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The invention of atomic force microscopy (AFM) in 19861 is a 
milestone in the history of nanotechnology2 and created new 
opportunities in physics, chemistry, biology and medicine. 

The technique contours a surface by controlling a conglomerate of 
forces acting between a tiny probe and the surface. Atomic-scale 
imaging was obtained within a year of invention3, but it took a few 
more years before atomic imaging of nonconductive surfaces in 
vacuum was achieved. At the same time, the technique started to be 
adapted to work over a vast temperature scale and in almost every 
environment2,4–6. The ability to investigate surfaces with an excep-
tional signal-to-noise ratio at subnanometre resolution triggered the 
development of a range of AFM-related techniques, which used a 
variety of probes to locally sense interactions and manipulate mat-
ter2,7. The unique flexibility of AFM to image, probe and manipulate 
materials made it the most versatile instrument in nanoscience and 
nanotechnology, and stimulated numerous discoveries and tech-
nologies2. The possibility to operate in liquid environments and at 
ambient temperature moved AFM towards biology, and led to the 
analysis of biomolecules and cells at (sub-)nanometre resolution4–6,8,9.

To address the wide complexity of biological systems, which can 
range from nucleic acids and proteins to cells and tissues, a vari-
ety of AFM modes have been created over the years (Fig. 1). Major 
advances in high-resolution imaging have also been achieved in 
complementary methods, including super-resolution microscopy 
and cryo-electron microscopy, which enrich the imaging toolbox 
now available to molecular and cell biologists (Table  1). Many 
reviews have been published in the past two decades that describe 
the use of certain AFM imaging modes to characterize biological 
systems9–14. Here, we aim to provide an overview of the diverse range 
of imaging modes currently available. We survey the significant 
steps that led to the establishment of AFM as a powerful technique 
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Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single 
molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that 
in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to 
address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to 
push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most com-
mon AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as 
multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent 
experiments that highlight their unique capabilities.

in molecular and cell biology, and, for each AFM imaging mode, 
we outline the biological systems they can be preferably applied to, 
their current limitations and their future opportunities.

Imaging native biological systems in liquid
The key breakthrough that led to biological AFM was the develop-
ment of an optical detection system, followed by the design of a fluid 
chamber, enabling imaging in buffer solution and thus maintaining 
the native state of the biological system4,15. The first AFM imaging 
mode invented, contact mode, raster scans a tip over the sample and 
adjusts pixel-by-pixel the height of the tip so that the force applied 
to the sample is kept constant (Fig. 2a). The resulting height image 
resembles the sample topography with the resolution depending on 
the radius of the tip, the sample corrugation, the physical properties 
of the sample and how precisely the feedback system contours the 
tip over the soft biological sample.

Shortly after introducing the first commercially available AFM, 
biological specimens imaged included animal cells16,17, cell mem-
brane patches and membrane proteins18–20, DNA and RNA21, and 
lipid films22,23. For flat, smoothly corrugated surfaces such as pro-
teins protruding ~1 nm from membranes, contact mode AFM can 
provide topographs of single membrane proteins at lateral and verti-
cal resolution of <1 nm and <0.1 nm, respectively (Fig. 2b–e)20,24,25. 
This exceptionally high resolution and signal-to-noise ratio of AFM 
allowed, for example, the functionally relevant oligomeric state of 
various water-soluble and membrane proteins to be unravelled26–30. 
Operated in the time-lapse contact mode, AFM visualized the mor-
phological dynamics of cells16,17, the growth of pathological amyloid 
fibrils31, and the enzymatic degradation of DNA32 and lipid mem-
branes33, and provided insight into the working principles of bac-
terial outer membrane pores34, gap junctions enabling intercellular 
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connections between animal cells35 and nuclear pore complexes36. 
Other exciting examples monitored the insertion of pathological 
toxins into membranes37 and the supramolecular architecture of 
photosynthetic membranes changing in response to light38. Such 
insight allowed static structural models to be complemented with 
functional dynamics39.

Although contact mode AFM is widely used to characterize 
solid substrates, its application to soft biological systems requires 
expert skills to adjust the force applied to the tip. As a rule of 
thumb, forces >100  pN should be avoided as they can cause 
reversible or even irreversible deformations39. Dynamic mode 
imaging (originally termed tapping or oscillation mode) was 
invented to minimize the friction and the force applied between 
tip and sample (Fig. 2a,f–h). In its simplest application, the canti-
lever is oscillated close to resonance while scanning across a sam-
ple1. Ideally, the tip only touches the sample at the very end of its 
downward movement thus considerably minimizing friction. In 
close proximity to the sample surface, the interactions between tip 
and sample change both the cantilever amplitude and resonance 
frequency allowing them to be used as feedback parameters for 
contouring fragile biological samples40,41. Using the amplitude as 
feedback is technically simpler because it requires only one feed-
back loop compared with using frequency as feedback requiring 
three such loops. Thus, amplitude modulation AFM is currently 
more often applied than frequency modulation AFM. Besides 
these two well-known AFM imaging modes, other dynamic 
modes have been developed that employ different signals as feed-
back parameters or excite the cantilever at different frequencies 
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simultaneously (see ‘Multifrequency imaging’)42. Importantly, as 
dynamic modes considerably reduce force and friction between 
tip and sample, they can be applied to image biological objects 
that are only weakly adsorbed to supports, such as DNA, single 
proteins and filaments43–46. Dynamic modes also allow highly cor-
rugated objects, such as living cells, to be depicted in their unper-
turbed state10. However, the topographic contrast relies on rather 
complex interaction mechanisms between the AFM tip and sam-
ple. Stiffness, roughness, surface charge and chemistry, or friction 
of the sample can change the oscillation of the tip and thus alter 
or even invert the contrast42. To record faithful high-resolution 
images, it can therefore be helpful to image unknown biological 
systems in the presence of structurally well-characterized refer-
ence samples42,47,48.

Applied to cellular systems, contact and dynamic mode AFM 
reveal topographs below the resolution limit of conventional light 
microscopy. The ease of use and the exceptional signal-to-noise 
ratio quickly raised the hope that AFM would revolutionize live-cell 
imaging4,15,16. Yet, only part of the dream came true. For example, 
the resolution of animal cell surfaces remained generally limited to 
~50–100 nm due to their soft and corrugated nature9. In contrast 
to animal cells, surfaces of microbes, which are mechanically much 
more rigid and generally smoother, have been routinely imaged 
approaching a resolution of ~10 nm (refs 49,50). However, polysac-
charides of the plasma membrane can contaminate the scanning tip 
thus changing the image contrast. An elegant approach for imag-
ing living cells and circumventing tip contamination problems is 
scanning ion conductance microscopy (SICM), which scans a 

Figure 1 | Timeline of key inventions, starting from the birth of AFM in 1986 to the latest AFM imaging modes in molecular and cell biology. Key inventions 
developed over the years include: an optical detection system and fluid cell enabling contact mode AFM to operate in aqueous solution (Bio-AFM); dynamic 
mode AFM (DM-AFM), which oscillates the AFM tip to reduce friction while contouring the biological sample; force–distance curve-based AFM (FD-
AFM), which contours the surface of a biological system while recording pixel-by-pixel a full force–distance curve; multiparametric AFM (MP-AFM), which 
contours the sample while mapping multiple physical or chemical properties; molecular recognition AFM (MR-AFM), which images and maps specific 
interactions of biological samples; multifrequency AFM (MF-AFM), which contours the sample while oscillating the cantilever tip at multiple frequencies, 
thus mapping various physical parameters; correlating advanced optical imaging and AFM (Opto-AFM) for the imaging of complex biological systems; high-
speed AFM (HS-AFM), which speeds up the image acquisition time by a factor of ~1,000, providing access to dynamic processes in biology. Most modes 
cross-fertilized each other, ultimately leading to combinatorial AFM. Images adapted from: Bio-AFM, ref. 28, Macmillan Publishers Ltd; DM-AFM, ref. 45, 
American Chemical Society; FD-AFM, ref. 76, Wiley; MP-AFM, ref. 78, Elsevier; MR-AFM, ref. 9, Cell Press; MF-AFM, ref. 46, Macmillan Publishers Ltd; 
Opto-AFM, ref. 145, The Company of Biologists; HS-AFM, ref. 122, Macmillan Publishers Ltd.
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nanopipette over the sample while measuring the ion current51–53. 
The ion current is then used to control the vertical position of the 
nanopipette and thus to contour the sample. If controlled properly, 
this feedback parameter can be adjusted to avoid physical contact 
between pipette and cell. As a result, SICM contours living cellular 
systems, including hair cells or hippocampal neurons at superior 
resolution (~50  nm) and in the unperturbed state52. Excitingly, 
SICM can be combined with single-channel patch clamp record-
ings. However, to apply SICM more widely requires overcoming 
bottlenecks, including the intrinsically slow imaging process and 
the convolution of the rather large SICM probe with corrugated 
cell surfaces.

Last but not least, AFM can be used not only to image but also to 
manipulate biological samples. The force applied to the AFM tip can 
simply be adjusted for mechanical manipulation, and the tip can be 
functionalized with chemical groups to manipulate specific sample 
regions. Thus, AFM was used to manipulate and dissect cells, chro-
mosomes, viruses, membranes, single nucleic acids and proteins 
early on2,8,54. The possibility to mechanically control biological sys-
tems guided the development of the AFM tip as a nanotool to cut, 
pick up, release or sculpt biomolecules at nanometre precision and, 
very recently, even to control the division of animal cells55–58.

From force–distance curves to multiparametric imaging
The question came up whether AFM can do more than just con-
touring a surface. A milestone was the realization that, simultane-
ously with structural imaging, AFM is able to probe biophysical 
properties. Initially, such properties were measured by approach-
ing the AFM tip to and retracting it from the biological sample 
while recording single force–distance (FD) curves59. Approach 
FD curves can quantify the height, surface forces and mechani-
cal deformation of the sample, or derive its elastic modulus and 
energy dissipation. Retraction FD curves allow adhesion forces to 
be measured (Fig.  3a). To reliably characterize the properties of 
the sample implies precisely controlling the interaction between 
tip and sample, thus requiring AFM tips with well-defined geom-
etry and surface chemistry. Sophisticated commercial micro- and 
nanomachined cantilevers and tips are now available, which are 
customized in terms of shape, tip radius, and physical and chemi-
cal properties. As further discussed below, several imaging modes 

have been developed to extract the sample properties while imag-
ing the sample5,60–63. A versatile and widely distributed approach 
among these is the FD curve-based imaging mode13,64,65, which, 
pixel-by-pixel, approaches and retracts the AFM tip to locally 
measure forces (Fig. 3b).

Modern FD curve-based AFMs (FD-based AFMs) acquire 
several hundreds of thousands of FD curves while imaging the 
biological sample13. As each FD curve locally quantifies physi-
cal properties and interactions, this information can be directly 
mapped to the sample topography (Fig. 3c). FD-based AFM thus 
opens the door to imaging complex biological systems and to 
simultaneously quantifying and mapping their intrinsic physical 
properties, including elasticity and adhesion (Fig. 3d,e). Although 
AFM provides an absolute measurement of the tip position (x, 
y, z), it is often a challenge to determine the exact contact point 
between tip and sample (zero separation), particularly when 
long-range surface forces, surface roughness and deformation of 
the soft biological sample play roles. Knowledge of the contact 
point is needed to differentiate surface forces from the mechani-
cal deformation of the soft cell. However, for most applications, 
linearly extrapolating the contact region to zero force is suffi-
ciently accurate (Fig. 3b).

Currently, the most widely used application of FD-based AFM is 
the mapping of the mechanical properties of biological systems. This 
is important because pertinent cellular functions rely on mechanical 
properties. Pioneering contributions applied the method to image 
and mechanically map drug-induced changes of the cytoskeleton 
of fibroblasts66 and to spatially map the stiffness of the actomyosin 
cortex of adherent cultured cells during cell division67 (Fig.  3d). 
Mapping the viscoelasticity of non-tumourigenic cells and breast 
tissues showed that they are less deformable compared with can-
cerous cells and malignant breast tissues, respectively68,69. This led 
to the conclusion that diseased cellular systems show considerably 
altered mechanical properties. Imaging and mechanically mapping 
yeast cells (Saccharomyces cerevisiae) revealed a substantial stiffen-
ing of the chitin-accumulating bud scar compared with the sur-
rounding cell wall70.

Two interconnected issues in FD-based AFM are the lateral 
and temporal resolutions. In modern AFMs, the lateral resolu-
tion is mainly related to the tip radius, the tip–sample drift, the 

Table 1 | Comparison of high-resolution imaging techniques in molecular and cell biology.

Technique/feature Atomic force microscopy Super-resolution microscopy 
(STED, PALM, STORM)

Transmission electron 
microscopy

Scanning electron 
microscopy

Resolution ≤1 nm–50 nm* 20–50 nm 0.2–10 nm 2–10 nm

Sample preparation  
and environment

Sample on support; 
physiological (buffer solution, 
temperature, CO2)

Fluorescence labelling; 
physiological (buffer solution, 
temperature, CO2)

Sample on grid; dehydrated 
(negative stain); vitrified 
(cryo-electron microscopy)

Freeze/critical point drying 
and metal shadowing

Artefacts Tip, force, scanning Bleaching, toxicity Dehydration, ice crystal 
formation, beam damage

Dehydration, metal 
shadowing, beam damage

Advantages Imaging under native 
conditions; no staining, 
labelling or fixation necessary; 
high signal-to-noise ratio; 
assessment of multiple 
physical, chemical and 
biological parameters

Access to three-dimensional 
cellular structures; high 
spatiotemporal resolution; 
monitoring biomolecular 
processes in life cells

Solves atomic structures of 
proteins; conformational 
snapshots of proteins and 
complexes; molecular-
resolution structures within 
the cell

Imaging surfaces of tissues, 
cells and interfaces at 
nanometre-scale resolution

Limitations Restricted to surfaces Imaging restricted to 
fluorescence labels 

No life processes No life processes

Whole cell, extracted cellular or synthetic membranes, purified proteins and nucleic acids are considered. *On membrane proteins, resolution ≤1 nm can be achieved, on mammalian cells ~50 nm and on microbial 
cells ~10 nm. STED, stimulated emission depletion; PALM, photoactivated localization microscopy; STORM, stochastic optical reconstruction microscopy.
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distance dependence of the tip–sample interaction, imaging force 
and the properties of the biological sample. Long-range surface 
forces interacting over several tens of nanometres reduce the res-
olution at which these interactions can be localized. Technically, 
when recording an AFM image at a certain frame size, the num-
ber of pixels recorded determines the theoretically approachable 
resolution. However, the amount of pixels and thus the amount 
of force curves collected per FD-based AFM image is limited by 
the data acquisition time. In the early days of FD-based AFM64,65, 
the time required for recording a single force curve was between 
~0.1 and 10 s, and the time needed to acquire a FD-based AFM 

image of 32 pixels  ×  32  pixels ranged from ~2  min to ~3  h. 
Until recently, this slow imaging speed strongly limited the use 
of FD-based AFM imaging in biology, but the introduction of 
faster piezo elements, feedback loops, data acquisition systems, 
oscillation modes changing the tip–sample distance71, and tai-
lored cantilevers reducing hydrodynamic drag72–75 largely solved 
this problem.

As a consequence, nowadays FD-based AFM can record 
512 pixels × 512 pixels multiparametric images of native biosys-
tems with a resolution approaching 1 nm, within time ranges of 
15–30  min (ref.  13). For instance, the method can image even 
individual membrane proteins in their native state at ~1  nm 
resolution and simultaneously map the mechanical properties of 
their secondary structures76 and of interfacing lipids76. FD-based 
AFM also mapped the mechanical properties of heterogeneous 
lipid membranes77 and correlated the mechanical properties of 
human keratinocytes78 and bacteria79,80 to their morphology and 
state. Applied to viruses, FD-based AFM has shed new light on 
the relationship between the structural, functional and mechani-
cal properties of herpes simplex viruses54, bacteriophages80,81, 
southern bean mosaic viruses82 and parvovirus minute viruses83. 
Excitingly, FD-based AFM can map various molecular and surface 
forces from the micro- to nanometre scale, including complex and 
heterogeneous biological systems84,85. We are now beginning to 
understand the time dependence of mechanical interactions, and 
we can measure, for example, the strength of chemical bonds86, 
as well as the mechanical response of biological materials under 
different loading rates62,87. Although technological improvements 
have considerably reduced the acquisition time of FD-based AFM 
images, it remains an important challenge to further increase the 
imaging speed so that the multiparametric complexity of dynamic 
molecular and cellular processes can be fully addressed.

Molecular recognition imaging
Soon after introducing FD-based imaging, the idea to map specific 
chemical and biological properties was born88–91. This approach 
requires tip–sample interactions to be known, which is facili-
tated by functionalizing AFM tips with specific chemical groups 
or ligands89,90. FD curves then allow the adhesion and mechanical 
strength of specific bonds formed between tip and sample to be 
measured92,93. Accordingly, FD-based AFM can map such specific 
forces while imaging the biological system11,13. Chemical tips can be 
obtained by functionalizing gold-coated tips with self-assembled 
alkanethiol monolayers terminated by specific functional groups88. 
Alkanethiols functionalized with nitrilotriacetate-terminated 
groups that attach histidine-tagged biomolecules of interest have 
been used94. Silicon tips can be amino-silanized and reacted with 
polyethylene glycol linkers, which carry benzaldehyde functions to 
attach peptides or proteins through lysine residues89.

Using functionalized probes, FD-based AFM could detect and 
localize specific interactions of biological systems ranging from 
antibodies to living human cells11,13,89–91,95. Biospecific FD-based 
AFM has proven useful to map receptor sites on animal cells. In an 
early work, AFM tips bearing the Helix pomatia lectin were used to 
map N-acetylgalactosamine-terminated glycolipids on group A red 
blood cells91. Since then, receptors mapped on animal cells include 
vitronectin receptors on osteoblasts96, prostaglandin receptors on 
Chinese hamster ovary (CHO) cells97 and glycosylphosphatidyl-
inositol-anchored proteins in neuronal membranes98. In another 
example, human G-protein-coupled receptors were imaged in mem-
branes while measuring and mapping the single binding events of 
native and synthetic ligands99. By moving the AFM tip in a nonlin-
ear manner, the unbinding forces of the ligands were measured over 
a very wide loading rate, which allowed the free-energy landscape 
of receptors binding to ligands to be reconstructed (Fig. 3f). Applied 
to live bacteria and yeast, the main components of microbial cell 
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Figure 2 | AFM-based imaging of native biological systems to molecular 
resolution. a, Basic principles of contact (left) and dynamic (right) 
AFM imaging modes. In contact mode, the cantilever deflection is kept 
constant (constant force) by adjusting the relative height between 
tip and sample. A topographic height change alters the cantilever 
deflection, which a feedback loop corrects by adjusting the tip–sample 
distance. The dynamic mode oscillates the cantilever close to or at 
resonance frequency. Height changes alter the cantilever oscillation, 
which is used to adjust the tip–sample distance. b–e, Contact mode 
AFM topographs. b, Cyclic nucleotide-regulated potassium channels 
(MlotiK1) reconstituted into lipid membranes. c,d, Rows of densely packed 
rhodopsin dimers distributed in the native disc membrane extracted 
from rod outer segments of the eye. e, Image of a living SAOS-A2 cell 
bundling and pulling collagen fibrils coating a substrate. To maximize 
contrast, the exemplified image shows the deflection of the cantilever, 
which changes while contouring the sample. f–h, Dynamic mode AFM 
topographs. f, An IgG antibody absorbed to mica and visualized with 
frequency modulation mode. g, Single brome mosaic viruses packed in a 
crystalline assembly. h, Circular plasmid DNA imaged in buffer solution 
by frequency modulation AFM. Red and blue arrows indicate major and 
minor grooves of the DNA, respectively. Panels adapted from: b, ref. 148, 
PNAS; c,d, ref. 30, Macmillan Publishers Ltd; e, ref. 147, Elsevier; f, ref. 46, 
Macmillan Publishers Ltd; g, ref. 146, Elsevier; h, ref. 45, American 
Chemical Society.
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walls have been localized and force probed, including peptidogly-
cans50, teichoic acids100 and cell adhesion proteins84,101. These stud-
ies revealed the heterogeneous distribution of microbial cell surface 
molecules, which is related to the cell state. In addition, the assembly 
machinery of bacteriophages was imaged on live bacteria and local-
ized near the septum in soft nanodomains surrounded by the stiffer 
cell wall80. Whereas these applications functionalized the AFM tip 
with one type of biomolecule, a recent approach functionalized 
the AFM tip with two different ligands to map two binding sites of 
human G-protein-coupled receptors102. Such application opens the 
door to AFM-based multifunctional recognition imaging.

A critical issue when analysing adhesion forces detected by 
FD-based AFM is to prove their specificity and to separate them 
from unspecific ones. Controls include blocking the specific 
interactions with antibodies or chemical compounds, and using 
mutant cells lacking the specific recognition sites. For direct 

comparison, fluorescently labelled target and mutant cells may be 
co-cultured, identified by fluorescence microscopy and simulta-
neously imaged with the functionalized tip. Tip contamination is 
another problem that needs to be addressed. With complex sam-
ples such as living cells, adsorption of loosely bound molecules 
may quickly change the functionalized tip, leading to the meas-
urement of ill-defined tip–sample interactions. Therefore, before 
engaging functionalized tips, it is useful to characterize the sam-
ple with unmodified tips. Also, the applied force should be kept 
below 100 pN.

An alternative to FD-based AFM is topography and recognition 
imaging (TREC) imaging, which records topography and specific 
recognition images at a similar speed to contact mode AFM103,104. 
This method was used to map the binding sites of cadherins on vas-
cular endothelial cells105. TREC oscillates functionalized tips at very 
small (5–10 nm) amplitudes while scanning the sample. A specific 
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Figure 3 | Force–distance curve-based AFM. a, Principle of recording force–distance (FD) curves by approaching (blue) and withdrawing (red) the AFM 
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the topography. c, Example of multiparametric FD-based AFM imaging of the elasticity and adhesion of two dividing Staphylococcus aureus cells. d, AFM 
force error (top) and elasticity (bottom) maps of living HaCaT keratinocytes. e, Topography (left, brown coloured) and stiffness map (top right) of nuclear 
pore complexes from the cytoplasmic surface. The graph (bottom right) shows the stiffness as a function of tip–sample separation recorded close to the 
centre of the cytoplasmic ring. Grey dots represent data points and the red curve is the average. Blue and black dashed lines are fits to the data using 
indentation models for spherical and conical tips, respectively. f, Top left: topograph of human protease activated receptors 1 (PAR1) in proteoliposomes 
recorded with a SFLLRN-ligand functionalized tip. Bottom left: overlay of topograph (grey) and adhesive interactions (red) localizes individual receptors 
binding the ligand. The circles numbered 1–4 indicate regions at which FD curves 1–4 were taken. Top right: FD curves exemplifying unspecific adhesion 
events (1 and 2) and specific ligand-receptor unbinding events (3 and 4) showing the stretching of the linker tethering the ligand to the AFM tip. Bottom 
right: free energy landscape of the ligand binding to PAR1 extracted from measuring the rupture force of the ligand-receptor bond at different loading rates. 
xu describes the distance of the bound to the transition state and ΔGbu is the binding free energy. Panels adapted from: c, ref. 79, PNAS; f, ref. 99, Macmillan 
Publishers Ltd. Panels reproduced from: d, ref. 78, Elsevier; e, ref. 149, Macmillan Publishers Ltd. 
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binding event is detected via an amplitude change. However, as FD 
curves are not recorded, quantitative information on the molecular 
binding events is lacking.

Multifrequency imaging
Besides topographic imaging, AFM can map mechanical and 
functional properties of the biological sample. However, apply-
ing modes such as FD-based AFM considerably increases the 
data acquisition time13. Advanced dynamic mode AFM, includ-
ing frequency or amplitude modulation, or multifrequency mode 
AFM offer higher frame rates. Recently developed multifrequency 
AFM modes42,106, which promise exciting possibilities to study 
biological systems, are therefore discussed. Multifrequency AFM 
involves the simultaneous excitation and/or detection of several 
frequencies of the cantilever motion. These frequencies are usually 
associated with multiple integers (harmonics) of the fundamental 
frequency or intrinsic resonance frequencies (eigenmodes) of the 
cantilever42. There are several multifrequency AFM approaches42; 
however, their physical foundations can be quite complex and 
mostly their theoretical description is still under development. 
One key issue is to develop analytical expressions that relate the 
observables (amplitude, phase or frequency shifts) to material 
properties, such as topography, flexibility, adhesion, stiffness, 
magnetic or electrostatic14. A straightforward explanation of how 
these methods operate is provided by bimodal AFM, which excites 
two eigenmodes of the cantilever and measures their observables 
(Fig. 4a,b). This combination of the first and second eigenmodes 
multiplies the number of observables to characterize the sample 
properties by a factor of two and requires just four data points per 
topographic pixel.

Bimodal AFM has been applied to record topography and flex-
ibility maps of a single IgM antibody at a spatial resolution of 
~2 nm, showing that the uppermost part of the protein complex 
has an effective Young’s modulus of 18  MPa while the antigen-
binding domains are much softer (8 Pa)42,62. Bimodal AFM has also 
been used to image ferritin while separating short-range mechani-
cal (~0.5  nm) from long-range magnetic (~5–1,000  nm) forces. 
The separation of mechanical forces from magnetic forces in fer-
ritin is possible because the first eigenmode is more sensitive to 
short-range repulsive forces while the second eigenmode measured 
long-range interactions (Fig. 4c)107. Imaging of water layers cover-
ing the chaperone GroEL at forces <20 pN exemplifies the potential 
of bimodal AFM to provide novel insight about sample properties 
(Fig.  4d)108. Complementary to this frequency modulation, AFM 
has also been applied to image hydration layers at the water–lipid 
interface of lipid membranes109. 

Multiharmonic AFM excites the cantilever with a single frequency 
while recording multiple harmonics of the flexural or torsional can-
tilever motion. Initially, this AFM imaging mode has been applied 
to measure topography and viscoelastic properties of relatively large 
biological objects, including viruses and cells (Fig. 4e)110,111. Torsional 
harmonics allow the topograph of the sample and the time-varying 
forces to be recorded by integrating the higher harmonics of the tor-
sional movement. These forces quantify the mechanical properties 
of the sample, including Young’s modulus or adhesion. Torsional 
harmonics also detect interactions in the microsecond range75 and 
measure recognition forces of chemical groups or protein complexes 
(Fig. 4f,g)112. However, torsional harmonic AFM requires the use of 
specially designed T-shaped cantilevers, which are not yet commer-
cially available. This necessity together with the need to use complex 
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algorithms to analyse the harmonics data is currently limiting wider 
application of the technique.

Accessing the subsurface morphology of complex biological 
systems has been a longstanding challenge for AFM. Recently, 
ultrasonic microscopy and dynamic AFM have been combined 
to mechanically excite sample and cantilever, which generates 
mechanical waves that propagate through the biological sam-
ple. Waves mechanically interacting with the inside of the sam-
ple change amplitude and phase113,114. Thus, using the AFM tip 
to probe these changes pixel-by-pixel can provide the topogra-
phy and structures beneath. This method shows potential for the 
imaging of embedded or buried subsurface structures of animal 
and plant cells. However, at present, subsurface imaging requires 
the application of relatively large forces (~100 nN), which ques-
tions to what extent the structures imaged are representative of a 

native unperturbed cell. In addition, the use of delocalized ultra-
sonic waves to generate images of subsurface structures leaves 
interpretative challenges and limits the spatial resolution115. 
There is thus progress to be made before this AFM imaging 
mode will be applicable to a broad audience to address pertinent 
biological problems.

High-speed imaging of biological processes in real time
Compared with fluorescence microscopy, AFM imaging is limited 
by its rather slow time resolution. In recent years, tremendous tech-
nological advances have allowed the imaging speed to be increased, 
thus offering a means to study dynamic molecular processes by 
high-speed AFM (HS-AFM; Fig. 5). Among AFM components, 
the slowest is the cantilever. Therefore, to achieve high-speed 
using amplitude modulation AFM, the cantilever’s response time 
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τ = Q/(πf0) has to be shortened, with Q being the quality factor 
and f0 the first resonance frequency of the cantilever in water 
(Fig. 5b). To increase f0, while keeping the spring constant k small, 
small cantilevers (100–140 nm thick, 2–5 μm wide and 9–14 μm 
long) were developed, thereby approaching f0 = 100–650 kHz and 
k = 0.1–0.3 N m–1 (refs 72,73). Because the Q value of these small 
cantilevers approaches ~2 in water, their response time of ~1–6 μs 
is 40–240-fold shorter than conventional cantilevers. At present, 
small cantilevers with f0 = 400–800 kHz and k = 0.1–0.2 N m–1 are 
commercially available. To achieve HS-AFM, it is also important to 
suppress mechanical vibrations of the Z-scanner, which is moved 
at much higher frequencies than X- and Y-scanners (Fig. 5c). For 
this, three approaches were taken; counterbalancing the impulse 
generated by quick Z-scanner displacements73, designing robust 
scanner structures116,117 and actively damping vibrations based on 
a Q-control technique (Fig. 5d)118. The last component to be noted 
is a controller that can dynamically tune the feedback gains during 
imaging to minimize the tip–sample force (Fig. 5e)119. The highest 
possible imaging rate of HS-AFM as a function of various param-
eters is quantitatively described elsewhere12.

In the early days of HS-AFM, DNA72, the GroEL–GroES chap-
eronin system120 and myosin V73,121 were observed to evaluate 
the performance of newly developed devices. Recently, HS-AFM 
provided unique mechanistic insight into the function of bacte-
riorhodopsin122, myosin V123, F1-ATPase124, endosomal sorting 
complex required for transport (ESCRT) III125 and nuclear pore 
complexes126. HS-AFM images of the light-driven proton pump 
bacteriorhodopsin showed that on light illumination, the cyto-
plasmic E–F helix portion of each bacteriorhodopsin displaces 
outwards by ~0.7 nm and contacts bacteriorhodopsins from adja-
cent trimers (Fig. 5f)122. Myosin V processively walks along actin 
filaments in a hand-over-hand manner, resulting in an ~36  nm 
step for every adenosine triphosphate (ATP) hydrolysed. HS-AFM 
observations of myosin V interacting with actin provided a direct 
observation of the process, and visualized the lever-arm swing, 
which had been hypothesized for a long time (Fig.  5g)123. The 
results suggested that myosin V steps forward without transition-
ing through an adenosine diphosphate (ADP)–Pi bound state and, 
hence, that the actin–myosin binding energy is harnessed to gen-
erate the lever-arm swing.

In the rotary motor F1-ATPase, the γ subunit rotates in the 
stator (αβ)3 ring on ATP hydrolysis in the catalytic sites mainly 
located in the β subunits. This rotation is made possible by rotary 
propagation of three chemical states (empty, ATP-bound and 
ADP-bound states) and hence corresponding structural states 
over the β subunits. HS-AFM visualization of γ-less (αβ)3 rings 
revealed that the three states can propagate without the γ subu-
nit (Fig. 5h)124. Therefore, the β–β interplay through the α subu-
nits engenders this cooperativity, ruling out a previous γ-dictator 
model that the cooperativity would be caused by different γ–β 
interactions for the three β subunits because of an asymmetric 
structure of the γ subunit.

Sucrose non-fermenting protein 7 (Snf7), an ESCRT-III pro-
tein, plays a key role in lipid membrane budding and abscission. 
HS-AFM of Snf7 placed on supported planar lipid bilayers showed 
concentric spiral filaments (Fig.  5i)125. On disrupting large spirals 
with the cantilever tip, the broken polymers spontaneously formed 
smaller rings, suggesting a preferred diameter of 25 nm for Snf7 as 
well as ‘unbending’ of the spiral filaments from their natural curva-
ture. Thus, it was proposed that in cellular conditions, energy would 
be accumulated during the growth of the spiral spring and eventu-
ally released through shrinking of the spiral diameter and buckling 
of the inner spirals, which would cause the membrane to buckle, 
bud and abscise.

Nuclear pore complexes (NPCs) facilitate the molecular 
exchange between cytoplasm and nucleus in eukaryotic cells. 

However, how nucleoporins form a selective barrier facilitating 
this transport has been unclear. Applying HS-AFM, it became 
possible to visualize the spatiotemporal dynamics of nucleopor-
ins inside NPCs of Xenopus laevis oocytes at timescales of 100 ms 

(ref. 126). It was observed that the cytoplasmic orifice is circum-
scribed by highly flexible, dynamically fluctuating nucleoporins 
that rapidly elongate and retract. This transient entanglement in 
the NPC channel manifests as a central plug when averaged in 
space and time.

Beside these molecular studies, HS-AFM has also been success-
fully used to observe dynamic processes of live bacteria127,128 and 
eukaryotic cells129. However, HS-AFM has long relied on scanning 
the sample stage, which excludes the use of large, heavy sample 
stages and makes it difficult to combine with optical microscopy. 
The tip-scan HS-AFM developed very recently will thus signifi-
cantly expand the applicability to study biological processes by 
AFM130. Observations of, for example, living cells cultured in Petri 
dishes, membrane proteins in suspended membranes and pro-
teins responding to external forces applied by optical tweezers will 
become possible. Cell biological applications, most of which require 
the combination of AFM and sophisticated optical techniques 
(see ‘Correlative imaging’), will be made easier. It is also possible 
to transfer this knowledge to high-speed SICM for studying the 
dynamics of live cells and isolated intracellular organelles.

Correlative imaging
Living cells present a high level of structural and functional com-
plexity. Cell surfaces consisting of thousands of different macro-
molecules represent a small heterogeneous and dynamic portion of 
the cellular complexity. It is thus challenging to identify even sim-
ple cell surface structures, such as receptors, channels, transporters 
and assemblies thereof, in topographs recorded by AFM. In such 
cases, the full potential of AFM is achieved in combination with 
complementary microscopy techniques that can identify and cor-
relate complex cellular structures of interest9. These complementary 
techniques include optical microscopy, fluorescence microscopy, 
confocal microscopy, Förster resonance energy transfer, total inter-
nal reflection fluorescence and super-resolution microscopy. In 
most cases, AFM has been adapted to fit to optical microscopes. 
Environmental chambers allowing cellular systems to be kept in 
their close-to-native state had to be engineered (Fig. 6a). Nowadays, 
such multimicroscopic combinations allow the unique characteri-
zation of a wide range of complex biological systems ranging from 
membranes and cells to tissues.

A popular combination of AFM is either with epifluorescence 
or confocal microscopy. Exciting applications range from single 
animal cells, to tissues and microbial cells, and to their assemblies. 
In such studies, structures of interests were fluorescently labelled, 
optically imaged at micrometre resolution and correlated to AFM 
topographs contoured at nanometre precision. These approaches 
identified hitherto unknown supramolecular assemblies of cell sur-
face structures and contributed to the understanding of their func-
tion. For example, various steps of the interaction between fungal 
pathogens and macrophages were captured, including initial cellular 
contact, fungal cell internalization and hyphal elongation result-
ing in membrane piercing and escape from the macrophage. While 
fluorescence imaging distinguished fungal cells from macrophages, 
AFM revealed biologically relevant nanostructures on both cell 
types (Fig. 6b,c)131. AFM has also been used to image cell surface 
structures, including microvilli, actin ridges and nanodomains of 
cellular membranes, and to characterize their dynamic mechanical 
properties (Fig. 6d)98,132,133. Optical microscopy is frequently applied 
to characterize cell morphology and state while employing AFM to 
characterize the mechanical properties (for example, stiffness, elas-
ticity, pressure) of the cell or its mechanical interaction (for exam-
ple, adhesion, migration) with the environment9. Such experiments 
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allowed the furrow stiffening during cell division67 to be observed, 
the adhesion of Dictyostelium discoideum to their substrate to be 
measured to molecular scale134 and whether cell adhesion or cor-
tex tension determine cell sorting in the developing embryo to be 
unravelled135. Importantly, some of the experiments contributed 
answers to a controversial debate lasting for more than three dec-
ades. Combined AFM and confocal microscopy was used to moni-
tor the angiotensin-induced contractile response and cytoskeleton 
remodelling in human embryonic kidney cells136. Other examples 

used confocal microscopy to monitor eukaryotic cells transiently 
expressing green fluorescent protein–actin, tubulin, vimentin and 
LaminA, and imaged the mechanical properties of the cytoskel-
eton and nucleus during early apoptosis137. AFM was also applied to 
measure the cell pressure and cortex tension while quantifying the 
actin and myosin accumulating at the cell cortex by confocal micros-
copy (Fig. 6e–h)138. This approach contributed to the understanding 
of how adherent animal cells facilitate and regulate their rather dras-
tic cell shape changes required to progress through mitosis139.
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As discussed above, cantilevers functionalized with biological 
molecules, chemical groups or even with living cells can reveal spe-
cific sites and their interactions on live cells9. Applying molecular 
recognition AFM in conjunction with optical microscopy can reveal 
a comprehensive picture of the distribution of cell surface recep-
tors and of cell morphology and state. Recent examples include 
the localization of receptors on CHO cells and endothelial cells140, 
and the visualization of the peptidoglycan insertion into the cell 
wall of Lactococcus lactis50 while mapping the distribution of single 
peptidoglycan molecules on the outermost cell surface using AFM. 
Molecular recognition AFM and fluorescence microscopy also 
linked the spatial localization and functional role of cell wall teichoic 
acids in Lactobacillus plantarum100. Polarized cell-wall organization 
was found to play a key role in controlling cell morphogenesis. In 
yeast, both AFM recognition imaging and confocal microscopy 
demonstrated that agglutinin-like sequence adhesion proteins form 
nanodomains on live cells through amyloid interactions141. Very 
recently, AFM tips functionalized with single rabies viruses were 
used to correlate fluorescence images of cell surface receptors to viral 
binding events to the animal cell142. Analysis of the initial binding 
events revealed that the viral glycoproteins bind cell surface recep-
tors in an allosteric mode until all three binding sites of the trimeric 
cell surface receptor are occupied and viral fusion can be initiated.

Conclusions
A wealth of AFM imaging modes have been developed to provide 
multiparametric and multifunctional characterization of biologi-
cal systems. These methods include the high-resolution imaging of 
native biostructures and the simultaneous mapping of mechanical, 
kinetic and thermodynamic properties, of functional groups and 
binding sites, of free energy landscapes of ligand-receptor bonds, and 
of electrostatic properties ranging from charge distributions to ion 
currents. In recent years, many new AFM imaging modes have been 
developed, which in principle can be readily applied to biological 
systems and thus will further extend the variety of information that 
can be quantified and structurally mapped while imaging complex 
biological systems. At present, the force sensitivity and thermal stabil-
ity (drift) of AFM limit the precision at which biological systems can 
be characterized. Therefore, recently introduced ultrastable AFMs, 
which provide subpiconewton force precision and high positional 
stability (<0.03 Å) at extremely low lateral drift (~5 pm min–1)143,144, 
could potentially be the basis for the development of AFMs for new 
applications of biological significance. Furthermore, most bio-AFM 
users currently apply single AFM-imaging modes in their specific 
field of interest. However, biological systems are complex and require 
a range of information to be understood. Therefore, we expect that 
many of the AFM modes discussed here will soon be combined into 
one instrument and thus into one set of correlated measurements. 
Such multimodal, multiparametric, multifrequency and high-speed 
AFM imaging platforms should lead to a more comprehensive under-
standing of the dynamic, structural, mechanical, chemical and func-
tional heterogeneity of complex biological systems. Together with 
advances in complementary techniques (Table 1), this will allow AFM 
to address outstanding questions in biology in the coming decades.
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