmodes of the cantilever. This hap-
pens whenever the frequency of a higher harmonic is close to that of 
an eigenmode33,35. For a rectangular cantilever without a tip, the fre-
quency of the second eigenmode is 6.27ω0, very close to that of the 
sixth harmonics (6ω0). As a consequence, the frequency spectra are 
modulated by the presence of the eigenmodes (Fig. 1e). The above 
description is supported by both numerical simulations and experi-
mental observations. In liquid, the momentary excitation of the sec-
ond eigenmode plays a relevant role in the cantilever dynamics50.

The presence of higher harmonics in the deflection signal allows 
time-resolved forces to be obtained and thus allows one to meas-
ure the sample dynamics in a time frame of microseconds. This 
method can be divided into two steps51. The first step requires the 
cantilever trajectory to be expressed in the frequency domain. The 
second step involves taking the inverse Fourier of the cantilever 
trajectory divided by its transfer function. It requires a relatively 
large number of harmonics (~15), however, to get accurate esti-
mations of the force. Special cantilevers are required to enhance 
the number of higher harmonics in the probe’s oscillation46,52,53. In 
particular, the development of torsional harmonic cantilevers has 
improved the signal-to-noise ratio of the higher harmonics and 
simplified the calculation of the transfer function54.

The multifrequency aspects of dynamic AFM have been over-
looked because the high-frequency components are usually very 

The harmonics and the forces are related by an integral expres-
sion. This relationship is obtained by multiplying the equation of 
motion by cos(nωt – ϕn) and sin(nωt – ϕn) and integrating over 
a period. In amplitude-modulation AFM, the higher harmonics 
can be expressed as 

    (4)

  S ≈1/(πn2) and n > 3 (5)

where d is the instantaneous tip–surface distance. For oscilla-
tions where the repulsive region of the interaction potential is 
stronger than the attractive region, the higher harmonics com-
ponents can be parameterized in terms of the maximum force 
(Fmax) and the contact time tc:

  An = An(Fmax, tc, n) (6)

In frequency-modulation AFM, the higher harmonics can be 
expressed in terms of the force by 

     (7)

where Tn(u) is the nth Chebyshev polynomial of the first kind, zc 
is the average position of the cantilever, and u = cos ωt.

An = S +
k

ω0 ∫ Fts(d)cos(nωt)dt
T

2
∫ Fts(d)sin(nωt)dt

T

2

2 2

An = Tn(u)
πk
2 1 ∫ Fn

ts(zc +  z0 +  A1u) du
1 – u21 – n2 −1

1

Box 2 | The interaction force and the harmonics.
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Figure 1 | Cantilever dynamics in force microscopy. a, Scanning electron microscope image of a silicon cantilever. b, Modal shapes of the first three flexural 
eigenmodes of a rectangular (tip-less) cantilever that is clamped at one end and free at the other end. c, Amplitude response as a function of the excitation 
frequency for a rectangular cantilever (simulation). d, Schematic diagram of the interaction between a vibrating cantilever and a nonlinear tip–surface force. 
e, Frequency response of a rectangular cantilever under the influence of a nonlinear force (simulation). An enhancement of the amplitudes of the sixth and 
seventeenth harmonics is observed owing to the coupling, respectively, with the second and third eigenmodes. f, Higher harmonic image of a tungsten tip 
imaging a graphite surface. The four-leaved clover is related to the four-fold symmetry of charge density maxima in a tungsten adatom on W(100). The white 
and red circles represent the diameter of the carbon and tungston atoms, respectively. Panels reproduced with permission from: a,c,e, ref. 26, © 2010 Wiley; 
f, ref. 48, © 2004 AAAS. 
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small. For example, it has been shown that for high-Q cantilevers 
(Q ≥ 50), the amplitudes of the higher harmonics are two to three 
orders of magnitude smaller than the fundamental component33. 
The amplitude of the higher eigenmodes can be enhanced by 
exciting several of them simultaneously, the simplest case being 
the excitation of the first two eigenmodes55–57. By recording the 
signal at the excited frequencies, one can acquire complementary 
information on the sample properties from different channels, 
one per excited eigenmode58–61. This approach has several advan-
tages. For example, in AM-AFM the feedback imposes consider-
able restrictions on the information conveyed by the phase shift 
of the mode used by the feedback frequency. Those restrictions 
do not apply to the information carried by the second excited 
eigenmode60. In addition, the simultaneous excitation of two 

modes enhances the coupling of those modes by the nonlinear 
force. This helps to increase the sensitivity of the second mode to 
material properties56. For small amplitudes, the parameters of the 
second mode can be related to the force gradient58,61, which also 
explains the higher sensitivity of bimodal AFM to variations in 
material properties. 

This approach has been extended to the simultaneous excitation 
of three eigenmodes62 and to non-resonant frequencies, for exam-
ple to two frequencies that are in the vicinity of a resonance63,64. 
In the latter case, the tip–surface forces generate a new set of fre-
quencies called intermodulation products63 which also encode the 
interaction force. There are other remarkable results produced by 
the simultaneous excitation of several frequencies near the fun-
damental resonance, such as the real-time determination of the 

Figure 2 | Multifrequency AFM. a, Milestones in the evolution of multifrequency AFM. b, Bimodal AFM scheme. The amplitude of the first mode is 
used for topography imaging while the signal from the second mode give access to different mechanical or electromagnetic properties. c, Schemetic 
of the band excitation method. The excitation signal is digitally synthesized to have a predefined amplitude and phase in a given frequency window. 
The cantilever response is detected and Fourier transformed at each pixel in an image. Ar and Ae are the response amplitude and excitation amplitude, 
respectively. d, Scanning electron microscopy image and schematic of a torsional harmonics cantilever. The cantilever is 300 μm long, 3 μm thick and 
50 μm wide at the free end. The force is obtained from the higher harmonic components in the torsional signal. e, Schematic of a nanomechanical 
holography set-up. The probe and the sample are mechanically excited by signals that contain a number of known frequency components. From 
these frequency components, the tip–sample interaction synthesizes new modes (S signal), which carry information on the subsurface structures. 
PSD; photo segmented diode. Fp and Fs are the excitation force of the probe and the excitation force of the sample, respectively. Ω represents the 
excitation frequencies of the sample. Panels reproduced with permission from: b, ref. 56, © 2008 IOP; c, ref. 65, © 2007 IOP; d, ref. 54, © 2007 NPG; 
e, ref. 106, © 2010 NPG.
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effective cantilever parameters65,66 or the control of some nonlinear 
dynamics properties67,68.

The use of higher flexural eigenmodes for imaging (single exci-
tation/detection) has been suggested to avoid the jump-to-contact 
phenomenon69–71. However, the higher the eigenmode the lower 
the sensitivity to the properties of a material. The sensitivity of a 
mode depends on the Qj/kj ratio72 which, for an ideal cantilever, 
decreases with the eigenmode order (Table 1). 

Multifrequency AFM methods
There are currently five approaches to multifrequency AFM that 
are widely used (Fig. 2).

Multiharmonic AFM imaging. This is the most straightforward 
approach to performing a multifrequency AFM experiment. It 
requires just the recording and subsequent plotting of the higher 
harmonics components generated while acquiring a topography 
image in conventional dynamic AFM modes73–80. However, the 
detection of higher harmonics in air is hard to achieve with the 
forces required for high-resolution imaging6,8 (which may be less 
than 1 nN). For this reason the use of special cantilevers that allowed 
the tuning of a higher eigenmode with a higher harmonic has been 
suggested46. The fact that in liquid the higher harmonics are easier 
to detect has allowed the imaging of a bacterial S-layer with 0.5 nm 
spatial resolution by plotting the amplitude of the second harmonic 

of the fundamental frequency78. The same method has been applied 
to image a living bacterium79 with an enhancement in contrast. The 
combination of several harmonics, in particular the zeroth, first 
and second harmonics, has allowed nanoscale mapping of the local 
stiffness and viscoelastic dissipation in living cells80. In ultrahigh 
vacuum, the use of higher harmonics has revealed features with a 
lateral distance of only 77 pm on a tungsten surface48.

Bimodal AFM. This method uses two driving forces to excite 
the vibration of the cantilever55–58,81 (Fig.  2b). The excitation fre-
quencies are tuned to match two of the flexural eigenmodes of 
the cantilever, usually the first and the second eigenmodes. An 
output signal of the first mode (either the amplitude or the fre-
quency shift) is used to image the topography of the surface while 
the output signals of the second mode (amplitude and/or phase 
shift) are used to measure changes in mechanical81–85, magnetic72,86 

or electrical properties87,88 of the surface. This method is compat-
ible with both dynamic AFM modes and can be performed in air81, 
liquid56,57 or ultrahigh vacuum58,89. Bimodal AFM has been oper-
ated at very low forces (50 pN) in liquid, allowing the non-invasive 
imaging of isolated proteins61.

Bimodal AFM offers a straightforward approach to separate 
topography from other interactions influencing the tip motion 
such as magnetic or electrostatic forces. Thus, the different reso-
nances of the cantilever could be seen as channels to access and 
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separate different sample properties. To avoid the excitation of 
non-periodic oscillations, some restrictions must be set on the 
values of the amplitude ratio between the excited resonances56,84.

Band excitation. This method introduces a synthesized digital 
signal that spans a continuous band of frequencies, and monitors 
the response within the same or even larger frequency band65,90,91. 
The method aims to improve the ability to acquire different 
dynamic curves while the topography of the surface is recorded. 
The cantilever response is detected using high-speed data acquisi-
tion methods and then Fourier transformed. The resulting ampli-
tude–frequency and phase–frequency curves are collected at each 
point of the surface and stored in three-dimensional data arrays. 
These data are analysed to extract some of the relevant parameters 
that characterize the cantilever behaviour (Fig. 2c). For example, 
in the single harmonic oscillator approximation, the resonant 
frequencies, the amplitude and Q are deconvolved and stored as 
images. Furthermore, in the case of adaptive control the data can 
be used as a feedback signal in microscope operation. 

Band excitation has been applied to probe the electromechani-
cal coupling in soft biological systems by distinguishing among 
damping, Young modulus and electromechanical contributions. 
Notably, it has also been used to study ion diffusion in electro-
chemical batteries90,91. The large amount of data generated in a 
band excitation experiment together with the need for sophisti-
cated controllers might, however, become major obstacles for a 
wide use of this approach.

Torsional harmonic AFM. This is an approach based on the 
recording of the higher harmonics of the torsional signal54,92,93. 
Torsional harmonic AFM can be used to generate a topographic 
image of the sample surface while the time-varying forces are 
recorded. The topographic image is a conventional AM-AFM 
image. At the same time, the tip–surface force is obtained by 

integrating the higher harmonics of the torsional signal. Torsional 
harmonic AFM requires the use of specially designed cantilevers 
where the tip is offset from the cantilever axis (Fig. 2d). This design 
favours the existence of a torque around the axis of the cantilever, 
which enhances the presence of the large number of higher har-
monics needed for an accurate calculation of the time-varying 
force92. From those forces it is possible to measure locally some 
mechanical properties, such as the Young modulus93. Remarkably, 
those measurements have also been applied to detect and quan-
tify DNA molecules94 and to measure molecular recognition pro-
cesses95. Torsional harmonic AFM measurements have revealed 
significant differences in the fractal dimensionality of cancerous 
cells with respect to normal cells96. These measurements under-
line the potential of multifrequency AFM in nanomedicine.

Nanomechanical holography. This technique combines ele-
ments derived from ultrasonic97,98 and dynamic force microsco-
pies3 to generate images of structures that lie below the surface of 
biological or synthetic materials99,100. It is based on the simultane-
ous excitation of the sample and the probe99–103. The mechanical 
excitation of the sample generates waves that propagate through 
the sample. Those waves are scattered by the internal features 
or structures of the material. As a consequence, the amplitude 
and the phase shift of the waves are modified, the modification 
depending on the local mechanical properties of the features. 
Eventually the scattered waves emerge on the surface where they 
influence the tip–surface coupling.

In some cases, the coupling of the sample and the vibrations 
of the cantilever generates a new set of frequencies that are a lin-
ear combination of the frequencies used to excite the tip and the 
sample, the simplest case being the difference between them. An 
image of the subsurface structure is acquired by plotting the phase 
shift of one of the synthesized modes as the probe moves across 
the sample surface. Nanomechanical holography has been applied 
to image the inner structure of different cells99,100, and in particular 
the presence of nanoparticles inside soft materials101 or in the lung 
cells of mice exposed to single-walled carbon nanohorns102. It is 
also applied to investigate the dimensionality and fatigue perfor-
mance of buried electrical contacts and interconnects in micro-
electronics devices103. But difficulties in interpreting the images 
in terms of the properties of the subsurface structures pose chal-
lenges for the progress of the technique.

Applications
Multifrequency AFM methods have been used in a range of dif-
ferent fields, from energy storage to nanomedicine, and can inves-
tigate properties that are not easily accessible by conventional 
AFM methods.

Mapping protein flexibility with molecular resolution. Protein 
flexibility plays a central role in binding to other proteins either 
isolated or embedded in a membrane as cell receptors. Current 
methods for the determination of the protein flexibility give results 
on a timescale of picoseconds that might not be relevant to the 
speed at which proteins undergo conformational changes in physi-
ological conditions (micro- to milliseconds). Multifrequency AFM 
methods have measured, with molecular resolution, the flexibility 
of several proteins in liquid (Fig. 3). Torsional harmonic AFM has 
mapped the flexibility of proteins in purple membrane sheets at 
the microsecond timescale by monitoring surface-induced defor-
mations93 (Fig. 3a–c). The measurements show differences in the 
flexibility between the cytoplasmatic (4–10 MPa) and extracellular 
sides (15–50 MPa) of the membrane.

Complementary experiments have been performed with a 
bimodal AFM by mapping the topography and the flexibility of iso-
lated proteins in physiological conditions61 (Fig. 3d–f). The images 

In bimodal AFM the motion of the tip can be approximated as

z = z0 + q1(t) + q2(t) = z0 + A1 cos (ω1t – ϕ1) + A2 cos(ω2t – ϕ2) (8)
 

where Aj and ϕj are the amplitudes and phase shifts of the excited 
modes, respectively. The application of the virial theorem to the 
free eigenmode (the second) in bimodal AFM gives a relation-
ship between the parameters of the second mode and the gradi-
ent of the interaction force. Then, by applying contact mechanics, 
the sample flexibility can be obtained in terms of the amplitude 
and phase shift of the second mode. From the virial theorem it is 
deduced (A02 << A01)

  
  

 (9) 
 

where A02, k2 and Q2 are, respectively, the free amplitude, force 
constant and quality factor of the second eigenmode, and C is 
a correction factor that converges to a constant value for high 
A01/A02 ratios. Finally, by applying the Hertz contact mechanics 
model, 

    (10)

where a is the contact radius and Eeff is the flexibility (effective 
elastic modulus).

cosϕ2≈
Q2A2

k2A02

dz
dFts C(d)

dz
dFts = 2Eeffa

Box 3 | Simultaneous topography and flexibility mapping.
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of single proteins (antibodies) have been obtained non-invasively 
because the bimodal approach in combination with FM-AFM 
enables imaging under the application of very small forces (below 
50 pN). Figure 3d shows the topography of a single protein complex 
and Fig. 3e the corresponding flexibility map (local variations of the 
elastic modulus; see Box 3). The flexibility map shows a maximum of 
19 MPa and a minimum value of 8.2 MPa. The comparison between 
the flexibility map and the structure of the protein complex shows 
that the uppermost part is stiffer, probably as a consequence of the 
presence of intermolecular disulphide bonds joining different frag-
ments of the protein complex. On the other hand, low values of the 
elastic modulus are found in the last domain of the antigen-binding 
arms. The above findings are consistent with the orientation flex-
ibility of the antibody complex when it binds a cell-surface antigen.

Imaging the mechanical vibrations of carbon-based resonators. 
Carbon nanotubes and graphene sheets have been used to fabricate 

mechanical resonators that can be operated at ultrahigh frequencies, 
have tunable resonance frequencies, and can be used as ultrasensi-
tive inertial mass sensors24,25,104. A variation of the bimodal AFM 
approach has been implemented to detect, identify and image the 
spatial shape of the eigenmodes of these resonators104,105 (Fig. 4a,b). 
This method has enabled the observation of a new class of exotic 
nanoscale vibration eigenmodes not predicted by the elastic beam 
theory, where the amplitude of vibration is a maximum at the free 
edges105. The motion of the suspended resonators was electrostati-
cally driven by applying a voltage (VRF). Because the resonances of 
nanoscale resonators are far above the mechanical response of AFM 
cantilevers, the excitation voltage of the resonators was modulated 
at the frequency of the first eigenmode of the cantilever (Fig. 4a). 
The mechanical vibrations were detected and imaged by following 
the changes of the envelope of the vibration amplitude. Figure 4b 
shows an AFM image of a suspended carbon nanotube and its first 
three eigenmodes. 
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Figure 4 | Mapping high-frequency oscillations, ion diffusion and subsurface structures. a, Scheme to image the spatial shape of vibrations in 
nanoscale resonators. A signal modulated at the frequency of the first eigenmode of the cantilever is used to excite the resonator. b, Spatial shape 
of the first three modes of a carbon nanotube suspended between two gold electrodes. c, Schematic of the band excitation experiment to measure 
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Mapping ion diffusion. Lithium-ion batteries are common in 
applications such as mobile electronic devices and electric and 
hybrid vehicles. The movement of lithium ions into and out of 
electrodes is central to the operation of those batteries. However, 
this displacement has not been described at the nanoscale, and 
this limits the understanding of the mechanisms underpin-
ning lithium-ion battery operation. Band excitation experiments 
(Fig. 4c–e) have demonstrated the existence of a strong coupling 
between lithium-ion concentration and cathode lattice parame-
ters90,91 and have established that the diffusion coefficient increases 
for certain grain orientations and single-grain boundaries (red 
regions in Fig. 4e). The lateral resolution of ~20 nm allows lith-
ium-ion motion to be probed in volumes 106 times smaller than 
possible by classical current-based electrochemical methods. 
These results offer a direct path to improving the electrochemical 
performance of lithium-ion batteries. In the above measurements 
the sensitivity of the band excitation method enabled measure-
ment of the changes in the lattice parameter associated with the 
ion diffusion and migration.

Subsurface imaging in cells. Imaging structures beneath the sur-
face of a sample with sub-100-nm spatial resolution has always 
been a formidable challenge in microscopy. Typically, high-res-
olution images of a subsurface structure are obtained by slicing 
the material and observing the newly created surface, but this 
approach damages the sample under study. Nanomechanical 
holography has demonstrated its potential for the non-destructive 
imaging of embedded or buried substructures of several animal 
and plant cells99,100. Remarkably, those experiments have been 
performed without any labelling or sectioning of cells, and under 
physiologically viable conditions. Figure 4g shows a nanomechan-
ical holography image taken simultaneously with a conventional 
AFM image (Fig.  4h). Several features of the cell substructure 
(Fig. 4f) such as the cell walls and the nucleus are resolved in the 
image. In comparison, the conventional AFM image shows a fea-
tureless object.

Summary and outlook
Force microscopy is evolving from a technique that involves the 
excitation and detection of a single frequency to one that involves 
multiple frequencies. This development is being driven by a vari-
ety of factors. In some cases, there is a need to operate the instru-
ment under very low forces. In others, there is a need to improve 
the spatial resolution of soft materials or to measure surface prop-
erties without compromising fast data acquisition times. There is 
also a drive to find new applications in fields such as materials 
science or nanomedicine.

Multifrequency AFM can be thought of as a new field in 
force microscopy. This is due to the diversity of multifrequency 
approaches available, the use of new excitation or detection 
schemes, and the emphasis placed on mixing several frequencies. 
This new field provides a promising framework to improve com-
positional sensitivity and spatial and time resolution of materials 
in their native environment and, at the same time, allows prop-
erties that are not accessible to conventional force microscopes 
to be measured. Multifrequency AFM methods are conceptu-
ally more demanding than conventional AFM methods, but this 
would seem to be a reasonable price to pay to sustain the impres-
sive development of force microscopy that has been seen over the 
past 25 years.
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