
An optical study of opal
based photonic crystals

Juan Francisco Galisteo López
Madrid 2005



 



 
 
 

AN OPTICAL STUDY OF OPAL BASED 
PHOTONIC CRYSTALS 

 
Un estudio óptico de cristales fotónicos basados en ópalos 

 
 
 

Memoria presentada para optar al Grado de Doctor en 
Ciencias Físicas por: 

 
Juan Francisco Galisteo López 

 
 

Director: 
Dr. Ceferino López Fernández 

 
Tutora: 

Dra. Luisa E. Bausá López 
 
 
 
 

Departamento de Física de Materiales 
Facultad de Ciencias 

Universidad Autónoma de Madrid 
 

Instituto de Ciencia de Materiales de Madrid 
Consejo Superior de Investigaciones Científicas 

 
 
 

Junio 2005 
  
 
 
 



 

 

 
 
 
 
 
Tesis defendida el 6 de junio de 2005 en el Departamento de Física de Materiales 
de la Universidad Autónoma de Madrid 
 
Tribunal: Prof. Luis Viña Liste 
                Prof. Willem L. Vos 
                Prof. Juan José Sáenz Gutiérrez 
                Dr. Hernán Míguez García 
                Prof. Jordi Martorell Pena 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Impreso en ICMM-CSIC, Madrid, España 
ISBN: 84-689-2810-0 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

A mis padres. 
A Patricia.  



 



 
      Agradecimientos: 
 
 
A lo largo de estos años han sido muchas las personas que, de una forma u otra, 
han contribuido a que este trabajo saliese adelante. En primer lugar me gustaría 
agradecer a mi director de tesis, Cefe López, por haberme acogido en su grupo y 
haberme dado la oportunidad de trabajar y aprender en él. Por haber puesto la 
ilusión y el escepticismo en los momentos adecuados para que todo saliese 
adelante.  
 
Aan het begin van mijn wetenschappelijke carrière had ik het genoegen om bij de 
Universiteit van Amsterdam onder de supervisie van Prof. Willem Vos te werken. 
Ik zou hem voor zijn steun tijdens die tijd en voor het maken van het een prettige 
ervaring willen danken. 
 
Para la realización del trabajo contenido en esta memoria conté con la ayuda 
inestimable de una serie de personas: 
En el capítulo 2 me gustaría agradecer a la Dra. E. Palacios y a E. Martínez por los 
coloides de PS y PMMA y a Beatriz Hernández por las discusiones y consejos.  
Al Prof. Carlos Zaldo por permitirme emplear la esfera integradora para los 
resultados presentados en el capítulo 3. A la Dra. E. Palacios por el crecimiento de 
algunas muestras y la ayuda en la caracterización óptica. 
A la Dra. Luisa E. Bausá del Departamento de Física de Materiales de la 
Universidad Autónoma de Madrid por permitirme emplear el MOPO para las 
fotografías del capítulo 4. Al Dr. Florencio García-Santamaría por las discusiones y 
las valiosas ideas aportadas. A la doctora Rosalía Serna del Instituto de Óptica 
“Daza de Valdés” por ayudarme con las medidas de elipsometría.  
Al Dr. Matteo Galli del Dipartimento di Fisica “A. Volta” de la Universidad de 
Pavía por su ayuda con las medidas de interferometría de luz blanca del capítulo 5. 
También por las discusiones en la interpretación de los mismos junto al Prof. 
Claudio Andreani. 
Al Dr. Fernando López Tejeira y al Dr. José Sanchez-Dehesa del Departamento de 
Física de la Materia Condensada de la Universidad Autónoma de Madrid por los 
cálculos de bandas y las discusiones que dieron lugar a los resultados presentados 
en el capítulo 6. 
A los doctores Femius Koenderink, Gijs van Soest y Jaime Gómez-Rivas y a Wim 
Koops, del grupo “Waves in Complex Media” de la Universidad de Ámsterdam, 
por el apoyo experimental para llevar a cabo el montaje con el que se realizaron las 
medidas presentadas en el capítulo 7.  
 
Durante el período de trabajo en la Universidad de Ámsterdam, conté con la 
financiación de la fundación “Stichting voor Fundamenteel Onderzoek der 
Materie’’ (FOM). Durante el período de trabajo en el ICMM-CSIC conté con la 
financiación del proyecto MAT2003-01237 del Ministerio de Ciencia y Tecnología 
así como del proyecto PHOREMOST de la Comunidad Europea. Las estancias en 



 

la Universidad de Pavía fueron posibles gracias a la financiación de los proyectos 
PHOREMOST (Comunidad Europea) y COST-P11 (European Science 
Foundation). 
 
En este tiempo he colaborado con mucha gente, siendo los más cercanos los 
miembros del grupo dirigido por el Dr. Cefe López en el Instituto de Ciencia de 
Materiales de Madrid (ICMM-CSIC). Todos ellos han hecho que estos años hayan 
sido un período de aprendizaje a muchos niveles. En primer lugar quisiera 
agradecer a Bea, con quien he compartido despacho del primer al último día, por 
estos años en los que tanto he disfrutado. A Floren, con quien pasé grandes 
momentos compartiendo despacho y discutiendo. Espero que en el futuro podamos 
trabajar juntos de nuevo, porque fue un placer. A Álvaro, que siempre estuvo cerca 
para discutir resultados o para quitarle peso a la cosa con una buena broma y 
ayudar a recuperar la objetividad. A Lola Golmayo, aportando su experiencia para 
que todo fuese mejor. A David quien, a pesar de llevar poco tiempo entre nosotros, 
introdujo nuevos aires y buenos momentos. A los teóricos de la UAM, José 
Sanchez-Dehesa (gracias por esas discusiones, con las que tanto aprendí) y a 
Fernando López-Tejeira. A la conexión de Valencia, Marta, Silvia, Isabelle, 
Roberto y el Profesor Francisco Meseguer. Y a toda la gente que pasó por el grupo 
y fue dejando rastro, Elisabeth, Elisa, Antonio…  
 
También dentro del ICMM hubo mucha gente con la que no llegué a colaborar 
científicamente pero con los que compartí buenos momentos; Angel Muñoz, 
siempre dispuesto a echar una mano, Carlos Prieto y sus chicos, Merche, Felix e 
Isa, José Ángel Gago, Nieves, Ricardo, Joaquín, el grupo de Teatro (por poner un 
toque artístico entre tanta ciencia), Marisa (por hacer de mi despacho un sitio 
habitable), etc.  
 
During my stay at the University of Amsterdam I had the opportunity to work with 
a number of people I would like to thank. Femius (who survived sharing an office 
with me), Gijs (por enseñarme Amsterdam y por los intercambios culturales), 
Manu, Lydia, Wim, Jaime, Denis, Martijn, Boris, Patrick and Yuri (un gran 
científico y mejor persona, con quien fue un placer “platicar” y aprender). I would 
also like to thank Prof. Ad Lagendijk for his support and for hosting me in his 
group during that time.  
 
Near the end of my thesis I spent some weeks at the Dipartimento di Fisica “A. 
Volta”, at the University of Pavia and I would like to thank all the people with 
whom I interacted; Prof. Claudio Andreani for hosting me in his group and for 
enjoyable scientific discussions; Dr. Maddalena Patrini for making my stay 
possible; all the guys in the group, Daniele, Marco, Gabriele, etc; and specially Dr. 
Matteo Galli, with whom I enjoyed some exhausting measurement days and 
scientific discussions.     
 
Fuera del ámbito científico ha habido mucha gente con la que he compartido este 
tiempo, y sin la ayuda de los cuales esto no hubiese posible. Maria, inmigrante 

 



 

perpetua y eterna compañera durante estos años, desde California a Laciana 
pasando por el Raval, que se sigan repitiendo las visitas; Mercedes, siempre 
estableciéndose y a punto de partir, gracias por estar siempre ahí; Alberto, 
dándome siempre su apoyo desde su exilio francés; Dani e Ici, gracias por 
rescatarme en los momentos adecuados, en Delft o Alcorcón; Dani, profesor por las 
tierras manchegas; Natalia; Marian y Laura.   
 
Quiero agradecer a mis padres su apoyo y su cariño incondicionales durante todo 
este tiempo. Por todo lo que de ellos, y con ellos, he aprendido.    
 
Finalmente me gustaría agradecer a Patricia, la persona que me ha acompañado a lo 
largo de todos estos años. Porque ha sido un placer haber hecho este viaje contigo. 

 
 

       Madrid, Junio 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better. 
 

Samuel Beckett 



 



                                             

                                                     GENERAL INDEX: 

 

CHAPTER 1 
Introduction: Photonic crystals ............................................................................. 9 

1. Photonic Crystals ......................................................................................... 9 
2. Energy bands in Photonic Crystals ............................................................ 11 
3. Fabrication methods................................................................................... 15 
4. Applications ............................................................................................... 18 
5. Defects in Photonic Crystals...................................................................... 20 
6. This thesis .................................................................................................. 21 
7. References.................................................................................................. 22 

CHAPTER 2 
Fabrication and structural characterization of artificial opals ........................ 25 

1. Introduction................................................................................................ 25 
2. Vertical deposition method ........................................................................ 26 
3. Structural characterization ......................................................................... 29 
4. Conclusions and future work ..................................................................... 37 
5. References.................................................................................................. 39 

CHAPTER 3 
Optical study of the L-pseugogap in thin film opals .......................................... 41 

1. Introduction................................................................................................ 41 
2. Optical properties: finite size effects ......................................................... 42 
3. Effects of disorder...................................................................................... 48 
4. Angle resolved measurements ................................................................... 55 
5. Conclusions and future work ..................................................................... 62 
6. References.................................................................................................. 63 

CHAPTER 4 
Optical properties of artificial opals in the high energy regime ....................... 65 

1. Introduction................................................................................................ 65 
2. Optical properties: scalability and finite size effects ................................. 66 
3. Physical origin of the bands....................................................................... 70 
4. Diffraction in photonic crystals ................................................................. 74 
5. Comparison with band structure ................................................................ 78 
6. Conclusions and future work ..................................................................... 86 
7. References.................................................................................................. 88 

 



CHAPTER 1 

 8 

CHAPTER 5 
White light interferometry of thin film opals .....................................................91 

1. Introduction................................................................................................91 
2. Experimental ..............................................................................................92 
3. Low energy spectral region........................................................................95 
4. High energy spectral region .....................................................................101 
5. Conclusions and future work ...................................................................106 
6. References................................................................................................107 

CHAPTER 6 
Polarization dependence of the optical response of artificial opals ................109 

1. Introduction..............................................................................................109 
2. Symmetry of photonic bands and incident beam .....................................110 
3. Angle resolved reflectivity.......................................................................111 
4. Conclussions and future work..................................................................114 
5. References................................................................................................115 

CHAPTER 7 
Angle resolved reflectivity of single-domain photonic crystals: Effects of 
disorder ................................................................................................................117 

1. Introduction..............................................................................................117 
2. Experimental ............................................................................................118 
3. Determination of mosaic spread ..............................................................119 
4. Angle resolved reflectivity.......................................................................121 
5. Effects of disorder....................................................................................124 
6. Conclusions and future work ...................................................................125 
7. References................................................................................................127 

Appendix 1 
Photonic band structures for opal based systems: PWEM vs. SWA..............129 

Appendix 2 

Infiltration of polystyrene thin film opals with SiO2…………………………135 

Conclusiones generales…………………………………………………………137 

Lista de publicaciones..…………………………………………………………139



 
 
 
 
 
 

                                         CHAPTER 1 

Introduction: Photonic crystals 
 
 

1. Photonic Crystals 

Photonic crystals are a type of artificial structures which, over the past two 
decades, have emerged as a promising means to control the radiation dynamics of 
active materials and the propagation of electromagnetic radiation in ways not 
permitted by conventional materials.  

In essence, a photonic crystal is a material in which the refractive index is 
periodically modulated on a length scale comparable to the wavelength of light. In 
this sense, the simplest photonic crystal one can consider is the dielectric stack or 
Bragg reflector, in which the periodicity takes place along one dimension. In such a 
system, the shape of the dispersion relation deviates from that of the constituent 
materials appearing as a set of allowed and forbidden frequency intervals (see 
figure 1). The appearance of such forbidden intervals or “gaps” is a consequence of 
Bragg diffraction by the planes forming the crystal, and their spectral position and 
width are determined both by the period and the refractive indices of the 
constituent materials. For those frequencies contained within these gaps, the 
associated wave vector takes on imaginary values and light propagating along the 
crystal with those frequencies is exponentially attenuated. 

Although Bragg reflectors have been thoroughly studied over the past few 
decades and their optical properties are well understood,1 it is when the periodicity 
is extended to the three dimensions of space that the full potential of such 
structures is achieved. In this situation, one expects to find the aforementioned gaps 
along each direction of propagation within the crystal. In principle, forbidden 
intervals may not necessarily span the same spectral region for different directions, 
and one may then speak of “pseudogaps”. But under certain conditions regarding 
the amplitude of the refractive index modulation, the symmetry of the lattice, its 
topology and the filling fraction of the constituent materials one may reach a 
situation where gaps for all directions within the crystal share a common frequency 
range. Such spectral range is known as a photonic band gap (PBG); a frequency 
interval for which no light may propagate within the crystal regardless of its 
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direction. A PBG can only take place in 3D photonic crystals and has become, 
since the first proposal of such structures,2,3 the most sought for phenomenon in 
photonic crystal research. This is due to the fact that the density of electromagnetic 
modes (DOS) vanishes for those frequencies contained in the PBG, and 
spontaneous emission of light sources located within the crystal may be completely 
inhibited. 

 

 

Figure 1: (a) Bragg mirror consisting of alternating dielectric layers with 
refractive index n1 and n2 with period “d”. (b) Dispersion relation for 
propagation parallel to the direction of periodicity (solid line), and dispersion 
relation for a homogeneous medium (dashed line).Grey box indicates a 
forbidden frequency interval.  

 

Although of utmost importance, the existence of a PBG is not the only 
characteristic which makes photonic crystals fascinating materials. The DOS may 
not only be reduced but also enhanced by appropriately tailoring the crystal. Thus 
the strength of the optical field within the crystal may be enhanced, which 
constitutes an advantage if dealing with optically active constituents.  

In terms of light propagation within the crystal, the existence of a 2D or 3D 
periodicity allows for the observation of anomalous refraction effects. By 
anomalous we refer to deviations from predictions of Snell’s law, which properly 
describes light refraction in conventional unstructured materials. Super-prism 
effects4 (where large steering of the refracted beam takes place for small variations 
of the wavelength or direction of the incident one) or even negative refraction5 
have been predicted for 2D and 3D systems and experimentally observed in the 
former.   

In this chapter a brief review of certain topics concerning photonic crystal 
research will be given which will help in both, introducing and understanding the 
work presented in this memory. Section 2 deals with dispersion relations in 
photonic crystals, as a tool for describing the optical properties of such systems. 
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Once the theory behind photonic crystals is introduced, in section 3 the different 
approaches to the fabrication of 3D systems are reviewed. After introducing some 
of the proposed applications for these systems in section 4, the important issue of 
defects in photonic crystals will be dealt with in section 5. Finally, a summary of 
the material contained in the following chapters, and which constitutes the body of 
the thesis, will be given.   

 

2. Energy bands in Photonic Crystals 

The optical properties of a photonic crystal are directly related to its dispersion 
relation. In this sense, dispersion relations or photonic band structures (as 
commonly termed due to their similarity with electronic bands in solids) have been 
used both as design tools for predicting systems with given optical properties and 
as a means to interpret the optical response of fabricated structures. In deriving the 
dispersion relation of a photonic crystal, a number of concepts from solid state 
physics (Brillouin Zone, reciprocal lattice, etc.) are used due to the similarity of the 
problem of photons in a periodic refractive index and electrons in a periodic 
potential. As a matter of fact most band structure calculation methods have been 
borrowed from the electronic case. 

The starting point for determining the photonic band structure of a PC is 
Maxwell’s equations which, in the absence of charges or currents, may be 
expressed as:  

                   0),(1),( =
∂

∂−×∇
t

t
c

t rDrH  ,  0),( =⋅∇ trB  

                   0),(1),( =
∂

∂+×∇
t

t
c

t rBrE ,    0),( =⋅∇ trD                          (1)                                           

Next we make use of the constitutive relations which relate E(r,t) to D(r,t) and 
B(r,t) to H(r,t). Although these relations may take on a complicated form, a 
simplified expression may be obtained if one assumes non-magnetic, linear, 
isotropic and lossless materials, together with the fact that their dielectric constant 
is not frequency dependent. In this situation we have: 

),()(),( tt rΕrrD ⋅= ε  

                                                 ),(),( tt rBrH =                                              (2) 

Combining (1) with (2) we obtain a wave equation for any of the fields. It is 
the one for the magnetic field that is usually employed. Separating H(r,t) into a 
spatial field pattern times a harmonically varying temporal part we obtain the 
following wave equation: 
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This equation has the form of an eigenvalue problem with eigenvectors H(r) 
and eigenvalues (ω/c)2. The choice for solving this particular equation is due to the 
fact that the operator acting on H(r) is a Hermitian one, which simplifies the 
problem. The most common approach to solve (3) is the use of the plane wave 
expansion method (PWEM),6 adapted from electronic band structure theory. Due to 
the existence of a discrete translational symmetry in the system Bloch’s theorem 
can be applied to the eigenvectors H(r) which can therefore be expressed as the 
product: 

                                                 kr
k rurH i

n e)()( =                                           (4) 

where ukn(r) is a periodic function having the periodicity of the lattice and k is a 
wave vector contained in the first Brillouin zone. Constraining the solutions to the 
first Brillouin zone causes a folding of the dispersion relation which organizes into 
bands labeled with the integer n. 

The periodic functions ukn(r) and ε(r)-1 can be expanded into a Fourier series 
over the reciprocal lattice vectors G: 

                       ∑=
G

GrG
kk ur i

nn eu )( ,   ∑=
G

Gr
Gr

ieη
ε )(

1
                            (5) 

Insertion of (4) and (5) into (3) yields a system of 2N equations for each wave 
vector k in the first Brillouin zone. Here N is the number of plane waves 
considered in the expansion in (5), and the factor 2 accounts for the two 
polarizations. Obtaining the dispersion relation is then reduced to the 
diagonalization of a 2Nx2N matrix, where a large enough N is needed to yield 
good accuracy.  

Approximate solutions of the problem may be obtained using the so called 
scalar wave approximation (SWA)7 in the two band model. In this approach the 
vectorial nature of the field is neglected and only two terms from the expansion of 
ukn(r) and the dielectric constant are retained. This simplifies the problem and an 
analytical expression may be obtained for the dispersion relation of the crystal 
which, for certain systems, may yield results close to the exact ones (see appendix 
1).    

Figure 2 shows two band structures calculated8 for systems readily available 
experimentally; that of a face centered cubic (FCC) arrangement of SiO2 spheres in 
an air background, and a similar system of interconnected air spheres in a silicon 
background. In the horizontal axis we represent the wave vector k which follows a 
trajectory on the Brillouin zone (depicted in the inset) linking high symmetry 
points which define its irreducible part. In the vertical axis, frequency is 
represented in reduced units of a/λ, where a is the lattice parameter and λ the 
wavelength of light in vacuum. The convenient use of such units is justified by the 
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scalability of the solutions of the problem. The absence of a fundamental length 
scale in the above equations implies that a change in the length scale of the system 
is translated into a corresponding change in the energy scale of the eigenvalues so 
that the product ωa remains fixed. In the first situation (figure 2a) we observe how 
a forbidden frequency interval appears along the ΓL direction for a reduced 
frequency a/λ~0.6. This corresponds to the case of the pseudogap, that is, a 
frequency interval for which light may not propagate along certain directions. For 
this particular symmetry the appearance of a PBG requires a larger refractive index 
contrast δn=n2/n1 and a different topology, having the low index material forming 
the spheres.9 This is achieved in figure 2b where the refractive index contrast is 
increased to 3.45. We can see how a complete PBG takes place between the 8th and 
9th band at reduced frequencies 0.85. The appearance of the PBG is favored in the 
present system due to the fact that an FCC lattice presents the most spherical 
Brillouin zone of all 3D Bravais lattices. This means that the periodicity is similar 
along different directions and therefore it is more probable that forbidden intervals 
overlap for a sufficiently large refractive index contrast.  

 

Figure 2: (a) Band structure for an FCC arrangement of dielectric spheres 
(n=1.45) in air, calculated along the high symmetry points defining the 
irreducible Brillouin zone. Pseudogap along the ΓL direction is denoted as a 
grey band. (b) Equivalent band structure for an arrangement of air spheres in 
a dielectric matrix (n=3.45). PBG appears as a grey band. Inset shows the 
Brillouin zone for an FCC lattice. 

 

But photonic band structures do not only provide information on the existence 
of forbidden intervals, they also allow to study the way light propagates through 
them. The issue of light propagation in photonic crystals is studied in terms of 
equi-frequency (or dispersion) surfaces (EFS). An EFS is just the collection of all 
allowed wave vectors for a certain frequency, and is equivalent to the index 
ellipsoid in continuous materials. Once the band structure of a crystal is known, the 
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EFS for a certain frequency may be obtained by searching for all allowed bands for 
that particular frequency. In a homogeneous and isotropic material EFS are just 
spheres given by: 

                                                            
c
nk ω=                                                       (6) 

where n is the refractive index of the material and c the speed of light in vacuum. If 
one considers refraction at the interface between two homogeneous and isotropic 
materials, and carries an EFS analysis, the situation is that sketched in figure 3a. 
The wave vector inside the second medium is determined by the conservation of 
the component of the wave vector parallel to the interface, and is parallel to the 
direction of propagation of energy. This yields the well known expression for 
Snell’s law: 

                                                    2211 sinsin θθ nn =                                              (7) 

where ni and θi are the refractive index and propagation angle inside each medium.  

If the second medium is a photonic crystal the situation becomes more 
complicated. Now the EFS departs from the spherical shape and may take on rather 
complex forms reflecting the strong anisotropy of the band structure. An example 
is given in figure 3b. Here only a transversal section of the EFS is considered for 
the sake of clarity. Propagation is assumed to take place in the plane defined by the 
normal to the interface and the incident wave vector. A number of differences are 
evident between both situations. On the one hand the wave vector inside the 
photonic crystal, k2, determined by the conservation of its component parallel to 
the interface as in the homogeneous medium case, is not parallel to the direction of 
propagation of energy (vg). The latter is parallel to the group velocity in a photonic 
crystal,6 which is given by: 

                                                      ωkg ∇=v                                                   (8) 

and is therefore normal to the EFS. In this situation Snell’s law is not valid 
anymore and a proper description of light propagation within a photonic crystal can 
only be done in terms of EFS.  

Some of the peculiarities of light propagation in photonic crystals may be 
understood by looking a bit more carefully into these EFS. We consider a situation 
in which the frequency or angle of incidence in medium 1 are such that the k 
conservation line falls near a region of high curvature of the EFS in the photonic 
crystal (point C in figure 3b). In this situation the angle of propagation inside the 
crystal may undergo extremely large variations for very small changes in the angle 
of incidence (or frequency) of the incident beam, what is commonly termed super-
prism effect.4 For crystals with a sufficiently large refractive index modulation it 
can happen that, in the surroundings of forbidden gaps, EFS become spherical 
again as in the case of the homogeneous dielectric.5 In this situation Snell’s law 
becomes applicable again and an effective refractive index may be defined for 
describing light propagation within the crystal. Due to the folding of the bands, 
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these EFS can be so that their radius decreases with frequency, as opposite to the 
homogeneous dielectric case. According to (8) this implies that a negative effective 
refractive index may be defined for certain frequencies. This is different from the 
case of figure 3b where negative refraction may happen for certain incident angles 
only and no effective refractive index may be defined. 

 

Figure 3: (a) Refraction at the interface between two homogeneous 
dielectrics. (b) Refraction at the interface between a homogeneous dielectric 
and a photonic crystal. 

A complete description of the propagation of light within a photonic crystal 
requires not only the knowledge of energy bands (and therefore EFS). Knowing 
which modes can be excited by an externally incident plane wave is crucial. In 
certain situations an incident photon of a given frequency may couple to a number 
of bands, each carrying light in different directions.10 Furthermore, some bands 
may not be accessible at all by externally incident plane waves due to symmetry 
reasons, leading to the false believe that forbidden intervals are present in the band 
structure.6  

 

3. Fabrication methods 

The theory behind the optical properties of photonic crystals has been 
extensively studied over the past two decades and a number of fascinating 
phenomena have been predicted, as already mentioned in section 2. But 
experimental realization of the necessary structures to test those predictions has 
been lacking in many cases. The reason for this becomes apparent if one takes into 
account the fact that the working range for a photonic crystal is dictated by the 
spatial periodicity of its refractive index. Therefore if one wants to operate in the 
visible or near infrared side of the electromagnetic spectrum, where most 
applications are devised for, spatial modulations of the refractive index of a few 
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hundred nanometers to one micron are needed. This represents a challenge for 
currently available technology and is inspiring an enormous effort among scientists 
from many disciplines, from materials science to organic chemistry or engineering.  

In principle one would desire a successful technique that is easy to be 
implemented, has low costs, and yields good quality and reproducible structures 
involving a reasonable time. In this sense, a number of fabrication methods have 
been inspired or directly borrowed from other disciplines as is the case of band 
structure calculations. In this section we summarize some of the most common 
techniques for the fabrication of 3D photonic crystals in the optical regime. Most of 
them may be divided into three groups, each carrying its own advantages and 
drawbacks.  

Lithographic methods, which use well developed techniques from the field of 
microelectronics were the first ones to yield structures predicted to have a PBG in 
the near infrared part of the spectrum,11,12 based on the so-called “wood-pile” 
structure (figure 4a).13 These methods are rather versatile in terms of the symmetry 
of the fabricated structure and allow for the introduction of designed defects,12 
mandatory for most applications (see below). Their main drawbacks are the 
expensive technology and the large time scales involved in the fabrication process. 
Up to date only crystals with thickness of two unit cells have been reported.  

The most popular approach to the fabrication of 3D photonic crystals is that of 
self-assembly. This method is based on the natural tendency of monodisperse 
colloidal particles to self assemble into ordered arrays commonly termed artificial 
opals, after their similarity with precious gems.14 Its potential as photonic crystals 
was already acknowledged in the first proposal in 1987,2 and soon after the first 
artificial opals were optically characterized in terms of photonic bands.15 Ever 
since, a large number of publications related to artificial opals as photonic crystals 
have appeared. Initially artificial opals were grown by means of sedimentation, 
letting a colloidal suspension settle under gravity and collecting an ordered 
sediment after the evaporation of the solvent. Later on, methods such as the vertical 
deposition one16 were developed to overcome certain limitations of sedimented 
samples (see chapter 2). What has made self-assembly so popular is the fact that a 
number of cheap and well established methods for synthesizing monodisperse 
colloidal particles made of silica and a number of polymers are available. 
Furthermore, the growth processes do not require any expensive instrumentation.  

Initial samples grown by sedimentation15,17 had a number of drawbacks 
concerning the difficulty to control sample thickness and the fact that they were not 
easy to manipulate. These issues were then improved by the introduction of the 
vertical deposition method.16 Other drawbacks are associated with both preparation 
methods such as the low refractive index contrast, the fixed symmetry of the 
samples and the amount of uncontrolled disorder present, the latter being 
detrimental for applications (see below). Extensive research is being developed to 
solve these three issues. A route to increase the refractive index contrast of 
artificial opals is to infiltrate their pores with high refractive index materials and 
then remove the original structure, obtaining the so called “inverse opals” (figure 
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4b). In this way a number of materials have been successfully infiltrated into these 
samples,18 some of them with a sufficiently high refractive index contrast to 
provide structures predicted to have a PBG.19-22 Also by doing a controlled 
infiltration of the pores with different materials, the band structure of these systems 
may be tailored.23 In this sense, modifying the unit cell provides a degree of 
freedom not available by the fixed symmetry of the structure. Disorder remains to 
date the main problem with these structures.     

Holographic lithography has been recently introduced and has become a 
promising technique.24 By exposing a photoresist to the interference pattern created 
by a set of non coplanar laser beams, one may create in it a periodic distribution of 
crosslinked polymer. The non exposed areas may then be removed, rendering a 
periodic 3D structure. Structures created in this way are very versatile. The crystal 
symmetry can be varied with the relative angles between the laser beams, and the 
shape of the repeating units will depend on the relative amplitudes and 
polarizations. This fabrication method yields samples of good quality (see figure 
4c) in a reduced time (typically a few hours), and in principle does not require 
expensive equipment besides a laser, polymer and some basic optics. As in the case 
of artificial opals, samples fabricated with this technique do not posses a PBG due 
to the low refractive index contrast between the polymer and air. Therefore, further 
processing is needed, something which up to date is lacking. 

 

Figure 4: 3D photonic crystals fabricated by: (a) lithography, (b) self 
assembly and further processing to obtain an inverse opal, (c) holographic 
lithography and (d) direct laser writing. Images have been taken from 
references 12, 21, 24 and 25.  
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A number of alternative methods have been developed for the fabrication of 3D 
photonic crystals in the optical regime, but have not become as popular as the ones 
above. This has been due to the difficulties of the process, the impossibility of 
yielding good quality samples or just to the recent development of the technique. 
Among these we can mention techniques based on focused ion beam milling,26 
nanorobotic manipulation27 or direct laser writing (see figure 4d).28  

 

4. Applications 

Applications proposed for photonic crystals are numerous and mainly focused 
on the fabrication of devices that may reproduce the operational principles of the 
different components of an integrated circuit, applied to photons instead of 
electrons as information carriers. This is achieved by exploiting the way these 
structures interact with electromagnetic radiation. Nowadays, most experimental 
demonstrations have been performed on either 1D or 2D systems. Demonstrations 
in 3D systems are scarce due to difficulties associated with the fabrication. These 
applications may in principle be divided into two groups depending on whether a 
PBG is required.  

By appropriately introducing a defect into a perfectly periodic lattice possessing a 
PBG, one introduces a localized mode into the forbidden interval. One can then 
tailor the spectral position of that localized state so that it coincides with the 
emission of internal light sources which can only go into that mode. In this sense 
losses are absent, and a thressholdless laser may be achieved. This idea, dating 
back to the very first proposal of a photonic crystal2 has not been realized in 3D 
systems mainly due to limitations imposed by the fabrication techniques. 
Nevertheless, low threshold lasing action has been demonstrated in cavities present 
in a 2D photonic crystal where vertical confinement was achieved by means of 
total internal reflection (TIR).29,30  

Extending the defects into a line, wave-guides may be introduced into a 
photonic crystal where light confinement is achieved by means of Bragg diffraction 
rather than TIR. This allows introducing sharp bends of 90º or 120º in spatial 
dimensions not allowed by conventional TIR guiding. The combination of 
waveguides and cavities coupled between them permits the design of add-drop 
filters. Again, experimental demonstrations have only appeared for the case of 2D 
structures (see figure 5a) where vertical confinement still relies on TIR.31-34 For the 
3D case, theoretical predictions indicate that similar results could be achieved,35 
and systems with wave guiding structures are readily available (figure 5b).12  

But not all applications rely on the existence of PBG or even forbidden 
intervals. As previously mentioned, refraction in these structures may present an 
anomalous behavior not governed by Snell’s law. By an adequate design of EFS 
photonic crystals may be employed as light deflection devices such as 
(de)multiplexers, spatially separating several signals with similar frequencies 
traveling along the same direction.36 Anomalous refraction may also be used to 
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generate self-collimation phenomena which correct for any divergence of an 
incoming beam into an optical circuit.37 An example of the effect of anomalous 
dispersion on the propagation of similar frequencies with identical direction as they 
enter a photonic crystal is represented in figure 5c.  

Also relying on the propagation of light rather than on forbidden intervals a 
number of applications have been proposed in which the use of “slow-photon” 
bands is considered. These bands are typically flat for given wave vectors, and thus 
have a zero group velocity associated. This implies a long interaction time between 

 

Figure 5: (a) 120º bend in a waveguide inserted in a 2D photonic crystal (ref. 
34), (b) 90º bend in a waveguide inserted in a “wood-pile” photonic crystal 
(ref. 12), (c) Anomalous refraction in a 2D photonic crystal compared to an 
unstructured material (ref. 36), (d) Optical fiber surrounded by a 1D photonic 
crystal (ref. 40) and (e) Optical fiber surrounded by a 2D photonic crystal 
(ref. 42). 
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electromagnetic radiation propagating along the crystal and the materials which 
constitute it. This represents a clear advantage if one (or more) of the constituent 
materials are optically active. For the case of 2D systems, lasing in the absence of a 
cavity has been reported an explained in terms of low group velocity bands.38 In 3D 
artificial opal based photonic crystals, the low group velocity associated to the 
edges of pseudogaps has been employed for demonstrating enhanced optical gain.39  

Up to the present date, the only application based on photonic crystals which 
has been commercialized is that of optical fibers (see figure 5d and 5e). These 
fibers may employ Bragg diffraction instead of TIR as a means to confine light into 
the fiber core. This is done by surrounding it by a 1D40,41 or 2D42 photonic crystal 
presenting forbidden intervals which avoids light propagating through the core to 
exit it. Since light confinement does not rely in TIR one may, for instance, 
construct a fiber with an air core which allows the transmission of high intensities 
without much signal distortion due to non linear effects, and minimizes losses 
occurring during the coupling of light into the fiber. In the case of fibers with 2D 
crystals one may also guide light by means of TIR having a material core, 
achieving endless single-mode performance.43    

 

5. Defects in Photonic Crystals 

The issue of defects in photonic crystals is of great importance. A defect is 
basically any interruption of an otherwise perfectly periodic structure. The effect of 
disorder in a photonic crystal is to introduce localized states and generate 
incoherent scattering. Since the optical properties of a photonic crystal rely on the 
existence of energy bands, which arises as a consequence of coherent scattering of 
light, the presence of disorder will certainly affect its optical performance. But 
contrary to what one may think disorder is not always detrimental for photonic 
crystals. If defects are introduced in a controlled manner (wanted defects), they can 
act as cavities introducing localized states in the forbidden interval which, if 
appropriately designed, are the basis for many applications (the cavity for a laser, 
wave guides, etc.). In this sense, defects have a similar effect as in solid state where 
one may introduce donor or acceptor localized states inside the gaps.44   

If disorder takes place in a random manner (unwanted defects) the optical 
properties of a photonic crystal may be completely spoiled. Forbidden intervals are 
filled with localized states which, for a given amount of disorder may even close an 
existing PBG turning the density of electromagnetic modes inside to a non-zero 
value.45 On the other hand, propagation in allowed bands can not be simply 
described by means of Bloch modes having a well defined propagation direction 
due to the presence of incoherent scattering. 

The influence of disorder in the optical properties of photonic crystals has been 
a subject of strong interest in theoretical and experimental research. In order to 
fully understand how disorder affects the optical performance of a photonic crystal, 
it is the interplay of order and disorder which must be considered. From a 
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technological point of view disorder may prevent the use of photonic crystals for 
any application both in the 2D and 3D cases. But the presence of disorder in 
photonic crystals also allows for the observation of exciting phenomena. In one of 
the seminal publications of 1987, it was pointed out that the combination of a 
controlled amount of disorder with an ordered lattice could lead to the observation 
of Anderson localization of light.3  

 

6. This thesis 

The work described in the present memory deals with the optical properties of 
photonic crystals. In particular, the systems under study are opal based photonic 
crystals grown by means of self assembly methods.  

Chapter 2 presents a description of the growth process of thin film artificial 
opals employed in some of the following chapters. A structural characterization of 
the samples is presented by means of different techniques. 

Chapter 3 deals with the optical properties of thin film opals in the energy 
region where the pseudogap due to Bragg diffraction by the {111} family of planes 
parallel to the surface takes place. A study of the effect of the sample size on the 
optical response is presented. The effect of disorder on the optical properties is also 
considered. Finally, the structural characterization performed in chapter 2 is used to 
orient the sample and probe the optical properties of the samples along high 
symmetry directions. 

The high energy spectral region where higher order Bragg diffraction by the 
{111} planes as well as diffraction by other families of planes takes place is dealt 
with in chapter 4. The relationship between optical diffraction, energy bands and its 
effect on the optical properties is discussed. 

In chapter 5 phase sensitive measurements on thin film opals are presented. 
The phase delay introduced by the samples in a broad spectral region (which spans 
the low and high energy regions) is measured. This allows to further extract an 
effective refractive index and the group velocity for propagation perpendicular to 
the sample surface. The results are compared with previous optical characterization 
presented in chapters 3 and 4. 

Chapter 6 presents experimental evidence of the polarization dependence of the 
optical response of silica artificial opals grown by means of sedimentation.  

Finally chapter 7 presents single domain angle-resolved reflectivity 
measurements on a different type of opal based photonic crystals (namely TiO2 
inverse opals). These measurements allow obtaining information on the optical 
properties of the samples as well as performing a structural characterization. The 
effects of disorder on the optical properties of the samples are also discussed. 
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                                         CHAPTER 2 

Fabrication and structural 
characterization of artificial opals 
 
 

1. Introduction 

As mentioned in the first chapter, self-assembly techniques constitute the most 
popular approach to the fabrication of 3D photonic crystals. Based on the natural 
tendency of monodisperse colloidal particles to organize into ordered arrays, these 
methods represent the best option due to ease of fabrication and economy of the 
process. Besides these advantages, self-assembly provides us with artificial opals. 
In the most favorable situation an artificial opal will consist of a face centered 
cubic (FCC) arrangement of spherical scatters which, for the appropriate refractive 
index contrast can develop a complete photonic band gap (PBG).1 Even if a PBG is 
absent, these structures are interesting on its own as they represent a playground to 
explore the optical properties of photonic crystals. Artificial opals and related 
structures obtained by self assembly have been used to explore enhancement of 
optical gain,2 second3 and third4 harmonic generation, or Faraday rotation,5 and 
have been further predicted to present anomalous refraction.6 

Initially, artificial opals were grown by sedimentation of monodisperse 
colloidal particles in solution.7,8 Samples grown in this way usually presented an 
uncontrollable thickness and a large variety of defects (point defects, dislocations, 
mosaic spread, stacking faults,…). In addition, these samples were not easy to 
handle due to its fragility (unless further processing9,10 was done to enhance their 
mechanical stability) and took long periods to grow due to the slow sedimentation 
rate needed to obtain a good crystalline order. 

Over the past few years a new method known as the vertical deposition 
method11 has emerged as an alternative to sedimentation. Besides the improvement 
in fabrication time (a few days are needed compared to sedimentation, which 
required up to several months), samples grown by vertical deposition present 
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smaller defect concentration, controllable thickness and are easier to handle since 
they are grown on solid substrates.  

In this chapter, after presenting a qualitative description of the process, 
experimental conditions are given to obtain samples with high quality in terms of 
its optical response. Afterwards, a structural characterization of the samples is 
carried out by means of optical and electronic microscopy as well as optical 
diffraction. This will allow us to select the best regions for carrying out an optical 
characterization as will be shown in future chapters.  

 

2. Vertical deposition method 

Since its introduction in 1999 by Jiang et al,11 the vertical deposition method 
has become the most spread within self-assembly techniques to fabricate opal-
based 3D photonic crystals. The method is based on previous work by Nagayama 
and co-workers12-14 in which the formation of colloidal monolayers was studied. 
Both techniques are based on the convective self-assembly of colloids on a 
substrate by the action of a moving meniscus. 

Although extensively used for over five years now, the mechanism of crystal 
formation is not well understood to the present date.15 Only a qualitative 
explanation has been given, and a number of parameters which influence crystal 
growth (most of them borrowed from the monolayer problem12) have been 
determined. 

In a typical procedure, a flat substrate is introduced in a vial containing a 
colloidal suspension which wets the substrate, a meniscus forming at the line where 
the substrate, air and liquid meet (figure 1). Crystal growth begins at the point of 
the meniscus where its thickness is below the diameter of the sphere.12 Menisci are 
formed between the spheres, which are pulled towards the substrate and attracted to 
each other due to capillary forces which tend to order them in a close packed 
monolayer. Solvent flow towards the meniscus region (which compensates for 
evaporation) drags spheres from the suspension and these are incorporated to the 
ordered monolayer. Under the appropriate conditions involving colloid 
concentration and evaporation rate,12 more than one layer may begin to grow at the 
meniscus. These new layers grow in a peculiar manner, where the boundary 
between an “n” layer region and an “n+1” one presents square packing instead of 
the hexagonal one. This configuration has been attributed to an optimal filling of 
the meniscus region.16  

But the exact transition from the 2D ordering to the formation of a 3D FCC 
structure is not understood. It is assumed that colloidal particles are dragged to the 
ordered array by means of solvent flow and are incorporated to it. Therefore the 
optimal conditions for the growth of a sample with good crystalline order should 
include an evaporation rate which allows for the ordering of particles at the 
meniscus, as well as the presence of a reservoir of particles in the solution to be 
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incorporated to the ordering region. Initial experiments carried out by Jiang et al.11 
consisted in a solution of silica spheres in ethanol, and were limited by the sphere 
size. For spheres with a diameter above ca. 400 nm, sedimentation decreased the 
sphere concentration and yielded poor quality samples. This certainly represented a 
problem, since particles with diameters above 600 nm are required in order to 
fabricate silicon inverse opals with a PBG around 1.5 µm. This issue was overcome 
in 2001 by Vlasov and co-workers17 by introducing a temperature gradient in the 
vial containing the solution, so that convective flow would prevent particle 
sedimentation. By doing this, particles with a diameter up to 1µm were ordered in 
samples having thickness as large as 20 layers on crystalline silicon substrates.  

Later on, samples were also grown by vertical deposition using an aqueous 
solution of polymer colloids18, as in the original works by Nagayama, and solving 
the sedimentation issue by just placing the vial containing the solution in an oven at 
a fixed temperature. The main advantage of working with polymer colloids in 
water is that the effect of sedimentation may be compensated using a much lower 
temperature than with silica, due to the smaller density difference. This permits a 
slower evaporation rate, and therefore a better crystalline quality of the sample 
obtained. Although there is a general consensus on the critical role played by the 
temperature in the growth of such samples, several publications18-23 mention 
optimum temperatures in a much too wide a range (50ºC to 95ºC) for apparently 
very similar conditions.    

 

Other parameters which influence the growth of the samples are the diameter 
and concentration of the colloids, which are known to determine the thickness of 
the samples. In general, higher concentrations and smaller colloids yield samples 

 

Figure 1: Schematic of the vertical deposition method. A substrate (dark grey) 
is placed in a colloidal suspension which wets it. The substrate is inclined at 
an angle θ. Ordering of the spheres takes place at the meniscus.  
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with a larger number of layers. Further, colloid size and temperature are not 
independent parameters. Larger colloids will need higher temperatures to prevent 
sedimentation. 

The aim of the present work was to find the conditions which yield the highest 
optical quality samples. That is, those samples whose optical response was less 
affected by disorder (see chapter 3). In order to do so we have employed the 
vertical deposition method using polystyrene spheres for different temperatures 
(35-65ºC) and concentrations (0.05-0.4%vol.). Spheres grown by means of 
surfactant-free emulsion polymerization were prepared by E. Castillo-Martínez and 
Dr. E. Palacios-Lidón. Its diameter was determined to be 705 and 505 nm by 
comparing the Bragg peak from normal incidence reflectance spectra (for samples 
with sufficient number of layers) with calculated bands assuming a refractive index 
for polystyrene equal to the bulk value (see chapter 3). These values were in 
agreement with 712 and 511 nm (with 3% polydispersity) obtained from 
transmission electron microscopy (TEM). Spheres purchased from Duke scientific 
were estimated to have a diameter of 1090 nm from reflectivity measurements, 
which coincided with the value of 1100 nm provided by the suppliers (1% 
polydispersity). In the sphere diameter range 505-705 nm we found similar results, 
in terms of sample thickness and optical quality, independent of sphere size. For 
spheres with a diameter of 1090 nm, these conditions varied. 

The substrates employed were clean hydrophilic glass microscope slides or 
pieces of a crystalline silicon wafer. Glass microscope slides were placed in HCl 
33% overnight and then rinsed in de-ionized water and dried in a nitrogen flow. 
Silicon wafers were cleaned for 10 minutes in a HF solution (1%) and then placed 
in a H2SO4/H2O2 solution (3:2 vol.) for 30 minutes. In a typical procedure the 
substrate was placed inside a 20 ml vial containing 8 ml of an aqueous suspension 
of polystyrene spheres. The vial was placed inside an oven where the temperature 
was kept constant with a precision of 1ºC. The substrates were left inside the oven 
over a period of time long enough as to allow for sample growth over a distance of 
1cm along the vertical direction (the lateral dimension was fixed by the substrate 
width; 1.3cm). Therefore samples grown for lower temperatures needed longer 
times.   

It was found that the temperature that yielded samples showing the best optical 
properties was 45ºC for spheres with a diameter of 505-705 nm and 50ºC for the 
1090 nm ones. The time needed to grow a sample with 1cm length was 60 hours in 
the first case and 50 in the second. For lower temperatures, samples grown for the 
same concentration presented a smaller number of layers as well as poorer quality. 
This is probably due to the fact that for lower temperatures, sedimentation 
competes with convective fluxes and the reservoir of particles in the meniscus 
decreases with time. On the contrary, for higher temperatures, thicker samples are 
obtained at the price of lowering the optical quality.  

In general, the thickness of the sample for a fixed temperature could be 
controlled with the colloid concentration. Nevertheless variations of up to 30% in 
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the number of layers present in the central part of the sample (the most 
homogeneous in terms of thickness) could be found. 

Finally we mention that some publications have pointed out the importance of 
other parameters such as relative humidity (RH) of the sample environment (in 
controlling the evaporation rate for a fixed temperature),23 substrate inclination and 
meniscus shape.24 For the samples grown in this research there was no control on 
RH, although it was found that covering the vial with a beaker (volume of 1 litre) 
the sample quality was improved, probably due to a reduction in evaporation rate. 
The best results were for substrates inclined 20º-30º with respect to the vertical. We 
now proceed to present structural characterization of the samples grown under the 
above mentioned conditions. 

 

3. Structural characterization 

a. Optical microscopy: 

Optical microscopy allows for a preliminary study of the samples which yields 
information on the way growth takes place. Figure 2 shows typical photographs 
taken in reflectance with a 10x microscope objective, from samples made out of 
505 nm spheres grown under the above mentioned optimal conditions on glass 
substrates.  

In figure 2b we can see the initial stages of sample growth which takes place at 
the top of the sample. The arrow indicates the growth direction which is parallel to 
the meniscus moving direction. It can be appreciated how the sample grows 
forming terraces of increasing number of layers in its first stages. The color of the 
terraces varies from brown (one layer) to pink (eight layers). It is interesting to note 
how at the boundary between two terraces with different number of layers, a shiny 
green region appears. The reason for this color will be discussed below. Although 
these colors are particular for samples with this sphere diameter, a similar behavior 
was observed for larger colloids.  

In the central region of the sample (~1.5mm away from the edges and the top) 
we observe a more homogeneous distribution of the terraces. Figure 2c shows a 
typical region where the number of layers changes from 8 (top) to 9 (bottom). The 
green shiny regions at the terrace boundaries mentioned above seem to disappear as 
the number of layers increases. In the central region only a few spots are found. 
Regions with a constant thickness usually have dimensions of 0.5-3mm in the 
growth direction and up to 1cm in the direction perpendicular to it. In these regions 
cracks are apparent as dark lines parallel to the growth direction. These cracks are 
common to this type of samples, and are believed to be originated during the 
drying process.11  

As we move towards the lateral edges of the sample the morphology changes 
quite abruptly as shown in figure 2d. We can see how at the edge the sample 
presents the same terrace-like shape as at the top. As we move towards the center, 



Fabrication and structural characterization of artificial opals 

 30

the boundaries between terraces are curved, indicating the transition from the 
vertical behavior at the edge, to the horizontal one at the center. Further, the above 
mentioned cracks curve away from the vertical towards the edge, as indicated by 
the arrow. This is probably due to a deformation of the meniscus at the substrate 
edge, something which may be observed with the naked eye as the substrate is 
placed in the vial. The way this deformation influences crystalline order will be 
discussed below. As observed at the top, shiny green regions are apparent at the 
boundaries between the terraces.      

If the substrate presents regions that are not hydrophilic, the growth at the top 
of the sample does not occur along a line parallel to the meniscus, but presents an 
abrupt profile. For such samples, shiny green regions up to 1mm in size may be 
found (figure 3).  

 

Figure 2: (a) Schematic representation of substrate (grey) and sample (pink). 
The vertical arrow indicates the growth direction. Rectangles indicate regions 
from where the following pictures were collected in samples made out of 
505nm spheres: (b) Top of the sample showing initial stages of growth. Arrow 
indicates growth direction. (c) Central region. (d) Edge of sample, close to 
substrate edge. The curved arrow indicates the direction of cracks. Scale bar 
is 375µm in all three cases.   
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Samples grown on silicon substrates presented similar characteristics as those 
grown on glass. Only certain regions appeared to present no deposit, probably due 
to the fact that were not hydrophilic. 

 

b. Scanning electron microscopy: 

Although optical microscopy gives some valuable information on the 
morphology and growth of the samples, a technique with a larger spatial resolution 
is needed in order to investigate crystalline order at a more local level. In this sense 
Scanning Electron Microscopy (SEM) has been the ideal tool for a more in-depth 
structural characterization of photonic crystals. 

SEM micrographs were obtained with a FEI Quanta 200 model. Before 
observation samples were coated with a thin gold film in order to avoid charging 
effects. Figures 4 and 5 show SEM micrographs corresponding to samples grown 
under the optimal conditions mentioned before. All the images shown correspond 
to samples having 505 nm diameter spheres. For other sphere sizes similar features 
were observed. 

Figure 4a shows a detail of the sample surface. The image was taken from the 
central part of the sample. Hexagonal order characteristic of the {111} planes in an 
FCC structure or the {0001} ones in a hexagonal close packed (HCP) is evident. 
The growth direction is along the horizontal axis of the photograph. A number of 
defects may be appreciated in this image such as dislocations, vacancies and local 
distortions of the lattice originated by polidispersity. Images taken at a lower 
magnification (figure 4b) show the cracks already observed with optical 
microscopy. A tendency is observed for cracks to appear along rows of spheres, 
defining hexagonal patterns. These cracks appear every 50-80 µm. A closer look 
into the regions at both sides of a crack shows that the crystalline orientation is the 
same across the crack. This has led to the belief that these cracks appear in the 
process of drying of the crystal, once the ordering has taken place. 11 

 
Figure 3: (a) Detail of the top of a sample grown on a poorly hydrophilic 
substrate. (b) Shiny green region close to the top of the sample. Scale bars are 
375 µm in both cases.  
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Inspection of the first stages of the crystal growth reveals the terraces already 
observed in optical microscopy. Figure 4c shows an image of this region where the 
number of layers increases from left to right. As the number of layers increases, an 
alternation in the order of the stacked layers can be appreciated, between hexagonal 
and square packing, as mentioned earlier. The origin of the shiny green colors 
observed at the terrace boundaries is originated by these square layers. As a matter 
of fact, if we inspect the large shiny green regions observed in poorly hydrophilic 
substrates, we find rather large areas showing square order parallel to the 
surface(figure 4d). This order seems to remain for layers below the surface one 
(figure 5a). Square order over large regions has been previously observed17,20 and 
associated with {200} families of planes from FCC structures. The order present in 
the samples can not only be observed at the surface but also through the volume of 
the crystal in cleft samples. Figure 5b shows the edge of a sample presenting 
square order, a signature of FCC ordering.25 These planes are not to be mistaken 
with the square ones present at the surface (figure 4d), as these are {200} planes 
not parallel to the surface. Other cleft regions (figure 5c) allow for the observation 

 

Figure 4: SEM images taken from different samples with sphere diameter 505 
nm. Details are given in the text. 
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of hexagonal facets other than the {111}. In these facets, dislocations present at the 
surface are now seen to run the entire crystal.  

Figure 5d shows the bottom of the sample, where the growth process stops 
once the sample is withdrawn from the vial. It can be seen how the crystal ends in 
an abrupt manner at an angle nearly perpendicular to the substrate. This indicates 
that, as opposite to sedimented opals where growth is assumed to happen parallel to 
the surface, here the direction of sample growth is parallel to that of meniscus 
advance. Covering the sample we find a layer of disordered spheres which 
probably forms when the meniscus sweeps over the crystal as it is withdrawn from 
the suspension. 

 

Figure 5: (a)-(d) SEM images taken from different samples with sphere diameter 505 nm. 
Details are given in the text. 

 

c. Optical diffraction: 

From what we have seen so far, the combination of optical and electron 
microscopy gives a good idea on the way samples grow, the presence of disorder 
both at a microscopic and macroscopic level, etc. Another technique which may 
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offer useful information, and which can be considered as complementary to the 
former two is optical diffraction. 

Diffraction patterns obtained with visible light have been observed in colloidal 
photonic crystals presenting a very low refractive index contrast and used to obtain 
information on the order present in the volume of the crystal.26 They were modeled 
in a single scattering approximation as a superposition of diffraction from 2D 
arrays of spheres which are stacked in a certain order. Depending on the geometry 
of the 2D array, as well as the stacking sequence the diffraction pattern will vary. 
For close packed crystals with hexagonal planes parallel to its surface, hexagonal 
or triangular patterns are expected depending on the stacking sequence. For pure 
FCC crystals (ABCABC or CBACBA sequences27) a triangular pattern (C3 
symmetry) is expected. Hexagonal diffraction patterns (C6 symmetry) are obtained 
for HCP (ABAB sequence), random close packed (RCP) or twinned FCC (that is, 
presenting both sequences ABCABC and CBACBA) structures. 

These patterns have also been observed in a number of publications concerning 
opal-based photonic crystals, all of them in the form of thin film opals grown by 
the vertical deposition method. Vlasov et al.17 observed a hexagonal diffraction 
pattern in reflection and associated it with Bragg diffraction by the {220} families 
of planes. Later, Goldenberg and co-workers21,28 observed hexagonal and triangular 
diffraction patterns from thin film opals both in reflection and transmission and 
interpreted them as diffraction from successive 2D hexagonal arrays, as in previous 
research with colloidal crystals. In reference 22 hexagonal diffraction patterns 
projected on the sample itself were associated with diffraction from the first layer 
of spheres. In the last two cases, the pattern was modeled with the grating equation 
mλ=d(sinφ+sinθ)n. Here λ is the wavelength of light in vacuum, m is the diffraction 
order, d the grating period (0.866·dsph for a hexagonal 2D array of spheres with 
diameter dsph), φ is the angle between the incident beam and the sample normal, θ is 
the angle between the diffracted beam and the sample normal and n the refractive 
index of the surrounding medium (air in the first case and glass in the second). 

In order to extract structural information about our samples we have studied 
the transmitted diffraction pattern of laser beams. Figure 6 shows some 
photographs, for a sample consisting of spheres of 705 nm diameter and the 476 
nm line from an argon laser, collected on a screen placed 5 cm away from the 
sample and parallel to it. Similar patterns were also observed in reflection. 

Figures 6b-6d show the diffraction pattern obtained for samples having 1, 2 
and 3 layers. The diffraction pattern evolves from the characteristic hexagonal one 
corresponding to a close-packed monolayer to a triangular pattern indicating FCC 
ordering if we assume the single scattering model (SSM) predictions. As we 
displace the beam along the sample the orientation of the pattern remains 
unchanged.  

If the sample thickness is increased to 6 layers, the diffraction pattern is of the 
hexagonal type (figure 6e). If we now lower the refractive index contrast of the 
sample by infiltrating it with ethanol, the pattern recovers the C3 symmetry. 
Further, different regions may be found where the pattern changes from three spots 
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to the complementary ones (figures 6f and 6g). According to the SSM this would 
indicate the existence of FCC regions with reversed stacking sequences.  

 

 

Figure 6: (a) Diagram of diffraction set-up. (b-j) Diffraction patterns 
collected from different samples. Details on the photographs are given in the 
text. 
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Hexagonal patterns for samples having 20 layers present spots which are 
narrower along the circumference which joins them (figure 6h). Lowering the 
refractive index contrast we recover the C3 symmetry, but now all spots remain 
visible (figure 6i). Broadening of the spots along the circumference is a signature 
of randomness in the plane. This coincides with the SEM photographs of regions 
having fewer layers (i.e. figure 4c), where a less dense packing was observed and 
an in-plane mosaic spread is evident. Finally, square patterns may be observed 
(figure 6j) in the large green regions which appear for poorly hydrophilic 
substrates. This also agrees with SEM observations (figure 4d). Here, besides the 
broadening, diffraction spots are superimposed on a circular halo which resembles 
Debye-Scherrer rings of fluid-like structures, indicating worse crystalline quality.   

If we follow the arguments from single scattering models, the fact that with the 
number of layers the C3 symmetry of the pattern is lost could indicate that FCC 
ordering disappears for thick samples. Although it is not likely that single 
scattering arguments will hold for systems having such a high refractive index 
contrast as ours, except for the case of few layers and of contrast lowering by 
ethanol infiltration.  

Although extracting information about the bulk order is not immediate due to 
the doubtful validity of single scattering arguments in our systems, the observation 
of square facets in SEM inspection is a clear signature of FCC ordering. 
Nevertheless information regarding sample growth and orientation may be 
extracted from the above mentioned patterns. Since the diffraction pattern can be 
considered as the Fourier transform of the periodic array present in the surface, 
diffraction spots may be assigned to reciprocal lattice points. Therefore by rotating 
the diffraction pattern 30º we obtain the arrangement of spheres in the direct space, 
as shown in figure 7. It is seen then that the way spheres are ordered into a periodic 
array by the moving meniscus, is in the form of rows parallel to the direction in 
which the meniscus moves, indicated in the SEM picture of figure 7c by an arrow. 
This confirms observations of the samples under SEM (figure 4a). Here we must 
note that this observation contradicts the claim in reference29 that spheres arrange 
in rows parallel to the meniscus for samples grown in similar conditions, and 
agrees with observations of 2D hexagonal monolayer formation.12 The fact that the 
pattern remains unchanged as we displace the beam along the sample further 
confirms SEM observations of preserved order at both sides of cracks. If the beam 
reaches the lateral edges of the sample we observe that the hexagonal/triangular 
pattern rotates towards the edge. This coincides with the curving of the cracks 
observed with optical microscopy. As spheres tend to order in rows perpendicular 
to the meniscus, its deformation at the substrate edges brings about a deviation of 
crystal orientation in the plane parallel to the surface. Besides giving valuable 
information on the morphology and growth of the samples, these diffraction 
patterns may also be used for sample orientation when angle resolved 
measurements are carried out, as will be discussed in chapter 3. 
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Finally we have studied the angular evolution of the diffraction patterns on the 
screen obtained with laser beams and fitted them to the grating equation for 
samples with different sphere diameters.a The values obtained were 521±4 nm, 
726±3 nm and 1130±2 nm, slightly above the ones mentioned previously but 
within the observed dispersion. The results were reproducible as the sample was 
rotated 60º around an axis parallel to its normal, evidencing C6 symmetry.   

 

4. Conclusions and future work 

In this chapter, after giving a brief summary of previous results on opal based 
photonic crystal fabrication by the vertical deposition method, the experimental 
conditions for the growth of samples with high optical quality are given. These 
samples consist of polystyrene spheres deposited on glass microscope slides or 
silicon wafers. 

Afterwards, a structural characterization of the samples grown has been 
presented. By means of optical microscopy information is gathered on the way 
samples grow. The initial stages of sample growth take place forming terraces of 
increasing number of layers at the sample top and lateral edges which yields a 
homogeneous region in the central part. Cracks appear perpendicular to the 
meniscus. 

SEM inspection allows obtaining structural information at a more local level. 
Besides detecting several types of defects (dislocations, cracks, point defects, etc.), 
evidence of FCC ordering with different orientations (namely {111} and {200} 

                                                      
a Results for the 1090 spheres were obtained by Dr. Matteo Galli at Dipartimento di Fisica 
“A. Volta”, Universita di Pavia (Italy).  

 

Figure 7: (a) Diagram of the diffraction pattern projected on the screen. Dashed 
hexagon represents the Brillouin zone of the surface 2D lattice. (b) Fourier 
transform of the pattern representing the real space distribution of the spheres. 
(c) SEM photograph of the sample oriented along its vertical axis (parallel to the 
growth direction, indicated by an arrow). 
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planes parallel to the surface) is found. Further, observations regarding the growth 
process are made which complement those from optical microscopy. 

Finally optical diffraction experiments are carried out. Results may be 
associated with predictions from colloidal crystal research for thin samples and low 
refractive index contrast. For thicker samples, although an interpretation is not 
immediate, optical diffraction provides a means of orienting the samples and 
confirms previous observations by SEM concerning sample growth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

 39 

5. References

                                                      
1 Sozuer, H. S., Haus, J. W. and Inguva, R. “Photonic Bands - Convergence Problems with 

the Plane-Wave Method.” Physical Review B 45, 13962-13972 (1992).  
2 Vlasov, Y. A., et al. “Enhancement of optical gain of semiconductors embedded in three-

dimensional photonic crystals.” Applied Physics Letters 71, 1616-1618 (1997). 
3 Martorell, J., Vilaseca, R. and Corbalan, R. “Second harmonic generation in a photonic 

crystal.” Applied Physics Letters 70, 702-704 (1997). 
4 Markowicz, P. P., et al. “Dramatic enhancement of third-harmonic generation in three-

dimensional photonic crystals.” Physical Review Letters 92 (2004). 
5 Koerdt, C., Rikken, G. and Petrov, E. P. “Faraday effect of photonic crystals.” Applied 

Physics Letters 82, 1538-1540 (2003). 
6 Ochiai, T. and Sanchez-Dehesa, J. “Superprism effect in opal-based photonic crystals.” 

Physical Review B 64, art. no.-245113 (2001). 
7 Astratov, V. N., et al. “Optical spectroscopy of opal matrices with CdS embedded in its 

pores: Quantum confinement and photonic band gap effects.” Nuovo Cimento Della 
Societa Italiana Di Fisica D-Condensed Matter Atomic Molecular and Chemical Physics 
Fluids Plasmas Biophysics 17, 1349-1354 (1995). 

8 Mayoral, R., et al. “3D long-range ordering in an SiO2 submicrometer-sphere sintered 
superstructure.” Advanced Materials 9, 257-260 (1997). 

9 Astratov, V. N., et al. “Photonic band gaps in 3D ordered fcc silica matrices.” Physics 
Letters A 222, 349-353 (1996). 

10 Miguez, H., et al. “Control of the photonic crystal properties of fcc-packed 
submicrometer SiO2 spheres by sintering.” Advanced Materials 10, 480-483 (1998). 

11 Jiang, P., Bertone, J. F., Hwang, K. S. and Colvin, V. L. “Single-crystal colloidal 
multilayers of controlled thickness.” Chemistry of Materials 11, 2132-2140 (1999). 

12 Denkov, N. D., et al. “Mechanism of Formation of 2-Dimensional Crystals from Latex-
Particles on Substrates.” Langmuir 8, 3183-3190 (1992). 

13 Denkov, N. D., et al. “2-Dimensional Crystallization.” Nature 361, 26-26 (1993). 
14 Dimitrov, A. S. and Nagayama, K. “Continuous convective assembling of fine particles 

into two-dimensional arrays on solid surfaces.” Langmuir 12, 1303-1311 (1996). 
15 Norris, D. J., et al. “Opaline photonic crystals: How does self-assembly work?” 

Advanced Materials 16, 1393-1399 (2004). 
16 Pieranski, P., Strzelecki, L. and Pansu, B. “Thin Colloidal Crystals.” Physical Review 

Letters 50, 900-903 (1983).  
17 Vlasov, Y. A., Bo, X. Z., Sturm, J. C. and Norris, D. J. “On-chip natural assembly of 

silicon photonic bandgap crystals.” Nature 414, 289-293 (2001). 
18 Meng, Q. B., Gu, Z. Z., Sato, O. and Fujishima, A. “Fabrication of highly ordered 

porous structures.” Applied Physics Letters 77, 4313-4315 (2000). 



Fabrication and structural characterization of artificial opals 

 40

                                                                                                                                       
19 Ye, Y. H., LeBlanc, F., Hache, A. and Truong, V. V. “Self-assembling three-dimensional 

colloidal photonic crystal structure with high crystalline quality.” Applied Physics 
Letters 78, 52-54 (2001). 

20 Meng, Q. B., et al. “Assembly of highly ordered three-dimensional porous structure with 
nanocrystalline TiO2 semiconductors.” Chemistry of Materials 14, 83-88 (2002). 

21 Goldenberg, L. M., et al. “Ordered Arrays of large latex particles organized by vertical 
deposition.” Langmuir 18, 3319-3323 (2002). 

22 Wostyn, K., et al. “Optical properties and orientation of arrays of polystyrene spheres 
deposited using convective self-assembly.” Journal of Chemical Physics 118, 10752-
10757 (2003). 

23 McLachlan, M. A., Johnson, N. P., De La Rue, R. M. and McComb, D. W. “Thin film 
photonic crystals: synthesis and characterisation.” Journal of Materials Chemistry 14, 
144-150 (2004). 

24 Im, S. H., Kim, M. H. and Park, O. O. “Thickness control of colloidal crystals with a 
substrate dipped at a tilted angle into a colloidal suspension.” Chemistry of Materials 15, 
1797-1802 (2003). 

25 Miguez, H., et al. “Evidence of FCC crystallization of SiO2 nanospheres.” Langmuir 13, 
6009-6011 (1997). 

26 Amos, R. M., et al. “Fabrication of large-area face-centered-cubic hard-sphere colloidal 
crystals by shear alignment.” Physical Review E 61, 2929-2935 (2000). 

27 Ashcroft, N. W. and Mermim, N. D. "Solid State Physics", Saunders College Publishing, 
Philadelphia (1976). 

28 Goldenberg, L. M., J. Wagner, J. Stumpe, B. R. Paulke and E. Gornitz. “Optical 
properties of ordered arrays of large latex particles.” Physica E-Low-Dimensional 
Systems & Nanostructures 17, 433-435 (2003). 

29 Velikov, K. P., Christova, C. G., Dullens, R. P. A. and van Blaaderen, A. “Layer-by-layer growth 
of binary colloidal crystals.” Science 296, 106-109 (2002). 



 

 
 
 

                                         CHAPTER 3 

Optical study of the L-pseugogap in thin 
film opals 
 

 

1. Introduction 

Since the early stages of photonic crystal research, calculated band structures 
have been used for the design of systems with certain properties (i.e. existence of a 
PBG, anomalous refraction, etc.). These predictions were then employed as 
guidelines for the fabrication of the crystals. In most cases, the predictions were 
aimed at systems having forbidden frequency intervals which were then 
characterized by means of reflectance or transmittance spectroscopy.  

Energy bands have also been employed as a means of control in the process of 
photonic crystal fabrication. In the particular case of artificial opals, the spectral 
position of the L-pseudogap (either by direct comparison with calculated bands or 
by using a modified Bragg´s law) has been used to determine lattice parameters 
(and therefore sphere sizes),1-3 pore filling fraction in the fabrication of composite 
and inverse opals of different materials, 1-7 deformations (accidental or intentional) 
of the system during its synthesis,8,9 etc. 

Energy bands are calculated assuming a perfect and infinite periodic system, 
while real systems to be characterized are certainly finite and present a number of 
imperfections. This brings up a number of questions on the validity of the 
comparison between experimental results and calculated bands. From a practical 
point of view one may ask oneself for what size does the crystal reach the infinite 
crystal behaviour (in terms of optical properties) so that a comparison with the 
band structure is reliable. From a more fundamental perspective, it is interesting to 
know how the optical properties of the crystal evolve as a function of its size.  

In this chapter a study is presented on the evolution of the L-pseudogap as a 
function of the number of {111} planes for thin film opals made of polystyrene 
spheres. The study is carried out by means of reflectance and transmittance 
spectroscopy along the ΓL direction in reciprocal space, that is, normal incidence 
on the {111} planes parallel to the surface. The evolution of several parameters 
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usually employed for comparing the experimental peaks with the pseudogap 
extracted from the bands (such as the full width at half maximum, FWHM, its 
centre and edges) is studied as a function of sample thickness as well as substrate 
nature. Experimental results are found to be properly described in a qualitative 
manner by predictions obtained with the Scalar Wave Approximation (SWA).  

Afterwards, the influence of disorder -which is known to modify the optical 
response of photonic crystals- on the previous measurements is considered in order 
to elucidate whether the former results may be explained solely in terms of finite 
size effects and the interaction between the crystal and electromagnetic radiation. 

Once the threshold thickness for which the optical properties of the system 
reach a stationary behaviour has been determined, angle resolved reflectivity is 
used to experimentally determine the band structure along high symmetry 
directions.  

 

2. Optical properties: finite size effects 

The samples used have been described in Chapter 2. They consist of thin film opals 
made out of polystyrene spheres. Normal incidence reflectance and transmittance 
measurements were carried out with a microscope attached to a FTIR spectrometer 
(Bruker  IFS-66/S). For these measurements a 4x objective with a 1.5mm aperture 

 

Figure 1: (a) Band structure for a wave vector parallel to the ΓL direction in 
a polystyrene opal. (b) Reflectance and (c) transmittance spectra calculated 
for a sample 25 layers thick. All calculations were performed with the SWA. 
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was used. A tungsten halogen lamp was used as light source. The probe beam had a 
diameter at its focus of 375nm and an angular aperture of 6º. Detection was 
performed with a nitrogen cooled InSb detector. 

The spectral region considered for this study comprises reduced frequencies 
0.35<a/λ<0.9. Along the ΓL direction, the band structure in this region presents a 
linear behavior similar to that of a homogeneous medium which splits at the edges 
of the Brillouin zone as a consequence of Bragg diffraction by the {111} planes 
(figure 1a). In the absence of absorption and/or disorder reflectance and 
transmittance measurements provide identical information as all light that is not 
reflected is transmitted. This can be appreciated in figure 1, where the band 
structure is represented together with reflectance and transmittance spectra 
calculated with the SWA model.10 

The spectra present high (low) reflectance (transmittance) for those frequencies 
contained in the pseudogap. Transparency regions filled with secondary 
oscillations are found at both sides of the gap, in the spectral region where 
calculated bands are linear. These oscillations are Fabry-Perot resonances 
originated by interference of light reflected at both interfaces of the sample.10   

In the presence of disorder light propagating through the crystal is scattered by 
the different imperfections of the lattice and the incident beam is attenuated, a 
diffuse cone originating around it. This affects reflectance and transmittance 
spectra in different manners. Reflectivity peaks become less intense,11,12 rounded in 
shape,3 asymmetric and may even become spectrally wider in the presence of a 

 

Figure 2: Reflectance (thin line) and transmittance (thick line) spectra 
measured at normal incidence on a sample 25 layers thick grown on a glass 
substrate. 
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mosaic spread.13 Fabry-Perot oscillations at both sides of the peak lose definition. 
On the other hand transmission increases for those frequencies contained in the 
pseudogap, while decreasing for those frequencies outside.14-16 Transmission may 
also present spectral broadening by a mosaic spread.17 These changes may be 
appreciated in figure 2, where reflectance and transmittance spectra measured at 
normal incidence on a sample 25 layers thick grown on a glass substrate are 
presented. 

In a disordered sample the transmittance outside the pseudogap decreases with 
sample thickness as well as with refractive index contrast and thus hampers the 
determination of parameters such as the FWHM commonly used to compare 
experimental results with calculated bands. This is the reason why reflectance 
spectra are the customary measurements to compare with theory. We will then 
concentrate on this type of measurements to study the evolution of the optical 
response of our samples as a function of thickness. In particular, attention will be 
paid to the evolution of the reflectance peak; its FWHM, centre and edges, all 
being regularly used for comparison with energy bands.    

The band structure was calculated both, with the plane wave expansion method 
(PWEM)18 and with the SWA model. Since the band structure represents the 
dispersion relation of the infinite crystal, it can not account for the evolution of the 
optical properties of the finite system. In order to model this we used spectra 
calculated with the SWA. Figure 3 shows experimental and calculated reflectance 
spectra for a sample grown on a glass substrate together with the corresponding 
energy bands. Both spectra present a maximum in reflectance for those frequencies 
contained in the stop band, surrounded by secondary oscillations where the 
dispersion relation behaves linearly. These Fabry-Perot oscillations may then be 
used to estimate the sample thickness provided we know the effective refractive 
index neff of the crystal. For inhomogeneous media, neff is usually defined in the 
long wavelength limit (λ→∞) where the wavelength is too large to “see” the 
inhomogeneities of the structure. But then again, photonic crystals are not usual 
inhomogeneous media since multiple scattering takes place in a coherent way 
which leads to the formation of a well defined dispersion relation divided into 
bands. As long as the incident beam can couple to these bands, the crystal behaves 
as a transparent medium with a neff which may be estimated from the slope of the 
band.19 In order to find the crystal thickness we consider secondary oscillations in 
the low energy region below the pseudogap. For these frequencies the slope of the 
band hardly varies and we may then associate a well defined neff (1.41) to the 
crystal.  

If we compare the two spectra in figure 3 we can appreciate how the spectral 
position of the Bragg peak and the Fabry-Perot oscillations coincide, although it 
can be seen that the latter present a mismatch for reduced frequencies above 0.85 
where experimental ones seem to become closer to each other. This agrees with the 
fact that bands calculated exactly with the MPB present a smaller slope at these 
frequencies than those calculated with the SWA, which implies a larger effective 
refractive index. This difference in the calculated bands is likely associated to the 
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fact that the SWA does not take into account higher order diffractions by {111} 
planes, as well as diffraction by other families of planes (see appendix 1). Besides 
these minor discrepancies we can see that both, the intensity as well as the width of 
the peaks, present differences. These will be dealt with later on. 

 

Figura 3: (a) Band structure for a polistyrene opal calculated with the PWEM 
(solid line) and the SWA (dashed line). Reflectance spectra measured (thick 
line) and calculated with the SWA (thin line) for an artificial opal 23 layers 
thick.  

We now proceed to study the evolution of the reflectance peak; its FWHM, 
centre and edges as a function of crystal thickness. This is done for samples grown 
on glass and crystalline silicon substrates. Results are presented in figure 4. 
Experimental results appear as open (glass substrate) and solid circles (silicon 
substrate). Horizontal lines correspond to the spectral position of the pseudogap for 
the infinite crystal as extracted from band structure calculation performed with the 
PWEM (dashed line) and SWA (solid line). Curves indicate predictions obtained 
with SWA for finite samples grown on silicon (solid) and glass substrates (dashed).  

Figure 4a represents the evolution of the FWHM edges. For both types of 
substrate we can appreciate a similar trend, although for the case of the silicon 
substrate the edges are displaced to larger frequencies. In both cases we can see 
that for samples thicker than 35 layers experimental results converge to the 
pseudogap edges predicted by the PWEM. This behavior is qualitatively 
reproduced by the SWA results.  
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Figure 4: Evolution of the edges ω+, ω- (a), center ωc (b), and FWHM itself 
∆ω (c) as a function of the number of {111} planes parallel to the crystal 
surface. Experimental results correspond to samples grown on silica (open 
circles) and silicon (closed circles) substrates. Dotted and solid curves 
represent predictions obtained with the SWA for those systems. Horizontal 
lines correspond to predictions for the infinite crystal obtained from bands 
calculated with PWEM (dashed) and SWA (solid).   
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The difference between both types of substrate becomes even more 
pronounced if we consider the centre of the FWHM (figure 4b). Here we see that, 
depending on the type of substrate, glass or silicon, the peak centre will either 
monotonically increase or decrease in frequency as a function of sample thickness. 
Finally, both sets of data tend to the infinite crystal limit extracted from the bands, 
although in the case of the glass substrate this happens for thinner samples than in 
the silicon one, as only ten layers are needed. Again SWA predictions qualitatively 
coincide with experimental results, and converge to the limit extracted from the 
bands calculated under that approximation. 

Since the only difference between both substrates considered is their refractive 
index the above results indicate that in the initial stages of formation of the Bragg 
peak, which will ultimately reveal the existence of a forbidden frequency interval, 
and which happens as a consequence of multiple scattering between crystal planes, 
reflections at the crystal boundaries are relevant. As one would expect, as the 
thickness of the crystal increases the effect of the interfaces decreases and the 
internal reflections dominate the optical response as indicated by the tendency of 
experimental results towards the infinite crystal limit. 

If we now consider the evolution of the FWHM (figure 4c), we find that the 
experimental results coincide for both substrates. The FWHM of the reflectance 
peak decreases with crystal thickness until reaching a stationary value, close to that 
predicted by the PWEM for the infinite crystal, in samples 35 layers thick. The 
SWA predictions reproduce qualitatively this trend, only they seem to overestimate 
the experimental value. Besides the limitations of the SWA, which only account for 
one third of this overestimation (see appendix 1 and horizontal lines in figure 4d), 
another source of error could be the fact that the measurements were performed 
with a certain angular aperture. This, however would lead to a broadening of the 
experimental peak which can be estimated to be as small as 2%. The possible 
impact of structural disorder will be dealt with in the following section. 

The FWHM being independent on the substrate used, we can assume this 
parameter as representative of the interaction of the photonic crystal with 
electromagnetic radiation alone in the process of the stop band formation. The 
FWHM can be further used to quantify the finite size effects on the optical 
response of the crystal. Nevertheless, the effect of finitude on the spectral position 
of the Bragg peak must be taken into account since ωc is usually employed for 
determining lattice parameters and filling fractions. Therefore, in the absence of a 
characterization like the one presented here, using ωc could lead to incorrect results 
for thin samples. Specially considering that thin film opals are becoming the most 
spread technique in self assembled photonic crystals, and any application based on 
them will certainly require the use of miniaturized systems.  

In a publication concerning the finite size effects in similar samples (silica thin 
film opals), Bertone et. al20 only considered the evolution of the FWHM. Their 
experimental results were overestimated by SWA predictions for thin samples and 
underestimated for thick samples. This is probably due to the fact that they carried 
out their comparison from transmission measurements in which “a smoothly 
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varying monotonic background” (sic) was subtracted. This background was most 
likely due to disorder, which effect is expected to be more evident for thicker 
samples. Further, in their work no comparison was made with any band structure 
prediction for the infinite crystal.  

 

3. Effects of disorder 

Next, the effect of structural disorder in the previous measurements is 
investigated in order to determine whether it contributes to the observed FWHM 
or, on the contrary, experimental results are solely due to finite size effects and the 
interaction between electromagnetic radiation and the photonic crystal.  

As mentioned earlier, in the presence of disorder the optical properties of the 
sample will be altered with respect to those of the perfect crystal. On the one hand 
imperfections in the unit cell such as missing spheres or spheres displaced from its 
lattice position or having size dispersion will generate scattering. In the presence of 
a mosaic spread, with the crystal comprising several domains with their normal 
oriented in different directions, the Bragg peak in normal incidence may present 
inhomogeneous broadening. In our case we do not expect such broadenings due to 
the fact that the sample is grown on substrates flat within a few nanometers over 
distances much larger than the probe beam. SEM observations further confirm this, 
as inspection of cleaved samples evidenced domains which run the entire crystal. 
Stacking faults in the direction parallel to the surface are also a common type of 
disorder in opal based photonic crystals. Since this type of disorder does not affect 
the periodicity in the probe direction we do not expect that it modifies the optical 
response, at least in the spectral region of interest.21,22   

According to the above, we expect the main contribution from disorder in our 
case to be the attenuation of the incident beam with the consequent generation of 
diffuse intensity. This will affect the optical properties in a different way 
depending on the spectral region under consideration. This can be appreciated if we 
estimate the diffuse intensity as a function of reduced frequency. Since polystyrene 
does not absorb for the frequencies considered,23 diffuse intensity D may be 
deduced from reflectance and transmittance measurements as D=1-R-T. That is, as 
all light that is not reflected or transmitted in the incident direction. This is shown 
in figure 5 for a sample 38 layers thick, together with the corresponding band 
structure.  

Experimental spectra of scattered light present three distinct features: a monotonic 
increase for those frequencies outside the pseudogap (which corresponds to the 
commonly observed decrease in transmitted intensity2-17), an enhancement at its 
low frequency edge and an abrupt decrease for those frequencies within it. This 
behaviour may be explained taking into account the way light propagates inside the 
crystal in this spectral range as well as the band structure for frequencies adjacent 
to the incident one.17,24  
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Figure 5: (a) Band structure calculated with the PWEM. (b) Reflectance, (c) 
transmittance and (d) diffuse intensity spectra for a sample 38 layers thick. 
Horizontal dashed lines represent the theoretical edges of the pseudogap. 

As mentioned previously, in the presence of disorder light propagating through 
the crystal will eventually scatter, most likely elastically, and this will change its 
propagation direction within the crystal. That is, its wave vector will change by an 
amount ∆k. For those frequencies at the pseudogap edges photonic bands flatten 
and light spends a long time inside the crystal (for a perfect infinite crystal 
photonic modes corresponding to these frequencies are stationary waves). 
Therefore the probability for scattering events to take place increases. One would 
therefore expect an enhancement in diffuse intensity. On the other hand, for those 
frequencies contained in the pseudogap, light is exponentially attenuated. 
Therefore the probability of light being scattered will be smaller than for 
frequencies out of the pseudogap or at its edges. The penetration length inside the 
crystal being a minimum for those frequencies near the pseudogap centre, one 
would expect a smaller contribution to the scattered intensity for them. 

According to the above, the diffuse intensity spectra should present a 
symmetric behavior with respect to the pseudogap centre, with maxima at its edges 
and a dip within it. The experimentally observed asymmetry can be accounted for 
by the band structure for directions adjacent to the incident one. That is, for those 
directions along which scattered intensity will propagate.24  
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Figure 6: Band structure calculated for a wave vector parallel to the ΓL 
direction in reciprocal space (left panel) and for a set of adjacent wave 
vectors with their parallel component contained in the hexagonal facet of the 
Brillouin zone (right panel).  

Plotted in figure 6 are the bands for a wave vector k parallel to the ΓL direction 
(left panel) and for a set of adjacent wave vectors with their tip in the hexagonal 
facet of the Brillouin zone (right panel). The bands for such a set of wave vectors 
are identical independent of the direction in the hexagonal facet provided we are 
not close to the edges. As the parallel component of the incident beam increases 
(that is, as the angle of propagation with respect to the ΓL direction increases) the 
pseudogap shifts towards higher frequencies in accordance with Bragg´s law. 
Therefore, for scattering events taking place for frequencies close to the low energy 
edge, accessible states will be available for small ∆k and are therefore more 
probable. On the contrary, as we move to higher frequencies, the ∆k needed for a 
scattered photon to find an allowed state is larger and the process becomes less 
probable. This explains that we only observe an enhancement of diffuse intensity 
for the low frequency edge of the pseudogap, and that the minimum happening 
inside it is markedly asymmetric.   

     It is interesting to explore the contributions to the total diffuse intensity in 
reflection and transmission. Some preliminary measurements were carried out with 
an integrating sphere (CARY 5E spectrophotometer). Diffuse reflectance 
measurements were readily available with the proper sphere configuration. For the 
diffuse transmission some modifications were needed. Since the sphere only allows 
for total transmission measurements, the zero order beam had to be blocked in 
order to obtain the diffuse contribution. A quantitative comparison between the 
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results obtained (represented in figure 7) and the previous ones is not feasible since 
the probe beam was rather large (1.5 cm), so that regions with different thicknesses 
(10-14 layers) were simultaneously probed.  

Nevertheless a number of things can be noted. In the diffuse reflectance we 
observe a small background, over which an enhancement appears for those 
frequencies contained in the pseudogap. This enhancement is more pronounced 
towards the red edge. On the contrary, for transmission the background is higher 
and the pseudogap region presents a lower intensity, also larger for small 
frequencies. The line shape of the diffuse intensity, estimated as the sum of diffuse 
reflectance and transmittance, reproduces the previously mentioned behavior with 
an enhancement at the red edge of the Bragg peak followed by a decrease with 
respect to the monotonically increasing background. 

 

Figure 7: Total diffuse reflectance (bottom), transmittance (middle) and their 
sum (top) for a sample grown on a glass substrate with 10-14 layers, 
collected with an integrating sphere. Insets show the configuration used for 
each measurement. S represents the sample and BS the beam stop for the zero 
order transmitted beam. 
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A detailed analysis of the angular distribution of both, diffuse reflectance and 
transmittance, would be interesting as it seems that the behavior observed for the 
overall diffuse intensity results as a combination of the two. Recently, a study of 
the angular distribution of diffuse transmission was presented for strongly photonic 
crystals,25 and successfully modeled by means of diffusion theory. 

 
Figure 8: (a) Diffuse intensity measured as 1-R-T for samples with different 
thickness grown on glass substrates.1-5 correspond to samples having 10, 15, 
25, 35 and 45 layers. (b) Position of the diffuse intensity enhancement (open 
circles) and FWHM edges (closed circles) as a function of the number of 
layers.  

If we now represent the diffuse intensity spectra measured as 1-R-T for a 
number of samples with increasing thickness (figure 8) we find a behavior common 
to all of them. The diffuse intensity enhancement present for low frequencies and 
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the inhibition which follows it are present in samples as thin as 10 layers. As the 
thickness of the crystal increases we see how the enhancement becomes more 
defined and shifts towards high frequencies. Also the region of inhibition narrows, 
and its recovery for high frequencies becomes more abrupt. 

Since the existence of both enhancement and inhibition is a consequence of the 
band structure of the system, its existence for samples only 10 layers thick and its 
further evolution can be considered as a signature of the band formation. As a 
matter of fact, if we compare the evolution of the enhancement feature with that of 
the low frequency edge of the FWHM (figure 8b) we can appreciate an analogous 
behavior which converges with the number of layers. Since the enhancement 
should take place right at the red edge of the pseudogap (where penetration length 
is a maximum, and the cone of forbidden directions a minimum), its convergence 
with ω+ would indicate the validity of this parameter to determine the pseudogap in 
samples with an appropriate thickness.   

A similar behavior of the diffuse intensity was observed by Astratov and co-
workers17 for bulk artificial opals. In their work a double enhancement, with barely 
any inhibition in between, was observed and associated to the edges of the 
pseudogap. The existence of a rather large (±5º) mosaic spread in their samples 
made an exact association between enhancement and pseudogap edges difficult. 
Further, no comparison with calculated bands was presented. 

In order to determine the effect that scattering by defects could have on the 
measurements presented in figure 4, we have compared the FWHM of samples 

 

Figure 9: FWHM for samples having the same thickness (grouped by symbols) 
but presenting a different reflectivity. 
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which, having the same number of layers presented a lower reflectivity, indicating 
a larger effect of disorder. To carry out these measurements we employed samples 
grown at temperatures between 55ºc and 40ºc. The results are shown on figure 9. 
Here we can see that, for variations in reflected intensity above 15%, no noticeable 
changes in the FWHM are observed, or in ω0 for that matter. Thus it seems that, 
although the existence of a stronger diffuse scattering for those frequencies near the 
stop band edges may affect the FWHM of the reflectivity peak, it is probably not 
significant in our case. Therefore we can consider the observed FWHM as a 
combination of finite size effects and photonic interaction of the system.      

Although reflectance measurements are better suited for comparison with 
calculated bands, transmittance ones yield information on the propagation of light 

 

Figure 10: (a) Minimum transmittance measured as function of crystal 
thickness for samples grown on glass slides (circles) together with theoretical 
predictions from the SWA (lines). (b) Same results for the logarithm of the 
transmittance.   
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through the entire crystal thickness. From the latter one may extract the extinction 
length (lext) defined as the distance light must travel inside the crystal in order to be 
attenuated by a factor e. In figure 10 we have plotted the maximum attenuation of 
the transmitted beam as a function of crystal thickness and compared it with the 
SWA predictions. In figure 10a T is plotted versus the number of layers and an 
excellent agreement is observed for experiment and theoretical predictions.  

In order to estimate lext we plot LnT versus thickness, as in figure 10b. It can be 
seen how experiment and theory present an excellent agreement for samples up to 
10 layers thick, where the linear behavior has not been achieved yet. This behavior 
appears for thicker crystals, and it is evident that experimental results and 
theoretical predictions present a different slope, and therefore a different extinction 
length. Here we have estimated an lext=8.5 {111} planes from the experiment, 
versus the 5 planes predicted by the SWA. The fact that experimental lext exceeds 
the theoretical one has been reported previously for artificial opals15,20. While for 
ideal crystals described in theory the attenuation at gaps is entirely due to Bragg 
diffraction (we may refer to a Bragg attenuation length, lB), in real crystals 
presenting disorder lext is a combined effect of Bragg attenuation and scattering by 
defects causing lext > lB. Numerical simulations performed for 2D crystals26 also 
reproduce this trend, lext increasing with the amount of structural disorder.  

To the present date, there has been no satisfactory relationship between a 
quantification of structural disorder, experimentally observed lext and the 
theoretically predicted lB. Although initially it was suggested14 that the 
experimentally measured lext would be just the addition of extinction associated to 
disorder and Bragg diffraction, the above results would indicate that it is likely a 
combination of both effects.    

 

4. Angle resolved measurements  

Once the threshold thickness for which the optical response of our samples at 
normal incidence in the spectral region of the pseudogap reaches a stationary 
behaviour (comparable to the infinite crystal behavior predicted by the bands), we 
proceed to study the optical properties for adjacent wave vectors whose parallel 
component is directed towards high symmetry points in the first Brillouin zone.  

Experimental measurements were carried out in reflectance using a non-
polarized white light beam extracted from a tungsten lamp. The beam had an 
angular aperture of 3º full angle and a diameter of 1mm. The angular range covered 
in the experiments was restricted to 20º<θ<75º (θ being the angle between the 
incident beam and the sample normal) due to limitations imposed by the 
experimental set-up, represented in figure 11. 

In angle resolved specular reflectance measurements, the geometry of the 
experiment is such that the incident and reflected beam, as well as the normal to the 
sample, are all contained in a plane, known as the diffraction plane (see figure 12). 
In order to orient the diffraction plane with respect to the Brillouin zone, and carry  
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a subsequent comparison with calculated bands, the optical diffraction patterns 
discussed in chapter 2 were used. As it was mentioned, the hexagonal diffraction 
patterns may be associated with points of the 2D reciprocal lattice present at the 
sample surface and therefore can be used to determine its Brillouin zone. Since the 
surface Brillouin zone is just an image of the hexagonal facet of the 3D one with 
identical orientation27, the diffraction pattern may be used to orient the 3D crystal. 
According to this, if the sample is rotated around an axis parallel to the growth 
direction (figure 12a) the diffraction plane coincides with the plane containing the 
points Γ, L and U (K) in the Brillouin zone. If the rotation axis is now 
perpendicular to the growth direction, the diffraction plane contains the Γ, L and W 
points (figure 12b). When orienting the sample in this way no distinction can be 
made between the U and K points, since both are located at the centre of identical 
sides of the hexagonal facet. For our purposes this does not represent an 
inconvenience since bands calculated along the LU and LK trajectories are 
identical for artificial opals.28  

Before carrying out the angle resolved measurements the probed region was 
carefully selected in order to make sure that both, its thickness and orientation are 
well known. This is necessary if one wants a comparison with energy bands to be 
reliable. As the angle of incidence increases the spot size on the sample will 
increase from a circle with a 1mm diameter for normal incidence to an ellipse with 
a ~2.5 mm long axis along the diffraction plane. Therefore sample regions with 
these dimensions were sought for.  

The probed region was restricted to the central part of the sample in order to 
avoid the edges (where crystal orientation deviates due to meniscus shape) and the 
top (where crystal thickness varies abruptly and regions with {200} orientation 

 

Figure 11: Experimental set-up. White light from a tungsten lamp (LS) is 
coupled to an optical fibre (OF) at the end of which an inverted microscope 
objective (MO) is placed which collimates the beam. This impinges on the 
sample (S), which is mounted on a goniometer, with an angle θ. The 
specularly reflected beam is focused on the entrance slit of a monochromator 
(MC) and is then collected by a germanium detector (D). 
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may appear). Crystal orientation was checked with optical diffraction, and 
thickness homogeneity with normal incidence reflectance measurements.  

 
 

Figure 12: Geometry of angle resolved reflectance measurements. The sample 
(S) appears as dark grey on the substrate (M). The incident (kin) and reflected 
(kout) wave vectors define the diffraction plane together with the sample 
normal (N). The growth direction is indicated by an arrow. If the sample is 
rotated around a vertical axis parallel to this direction (a) the diffraction 
plane contains the Γ ,L and U (K) points. If the rotation axis is now 
perpendicular to the growth direction, it is the plane containing the Γ ,L and 
W points that we must consider.  

Figure 13 shows reflectance measurements for different angles of incidence on 
a sample 34 layers thick grown on a glass substrate. There are two sets of 
measurements corresponding to two equivalent orientations of the sample. In figure 
13a the rotation axis is parallel to the growth direction, as sketched in figure 12a. In 
figure 13b the sample has been rotated 60º around its surface normal. According to 
the above discussion in both situations the incident and reflected wave vectors are 
contained in the plane defined by the Γ, L and U (K) points, so that bands 
calculated along those directions were used for comparison (figure 13c). 
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Figure 13 (a) Reflectance spectra (sample 34 layers thick grown on a glass 
substrate) for different angles of incidence as the sample is rotated around an 
axis parallel to the growth direction. (b) Similar measurements after rotating 
the sample 60º around its normal. (c) Calculated bands along the LU 
direction (lines) and experimental results for the situations a) and b) (filled 
and empty circles). The vertical line indicates the boundary of the Brillouin 
zone at the U/K point. 

 

Figure 13c shows a comparison between experimental results and calculated bands. 
To represent the peaks, its central frequency was chosen. It can be seen that for 
small angles of incidence the reflectance peak follows the energy bands which, in 
that spectral region, reproduce Bragg´s law for the {111} family of planes. As the 
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angle of incidence increases, a new reflectance peak appears at higher energies 
(θ~50º). For even larger angles, the Bragg peak disappears while the high 
frequency peak becomes more intense and prevails. This behavior is reproduced by 
the bands which undergo an anticrossing in this frequency range. A similar 
behavior was observed for inverse29 and direct opals30 and explained in terms of 
strong coupling between waves simultaneously Bragg diffracted by the {111} and 
{200} families of planes at the U point in reciprocal space. The situation is 
sketched in figure 14, where the section of the Brillouin zone passing through the 
Γ, X, L and U points is represented (corresponding to figure 12a). For normal 
incidence, a wave vector kin with its tip at the L point is Bragg diffracted by the 
{111} planes so that kin = kr+G111, where G111 is the reciprocal lattice vector 
associated with that family of planes and kr the wave vector of the diffracted beam. 
This situation holds as the incident wave vector sweeps the Bragg plane defined by 
the LU segment with its tip (figure 14b). But as kin reaches the U point, the Bragg 
condition is simultaneously satisfied for the {111} and {200} families of planes. 
Therefore the incident wave vector leads to two diffracted ones kr and k’r, which 
are coupled to kin by reciprocal lattice vectors G111 and G200. In our case this 
situation may be caused by simultaneous Bragg diffraction by {111} and {200} 
planes (U point) or by {111} and {-111} planes (K point). It can be seen that this 
anticrossing appears for a/λ~0.74 and k//~0.6, which coincides with calculated 
bands. As can be seen in figure 13c, the two sets of experimental data coincide, as 
expected both being equivalent orientations. 

 

 

Figure 14: Geometry of the avoided crossing. Normal (a) and oblique (b) 
incidence when only diffraction by the {111} planes is excited. (c) Oblique 
incidence where simultaneous excitation of Bragg diffraction by the {111} and 
{200} planes take place. 

 

Figure 15 represents similar measurements when the sample is oriented such 
that the parallel component of the incident wave vector points along the LW line. 
Reasoning as before, this situation is achieved when the sample is rotated around 
an axis contained in its surface and, either perpendicular or at 30º with respect to 
the growth direction (see figure 12b). Figures 15a and 15b represent reflectance 
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spectra as a function of incident angle for both cases. Now the situation is more 
complex than in the previous case since, when the incident wave vector points 
along the ΓW direction, the Bragg condition is simultaneously satisfied for three  

 

Figure 15 (a) Reflectance spectra for different angles of incidence as the 
sample is rotated around an axis perpendicular to the growth direction. (b) 
Similar measurements after rotating the sample 60º around an axis parallel to 
its normal. (c) Calculated bands along the LW direction (lines) and 
experimental results for the situations a) and b) (filled and empty circles). The 
vertical line indicates the boundary of the Brillouin zone at the W point. 
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families of planes: {111}, {200} and {-111}. Now we must consider a situation 
similar to that represented in figure 14c only that there exist two diffracted wave 
vectors non coplanar with the diffraction plane defined by Γ, L and W, the latter 
being a point common to two hexagonal facets and a square one of the Brillouin 
zone.  

In figure 15 we can see that, as predicted by the bands, the reflectance peak 
which appears at normal incidence increases its frequency for small angles. It is not 
until reaching θ~55º that a second peak appears for higher frequencies. This is to 
be expected since the W point is the one lying furthest from the centre of the 
Brillouin zone, at the Γ point, and furthest from L in the hexagonal facet. At 60º we 
see how the Bragg peak branches, a new reflectivity peak appearing at lower 
frequencies, while the high frequency peak observed for 54º becomes more intense 
and moves to a lower frequency, as predicted by the calculated bands. For larger 
angles, the low frequency peak decreases in intensity and frequency, while the high 
frequency peak that appeared at 54º merges with the Bragg peak, which presents a 
complicated shape with two shoulders. The overall behavior of reflectivity peaks is 
well accounted for by the exact PWEM calculation.   

Opposite to the situation at the U point where a clear anticrossing was evident 
in the optical response, at the W point we observe that the main reflectivity peak 
does not vanish at any stage. A possible reason for this behavior could be the 
existence of stacking faults which, although not having any effect on the optical 
response for normal incidence measurements in this energy range, are known to 
introduce additional reflectivity peaks for directions other than the incident16. This 
has been attributed to the presence of different periodicities in those directions as a 
consequence of the stacking disorder. But since the families of planes which 
intervene separately at the U an K points (i.e. {-111} and {200}) are the same as 
those doing so together at the W point, any peak doubling effect would also be 
expected on the graphs shown in figure 13a and 13b. This not being the case, we 
expect the effects of stacking disorder, if present, not to affect the results presented 
in figures 15a and 15b. The situation at the W point being much more complicated, 
with Bragg diffraction bringing light along three non coplanar directions, makes a 
direct interpretation of the experimental results a challenging task. Nevertheless, 
the agreement with the calculated bands along that direction is satisfactory. 

The occurrence of multiple diffractions flattens the bands and spans forbidden 
regions for large angular ranges.29 The extent of these ranges will be determined by 
the refractive index contrast present in the material which, if sufficient, will lead to 
the appearance of a PBG. Although the contrast in our samples is below that of 
reference 24, where band flattening was much more pronounced, this is the first 
time in which this behavior is found for all the high symmetry directions in the 
hexagonal facet of the Brillouin zone. 
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5. Conclusions and future work 

In this chapter we have presented an in-depth study of the finite size effects on 
the optical properties of thin film opals. The evolution of several parameters 
commonly used to associate the Bragg peak in reflectance with band structure 
calculations has been examined evidencing the need for a similar study prior to 
considering comparison with energy bands. Predictions extracted from the SWA 
prove this approach to qualitatively reproduce experimental results. The effect of 
finiteness on the Bragg peak is seen to disappear for this particular system 
(artificial opals made out of polystyrene spheres) for samples 35 layers thick.  

A logical extension of this work would be towards systems with a refractive 
index contrast high enough as to present a full PBG. In that case, not only the 
evolution of the pseudogap but also of the PBG would be of interest. 

Further, a detailed study on the influence of finite size effects on the dynamics 
of light inside a PC would be of great interest, since it is directly applicable to 
future devices. Similar studies have been performed in 1D systems31 but a study for 
3D crystals working in the visible range is lacking.          

The effect of disorder on the optical properties of the samples has also been 
studied. It has been shown that the diffuse intensity generated as a beam passes 
through the crystal in presence of disorder is strongly frequency dependent and 
may only be explained taking into account the band structure of the system. In fact, 
the diffuse intensity may also be used to determine the red edge of the pseudogap 
for sufficiently thick samples (>35 layers). This diffuse intensity is responsible for 
the asymmetry present in the reflectance peak, and may affect its FWHM for 
sufficiently disordered samples. We believe this is not the case for our samples.  

By means of angle resolved reflectivity we have studied the optical properties 
of the samples along high symmetry directions in the Brillouin zone. Experimental 
results are in good agreement with calculated bands and allow identifying band 
anticrossings at high symmetry points, characteristic of strong interaction between 
incident light and the crystal. Again, extending these measurements towards 
crystals with a high refractive contrast (ideally sufficient to open up a PBG) would 
yield valuable information on the formation of a PBG. 
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                                         CHAPTER 4 

Optical properties of artificial opals in 
the high energy regime 
 
 

1. Introduction 

Although artificial opals and related systems have been extensively studied as 
photonic crystals for nearly a decade now, most experimental studies of their 
optical response have concentrated on the behavior of the low energy region of the 
band structure (a/λ ~ 0.5, where a is the lattice parameter and λ is the wavelength 
of light in vacuum). In this spectral region the crystal presents a stop band due to 
Bragg diffraction by the {111} planes and may be treated as a homogeneous 
medium for the surrounding frequencies (see chapter 3). For energies above this 
stop band, although some results have been presented for opal based photonic 
crystals1-7 most of them have been concerned with identifying the reflectivity peak 
through which the photonic band gap (PBG) should manifest1,3-5 in inverse opals 
with a sufficiently high refractive index contrast. For titania inverse opals2, a 
number of features were observed in reflectivity spectra and successfully accounted 
for by theoretical calculations, identifying forbidden regions to be the precursor for 
a PBG. But the interest in this spectral region does not just lie in the existence of 
stop bands. Spectacular phenomena such as the super prism effect8 may be 
observed in artificial opals9 in frequency intervals where many energy bands 
overlap and their behavior is radically different from the linear one observed in the 
surroundings of the L-pseudogap. It is of capital importance then to identify the 
effect of these bands on the optical response of artificial opals, and investigate 
whether information about the former may be obtained from the latter. To date, the 
only results reported on this energy range for artificial opals are those of references 
4 (where transmission spectra of silica thin film opals was compared with 
numerical simulations and with the corresponding band structure of the system, 
although no interpretation was presented), 6 (transmission spectra were presented 
for polystyrene (PS) opals, although without comparison with energy bands or any 
interpretation) and 7 (where reflection and transmission spectra for similar systems 
were presented and compared with bands in a narrow spectral range, presenting an 
interpretation which, as will be shown below, was incomplete). 
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In this chapter we present a detailed study of the optical response of artificial 
opals along the ΓL direction in reciprocal space for reduced frequencies between 
a/λ = 0.9 and a/λ = 1.8. In this region one would expect the second and third order 
Bragg diffraction associated with the {111} planes if these were the only to interact 
with the incident light. As will be seen, the situation is more complex.  

Initial optical characterization is performed by means of normal incidence 
reflection and transmission spectroscopy. In order to ensure that the experimental 
features we observe come solely from the interaction of electromagnetic radiation 
with the energy bands of the crystal, a number of issues are taken into account such 
as dispersion in the refractive index of the spheres, scalability of the features and 
finite size effects.  

Prior to carrying a comparison between the observed features and calculated 
bands, we investigate on the physical origin of these bands. To do so, the band 
structure of a crystal possessing a very small refractive index contrast is 
considered.  

Next we take into account the phenomenon of optical diffraction in photonic 
crystals, taking the description presented in chapter 2 one step further, and 
unveiling the relation between diffraction and high energy bands.  

Finally, making use of all of the above, we are in the situation of interpreting 
the optical properties which were presented at the beginning of the chapter, in 
terms of the energy bands of the crystal. We reverse the path followed in section 2, 
and we vary the optical properties of the samples in order to approach the free 
photon limit.  

 

2. Optical properties: scalability and finite size effects 

The main problems encountered when probing the optical properties of artificial 
opals in the high energy range above the L-pseudogap are related to disorder and 
multiple Bragg diffraction. In this energy range, the wavelength of the probing 
light is smaller than the sphere diameter. Therefore the probe beam is likely to be 
scattered by imperfections in the unit cell which would hardly affect the 
measurements in the lower energy region. Thus, high quality samples are needed in 
order to minimize these effects. Also, the band structure for such high frequencies 
becomes complicated. In the low energy region, for a/λ < 1, the band structure 
consists of two sets of degenerate bands having a constant slope and being a 
reminiscence of the effective medium dispersion relation. At the edge of the 
Brillouin zone a breaking up of the vacuum-like dispersion relation occurs leading 
to the opening of the L-pseudogap due to Bragg diffraction by {111} planes 
parallel to the surface. But for higher frequencies the situation becomes more 
complex. The appearance of bands arising from wave-vectors originally not 
parallel to the ГL direction but folded back into it by translational symmetry 
introduces anticrossings between bands of same energy and symmetry.10 Also, 
higher order Bragg diffractions by the {111} planes parallel to the surface are 
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expected. This complicates the band structure making the comparison between 
experimental spectra and calculated bands a difficult task. The above can be 
appreciated in figure 1, where transmission and reflection spectra (collected in the 
same way as spectra presented in chapter 3) at normal incidence are plotted 
together with the calculated band structure. For reduced frequencies a/λ < 1, the 
experimental spectra present a well known behavior consisting of a reflection peak 
accompanied by a dip in transmission, corresponding to those frequencies 
contained in the stop band. Out of these frequencies, where the dispersion relation 
can be approximated to a linear regime, transparency windows in reflection and 
transmission are found. For the latter, a monotonic decrease in intensity can be 
appreciated, the origin of which is usually attributed to scattering by several 
sources of disorder present in the crystal.11 In the high energy region, for a/λ > 1, a 
different behavior can be appreciated with a strong decrease in transmission and a 
number of features both, in transmission and reflection. This new regime coincides 
with a dramatic change in the band structure of the system, which presents a 
complicated intermixture of energy bands. 

 

Figure 1: Band structure calculated along the ΓL direction in reciprocal 
space for an artificial opal consisting of polystyrene spheres (top). 
Transmission in a logarithmic scale for an artificial opal 21 layers thick made 
of spheres 705 nm in diameter (middle). Reflection in a linear scale collected 
at the same point as transmission (bottom). 

That the above mentioned features originate in the photonic band structure was 
confirmed by comparing experimental spectra for samples having different sphere 
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diameters (505, 705 and 1090nm) with the same number of layers and confirming 
the scalability of the features. Figure 2 shows reflectivity spectra in the high energy 
region for samples having 505, 705 and 1090 nm diameter spheres. It can be seen 
that all spectra present identical features, although a small red-shift is present in the 
spectrum corresponding to the smaller spheres, which increases towards higher 
energies. This shift can be explained in terms of the PS refractive index dispersion. 
Bulk PS presents a normal dispersion in this frequency range (400 - 2800 nm),12 so 
it can be expected that, as we move towards higher energies, its refractive index 
will increase more dramatically. It is reasonable then that as the diameter of the 
spheres decreases, the high energy features will move towards the highly dispersive 
spectral region, thus presenting an increasing redshift with respect to the ones 
obtained from larger spheres. Therefore, if we take into account this dispersion in 
the dielectric constant, together with the fact that PS does not absorb for these 
frequencies13 we may conclude that the observed features are caused by interaction 
of incident light with photonic bands. In order to compare experimental spectra 
with calculated bands we will use the largest spheres, as the variation in refractive  

 

Figure 2: Reflection spectra in the high energy region for samples ~20 layers 
thick consisting of 1090 (a), 705 (b) and 505 nm (c) spheres. Dashed vertical 
lines indicate the position of the main optical features of the 1090 nm sample. 
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index is smallest. If we assume the refractive index of our spheres to be that of bulk 
PS, in the spectral region where the high energy features are found (between 0.85 
and 1.4 µm) it will vary between 1.569 and 1.576. Since the numeric algorithm 
employed to calculate energy bands does not allow the introduction of dispersion in 
the refractive index of the constituent materials, we have chosen a mean value of 
1.572. 

We have performed a study of the behavior of the optical response of our 
samples as a function of the number of layers in order to avoid spurious effects 
associated with the finite size of the samples in subsequent analysis. Figure 3 
shows reflectivity spectra for samples fabricated with the 705 nm diameter spheres, 
for increasing number of layers. For samples 4 layers thick the reflectivity spectra 
presents a fringe-like pattern similar to that of transparent homogeneous thin films. 
As the thickness increases to 7 layers and beyond, some optical features are 
reinforced at the expense of others (Fabry-Perot fringes) and remain for thicker 
samples: two reflectivity peaks centered around a/λ = 1.13 and 1.23, the latter 

 

Figure 3: Reflection spectra for samples having an increasing number of 
layers. Bottom to top: 4, 7, 14, 16 ad 21. Reflection goes from 0 to 20% in all 
graphs. 
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presenting two-shoulders, a low reflection region between a/λ = 1.3 and 1.58, and 
two more peaks centered around a/λ = 1.6 and 1.75. For samples 14 layers thick, 
the above mentioned peaks have reached a stationary line shape and spectral 
position, as well as a reflectance (of about 15%), which will not change for samples 
as thick as 40 layers (not shown). It is worth noticing that, for an identical system, 
but in the low energy region, structures consisting of 35 layers were needed to 
reach this infinite-crystal stationary behavior, avoiding finite size effects (i.e. see 
chapter 3).  

It is also interesting to note that in the low reflection region between the two 
groups of peaks (a/λ = 1.3 and 1.58) a number of oscillations are present which 
seem to increase in number and become spectrally narrower and closer. This 
behavior is what one would expect from a homogeneous transparent material. This 
issue will be further discussed when a comparison with calculated bands is 
performed. 

 

3. Physical origin of the bands 

We now investigate how light interacts with the different bands present in the 
dispersion relation of the artificial opal. In order to do so, we begin by considering 
a simple ideal model; that of the photonic crystal with negligible refractive index 
contrast. We take an FCC arrangement of dielectric spheres with a refractive index 
n1 = 1.408, in a background with n2 = 1.4081. The choice for this particular 
refractive index is justified because it corresponds to the neff which may be 
extracted in the long wave limit for artificial opals consisting of PS spheres (see 
chapter 3). The band structure for this system, which may be seen as the photonic 
analogue to the free electron situation in solid states physics,14 is represented in 
figure 4. Only the ΓL direction in reciprocal space is shown as it is the one of 
interest for our particular problem.   

Due to the low refractive index contrast we expect this band-structure to be 
similar to the dispersion relation of a homogeneous medium with refractive index 
neff folded back into the first Brillouin zone due to translational symmetry10. We 
now consider the plane going through the XULK points in reciprocal space as 
representative for our problem. Figure 5 shows this section of the Brillouin zone in 
a repeated zone scheme. 

Let’s consider now an incident beam with a certain frequency ω propagating 
along the ΓLΓ1 line in reciprocal space (see figure 5a). If we think of the crystal as 
a homogeneous medium with refractive index n = 1.408 (which, given the low 
refractive index contrast of the system should not be such a bad approximation), 
the dispersion relation for this frequency is given by: 

                                                      ω= in
kc

                                                             (1) 
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Figure 4: Band-structure for an artificial opal made out of spheres with 
n1=1.408 in a background of n2=1.4081 along the ГL direction in reciprocal 
space.  

According to Bloch’s theorem, applicable to the present problem in virtue of 
the periodic distribution of the refractive index,10 we may restrict ki to the first 
Brillouin zone, that is we can fold the dispersion relation given by (1) into this 
zone:  

                                           0 ≤ ik  ≤
2
111G

=
2
3

a
π2

                                             (2) 

We now express (1) in reduced frequency units in order to compare the dispersion 
relation with the band structure. We do this by dividing both sides by  

a
G π23111 = : 

                                         ik
n

a 3=
λ

,  0 ≤ ik ≤ 0.5                                          (3) 

If we represent (3) together with the band structure depicted in figure 4, we can see 
(figure 6) how it reproduces some of the bands, namely those consisting of a 
straight line folded back into the Brillouin zone. These bands can then be taken as 
the dispersion relation for a wave propagating in a homogeneous medium.  
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Figure 5: Extended zone scheme along a representative plane of the 
reciprocal space. (a) Incident wave vector along the ΓL direction. Two wave 
vectors which are originally not parallel to the ΓL direction, but may be 
folded back into it through translational symmetry, by subtraction of either a 
G111 or a G200 reciprocal lattice vector are indicated in (b) and (c). 

We must not restrict ourselves to wave vectors ki along the ГL direction, but 
also to those which, although originally not parallel to the incident direction 
considered, may be folded back into it through the translational symmetry of the 
lattice. We do this for a wave-vector ki’=ki+G200, which can be folded back into the 
first Brillouin zone by the subtraction of a reciprocal lattice vector G200 (see figure 
5b). The dispersion relation for this wave-vector is given by: 

   |
3

2cos2
3
4|3 2

ii kk
n

a ⋅++= θ
λ

,  0 ≤ ik ≤ 0.5                                (4) 

where θ is the angle between the ΓX and ΓL directions. We have already expressed 
it in reduced frequency units in order to compare it with the bands.  

We next consider a wave vector ki’’=ki+G111 (see figure 5c). In analogy with 
the previous case, we may express the corresponding dispersion relation as: 

            |cos21|3 2
ii kk

n
a ⋅++= θ
λ

,  0 ≤ ik ≤ 0.5                                      (5) 

where θ is now the angle between two ΓL segments.  

Due to the threefold symmetry of the ΓL direction, identical dispersion 
relations may be found if one considers the other two equivalent planes. If we now 
take into account the plane going through the ΓLW points (not shown), it can be 
demonstrated in an identical manner that another dispersion relation can be drawn 
for wave vectors which are folded back into the ΓL direction by subtraction of a 
G220 vector:  
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                |
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a ⋅++= θ
λ

,  0 ≤ ik ≤0.5                           (6) 

We can now plot those dispersion relations associated with (3)-(6) together with 
the band structure and find that they totally reproduce it. This is shown in figure 
6b. 

 

Figure 6: (a) Longest grating periods in the {111} plane of the opal. (b) Band 
structure for a photonic crystal consisting of spheres with n=1.408 in a 
dielectric medium with n=1.4081 (lines). Symbols represent dispersion 
relations for a wave vector parallel to the ΓL direction (filled circles), and 
wave vectors not parallel to that direction but folded back into it by 
subtraction of reciprocal lattice vectors G111 (empty triangles), G200 (empty 
circles) and G220 (empty squares). (c) Band structure for a PS opal. Thick 
lines represent linear bands.  

While the dispersion relation of the wave vector propagating along the ΓLΓ1 
direction was interpreted as that of a homogenous medium, with refractive index 
neff, it is not clear how we should consider the relation extracted from the situations 
(4), (5) and (6). To understand the physical origin of these bands we focus on 
another phenomenon which should be present in our structure due to the existence 
of a 2D periodicity in each plane of spheres: diffraction. Each of the hexagonal 
planes stacked along the (111) direction may be viewed as a 2D grating, which will 
diffract light in directions away from the incident one according to the grating 
equation:  

                                             
effn

m
⋅Λ
⋅=+ λθθ )sin(sin 0                                           (7)             

where θ0 and θ are the angles of the incident and diffracted beams,  λ is the incident 
wavelength in vacuum, Λ is the grating period, m is the order of diffraction and neff 
is the effective refractive index. For incidence normal on a plane of spheres, the 
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lowest frequency for which diffraction will be observed corresponds to the 
situation in which the diffracted beams are normal to the incident direction: 

                                                          λ⋅=⋅Λ mneff                                               (8) 

and to the longest periods present in the grating. From figure 6a, we can see that 
the two periods we must consider are those denoted as d1 and d2. If we estimate for 
which frequency (in reduced units) the first order diffraction will take place at each 
of these gratings, we find the values 1.159 and 2.01 respectively. These values 
(indicated by horizontal dashed lines in figure 6b) correspond to the lowest 
frequency for which the higher order bands appear. The behavior of these bands 
can be further described from the grating equation, so that they account for the 
dispersion relation of gratings associated to the {111} planes.  

It seems then, that photonic bands which are of interest to our situation can be 
divided into two groups. On the one hand those which can be considered as 
reminiscent of the effective medium, that is, those associated with a homogeneous 
medium with a given refractive index (linear bands in what follows, indicated by 
filled circles in figure 6b). On the other, we have those bands which are responsible 
for diffraction by the stacked hexagonal planes (diffraction bands in what follows, 
indicated by empty symbols in figure 6b). The latter may be considered as the 
reminiscence of the dispersion relation of the 2D hexagonal grating present at each 
plane. The overall dispersion relation for this ideal photonic crystal may be then 
viewed as a superposition of the dispersion relation of a homogeneous medium 
together with that of a 2D grating. 

If we now increase the refractive index contrast present in the photonic crystal 
we see how the band structure undergoes a number of changes with respect to the 
situation of null refractive index contrast. This can be seen in figure 6c, where the 
band structure for an artificial opal of PS spheres is shown. First, one can see that 
the dispersion relation of linear bands (marked as thick lines in figure 6c) splits at 
the edges and centre of the Brillouin zone as a consequence of Bragg diffraction by 
the {111} family of planes. These bands also split as a consequence of 
anticrossings with the diffraction bands, for which degeneracies are lifted.  

 

4. Diffraction in photonic crystals 

We now proceed to study the propagation of light through the crystal as we 
approach the high energy region. We do this by visual inspection of 
monochromatic light transmitted and reflected at normal incidence by our samples. 
The light sources were a tunable nanosecond Optical Parametric Oscillator whose 
emission could be tuned within 450 and 670 nm, and an argon laser. Samples made 
of 505 and 705 nm PS spheres and 335 nm poly(methyl methacrylate) (PMMA)15 
spheres were used, to place their high energy bands in this spectral region. Sample 
thickness was in the 20-30 layers range. Figure 8 shows photographs of the 
samples under illumination. The experimental configuration is different from that 
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used for optical diffraction experiments in chapter 2. Now the beam passes through 
a perforated screen, impinges on the glass substrate and then hits the sample at 
normal incidence. The photograph is taken in transmission (see figure 7a). 

 

Figure 7: Diagram of the diffraction set-up (a). Photographs taken in 
transmission for samples consisting of 505 nm spheres with λ = 670 nm (a/λ = 
1.07), λ= 650 nm (a/λ = 1.1) and λ = 560 nm (a/λ = 1.28) (b-d respectively). 
Photographs for samples of 705 nm spheres with λ = 570 nm (a/ λ=1.75) and 
λ = 470 nm (a/λ = 2.1) (e-f respectively). 
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For samples of 505 nm PS spheres and reduced frequencies a/λ < 1.085, we 
observe that the transmitted light consists of a beam parallel to the incident one 
surrounded by a diffuse halo (figure 7b). In this spectral range light can only 
couple to linear bands and therefore propagates in the forward direction. Part of the 
diffuse light generated as a consequence of structural disorder exits the substrate, 
and part suffers total internal reflection (TIR) at the substrate-air interface and is 
projected back on the sample which acts as a screen, a halo forming on it. 

 As we reach a/λ ~ 1.09, a hexagonal diffraction pattern appears projected onto 
the sample (figure 7c). The diffracted beams exit the sample in directions other 
than the incident one and are internally reflected at the substrate-air interface. The 
diffraction spots appear far from the incident beam, which corresponds to 
propagation at nearly grazing angle. This phenomenon coincides with the sixth 
band which spans the frequency region 1.085 < a/λ < 1.18 for these samples, and is 
a diffraction band as mentioned in the previous section. The fifth band is not 
considered as it can not be coupled to by the incident beam due to symmetry 
reasons.16 

As the frequency is increased, the diffraction pattern closes itself towards the 
incident beam in agreement with the behavior of the diffracted beam from a grating 
(figure 7d). As we reach a/λ ~ 1.6 the diffracted beams exit the diffuse halo and 
leave the glass, being projected onto the screen placed before it (figure 7f). An 
identical pattern is projected in transmission (not shown).  

For a sufficiently high energy (a/λ ~ 1.9) the former diffraction pattern is still 
projected onto the screen and a new one, rotated 30º with respect to it, is projected 
onto the sample as a consequence of TIR at the glass-air interface (figure 7g) as 
assumed with the former one. This coincides with the energy range where the 
bands reminiscent of the second family of grating bands appear. That is, those 
bands arising from the folding of wave vectors by subtraction of G220 vectors.   

The condition for observing diffraction patterns is therefore twofold17. On the 
one hand, there must be a diffraction band to which incident light may couple. On 
the other hand, the external medium must allow for the conservation of the parallel 
component of the diffracted wave vector. This can be understood as follows; 
according to figure 5, the component parallel to the crystal surface of any of the 
two diffracted wave vectors is (k 

//)d =Ghklsinθ, where Ghkl is the modulus of the 
reciprocal lattice vector added, and θ is the angle between the incident beam (that 
is the ΓL direction) and Ghkl. For both situations in figures 5b and 5c, it can be 
shown that: 

                                                           (k 
//)d =

3
82

a
π

                                             (9) 

According to figure 8, the diffracted beam will only be observed if the following 
condition is satisfied: 

                                                   
0

//0
1

3
8)(2

n
akn d ≥→≥
λλ

π
                          (10) 
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(where n0 is the refractive index of the external medium) and the external angle of 
the diffracted wave vector is given by: 

                                 
0

//0
1

3
8sin)(sin2

n
akn d =→= θ
λ

θ
λ
π

                       (11) 

that is, the one predicted by the grating equation as previously reported.18-20 In our 
system, condition (10) is reduced to a/λ ≥ 1.633/n0 which explains why the first set 
of diffraction spots is first projected on the sample itself, since it first exits into the 
glass (n0 = 1.51) for a/λ ≥ 1.08, and suffers TIR at the glass-air interface. Then it is 
projected on the screen for a/λ ≥ 1.633. For this reduced frequency TIR is 
overcome at the glass-air interface and the parallel component of the wave vector is 
conserved at the sample-air interface.  
 

 
Figure 8: Conservation of the component of the diffracted wave vector 
parallel to the sample surface; (k//)d. The circumference indicates the allowed 
wave vectors in the external medium and has a radius kout=2πno/λ. (a) 
Refractive index of external medium is too small to allow for the conservation. 
(b) Refractive index of external medium is large enough.  

 

But it may happen that bands determining the onset of diffraction for a certain 
direction have not absolute minima but saddle points along the ΓL direction.17 In 
that case, the condition for the onset of diffraction may have to be looked for 
elsewhere, and diffraction patterns may appear for lower energies if we deviate 
from that direction. This is what happens for the ΓL direction of an FCC lattice. 
We demonstrate this by using an opal of PMMA spheres, for which the first 
diffraction band appears at a/λ = 1.14 for normal incidence. If we illuminate it with 
λ = 476 nm (a/λ = 1) we find that no diffraction pattern may be observed at normal 
incidence. As we tilt the sample so that its normal makes an angle of ~10º with 
respect to the incident beam, a pattern appears projected onto the sample. Figures 
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9a and 9b show the diffraction patterns observed as we tilt the sample 30º along the 
LU(K) and LW directions in reciprocal space.21 Figure 9c shows the minimum of 
the first diffraction band as a function of the external angle of incidence, extracted 
from the band structure. This is calculated for the above mentioned directions in 
reciprocal space. Together, as a dashed line, appears the grating equation for the 
same angular range, indicating the condition for the conservation of the parallel 
component of the wave vector.22  

 

5. Comparison with band structure 

We next proceed to interpret the optical response of the samples. In order to do 
so we first use a 50 layer thick sample made of the largest spheres (1090 nm) and 
compare its reflection and transmission spectra with calculated bands. For these 
samples, the high energy features fall in the spectral range 1400-850 nm. If we 
assume the refractive index of bulk PS for the spheres, we must consider the 

 

Figure 9: Diffraction pattern projected on a PMMA sample for a reduced frequency a/λ=1 
as the sample is tilted 30º along the LW (a) and LU/K (b) directions. Minimum of the first 
diffraction band along the LW (thick line) and LU/K (thin line) directions, together with the 
condition given by the grating equation (dashed line) are represented in (c). 
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interval 1.569 < n < 1.576. For comparison we employ an average value of 1.572. 
This comparison is shown in figure 10, where the linear bands are represented as 
thick lines, and the diffraction bands as thin ones. 

 

Figure 10: (a) Band structure along the ΓL direction in reciprocal space for an artificial 
opal made of PS spheres (n=1.572). Linear bands are indicated as thick lines. (b) 
Reflectance and (c) transmittance for a 50 layers thick sample.   

The transmitted intensity presents an abrupt decrease in the spectral range for 
which the first diffraction band appears. This is to be expected, since part of the 
incident intensity is diffracted and cannot be collected. The shape of this decrease 
is clearly different from that associated with disorder, as can be seen in figure 1. 
We see how the reflectivity peaks at a/λ = 1.13 and 1.23 (peaks 1 and 2 hereafter) 
are accompanied by a region of low transmission. Peak 1 appears in a region where 
the low energy linear bands coexist with diffraction bands presenting a very small 
slope. The nature of this peak is clearly different from that of the Bragg peak (a/λ = 
0.61) since in the latter, no states were available at the corresponding frequency. 
The effect of uncoupled modes, which cannot be excited by external light for 
symmetry reasons, can also be ruled out since, for these frequencies, uncoupled 
modes always coexist with allowed ones.16 A plausible explanation for this 
behavior could be the coupling of light to diffraction bands presenting a low 
dispersion.7 It has been predicted10 that in the frequency region where such flat 
bands are found, the PC behaves (in terms of its normal incidence optical response) 
as an effective medium with a large refractive index, and correspondingly presents 
a high/low reflectance/transmittance. Peak 2, which presents two shoulders, 
corresponds to the region of the band structure where the ГL bands split at the 
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center of the Brillouin zone at frequencies where the second order Bragg 
diffraction would be expected to take place. Contrary to the splitting caused by the 
first order Bragg diffraction, here the gap is filled with photonic states. As for peak 
1, these states correspond to flat diffraction bands, and therefore the origin of the 
reflection/transmission could be due to an effective medium behavior with a large 
refractive index. 

In the frequency window between a/λ = 1.3 and 1.58, the low reflectance is 
accompanied by a recovery of the transmission. If we observe this region as a 
function of the number of layers in figure 3, we can appreciate that reflectivity 
spectra appear as a set of fringes whose number increases with the thickness of the 
sample, indicating an effective refractive index medium behavior. This frequency 
interval corresponds to a region where linear bands coexist with a number of 
diffraction bands having a different slope. This behavior can be better appreciated 
if we consider samples grown on silicon substrates where secondary oscillations 
are more pronounced due to the high reflectance of the substrate itself. Figure 11 
shows reflectivity spectra for samples made of 1090 nm spheres and having 
different thickness. Secondary oscillations appear evenly spaced, and an effective 
refractive index may be extracted from them. We calculate the number of layers 
from the secondary oscillations in the low energy region below the pseudogap and 

 

Figure 11: Reflectance spectra of samples consisting of 1090 nm spheres 
having different thickness. Top to bottom: 11, 19 and 25 layers. 
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then we extract an effective refractive index neff from the high energy region 
oscillations. For a number of samples having different thickness (between 10 and 
30) we obtain neff = 1.68 ± 0.05. We can now calculate an effective refractive index 
from the linear bands in that spectral region. We use bands calculated for dielectric 
spheres of n = 1.572, which is the refractive index of bulk polystyrene in the 
spectral region where these oscillations appear for 1090 nm spheres. We obtain neff 
= 1.64, higher than the value obtained from the low energy bands (1.41), and in 
accordance with the experimental result.  

 The two reflectivity peaks appearing at higher frequencies for a/λ = 1.62 and 
1.75, (peaks 3 and 4 hereafter), find corresponding transmission dips in a spectral 
region where the linear bands undergo an anticrossing and a splitting at the edge of 
the Brillouin zone respectively. The experimental features seem to be slightly 
redshifted with respect to the calculated ones, which are centered at a/λ = 1.63 and 
1.78. The effect of band anticrossing on the optical properties of opal-based 
photonic crystals has been previously reported.23-25 However, these studies were 
performed in a spectral region where few bands were present and the band 
repulsion involved the existence of stop bands. In the present case the situation is 
more complicated as the anticrossing region is filled with states distributed over 
several bands. A similar situation is found in the region with the splitting, which 
takes place for frequencies where the third order Bragg diffraction by the {111} 
planes would be expected. Therefore the incident light may only couple to 
diffraction bands. It is likely then that if not all light couples to these bands, 
reflectance and transmittance peaks are expected. In order to account for the exact 
line shapes, spectral position and intensities of these features, one would require 
knowing the exact coupling strength between the incident light and each band,9 a 
task demanding a vast amount of calculation time. A similar analysis would be 
required for peaks 1 and 2.  

Turning to transmission spectra, we point out the existence of two dips  
appearing at a/λ = 1.29 and 1.38, less intense than the previous ones, and which 
cannot be appreciated in the reflection spectra. They are pointed out by arrows in 
figure 10. Again, these dips are found in a spectral region where two anticrossings 
take place at a/λ = 1.31 and 1.38 in the calculated linear bands. The attenuation of 
the former dip is larger than that of the latter, which agrees with the width of the 
corresponding anticrossings. These two dips will be referred to as peak 5 and 6 in 
subsequent analysis.  

A gradual transformation of the system towards a homogeneous material that 
allowed comparing it with a free photon model would lend itself useful in gaining 
further understanding of the above features. In order to tune the optical response in 
a continuous fashion we had recourse to gradually infiltrating the structures with 
silica. This changes the average refractive index and, which is more important, it 
reduces the refractive index contrast approaching the composite to a nearly 
homogeneous medium, providing a number of different topographies and band 
structures for comparison. Since the refractive index of silica is lower than that of 
polystyrene the index matching condition is not fully met. The infiltration process26 
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(see appendix 2) takes place at room temperature so that the polystyrene skeleton is 
not perturbed. Further, the silica growth takes place in a laminar way around the 
spheres, yielding samples whose band structure may be easily modeled provided 
the refractive index of both constituents is known.b In this way we have filled 
samples 50 layers thick with pore fillings varying between 4% and 70% (close to 
the theoretical maximum filling of 86%23). The filling fraction was controlled 
through the comparison of the spectral position of the centre of the Bragg peak 
with the centre of the L-gap in the calculated band structure, the former being the 
parameter less affected by finite size effects, which are expected to become more 
pronounced as we decrease the refractive index contrast. The infiltration, 
performed for the samples made of 1090 nm spheres, could not be carried further 
due to the fact that the Bragg peak for this sphere diameter falls close (λ = 2.5 µm) 
to the spectral region where the first silanol absorption band appears (λ = 2.67 
µm).27 Infiltrations performed on samples with smaller spheres showed that the 
observed tendency in this spectral range continues up to fillings of 80%.28  

Figure 12 shows the evolution of the optical response in reflection of our system as 
we increase the pore filling fraction, reducing the contrast and increasing the 

                                                      
b The refractive index of the grown silica was measured by means of variable angle 
spectroscopic ellipsometry and found to be 1.442<n<1.447 in the spectral range of interest. 

 

Figure 12: Reflectance spectra of samples consisting of 1090 nm spheres 
having an increasing fraction of its pores filled with SiO2. 
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average refractive index. All peaks shift to lower frequencies, owing to an increase 
in the average refractive index of the structure and, in general, present a decrease in 
intensity and spectral width due to the reduction of contrast. In the spectral region 
where peaks 1 and 2 are located, for low filling fractions (<25%) we observe how 
four peaks instead of three become visible. As the filling is increased, these peaks 
become closer and merge until reaching a situation where only two peaks may be 
observed (60% filling). In this range, as already mentioned, the band structure 
presents four flat dispersion bands which become closer and even degenerate for 
high fillings, as seen in the band structures of figure 13. In this figure it can be 
appreciated that this behavior finds correspondence in transmission. Peaks 3 and 4 
also become spectrally narrower and less intense, the former presenting a more 
pronounced decrease in intensity. Transmission dips also reproduce this evolution  
(see figure 13). 

 

Figure 13: Calculated band structure (left), experimental reflectance (middle) 
and transmittance (right) for two samples having 30% (a) and 60% (b) of the 
pore filled with SiO2. Peaks are labeled according to the text. 
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In transmission spectra we can also observe the two dips (5 and 6 in figure 10) 
associated with the anticrossings taking place in the calculated bands near the 
centre of the Brillouin zone for a/λ = 1.29 and 1.38 in the case of the bare opal. The 
strength of the interaction leading to the avoided crossing is determined by the 
scattering strength (refractive index contrast) narrowing and almost closing some 
of these gaps for high infiltration degrees. For a pore filling of 30% both of them 
are still present, but for 60% only the high energy one is sizable enough to produce 
an attenuation band. The lower energy one, narrower due to weakly interacting 
bands disappears as soon as the contrast is reduced. The anticrossing occurring 
close to the edge of the Brillouin zone at a/λ = 1.62 for bare opals (peak 3) remains 
even for the highest degrees of infiltration evincing strongly interacting bands.  

 Finally we compare the evolution of the experimental features with the 
calculated ones as the pore filling fraction is increased (figure 14). For peaks 3 and 
4, which we associate to splitting and anticrossings of the linear bands we have 
considered the center frequency as representative. For peaks 1 and 2, appearing 
where flat diffraction bands are in the band structure, we have considered the 
reduced frequency for which a maximum in intensity takes place, as the merging of 
the peaks hampers defining a central frequency. From the band structure we have 
extracted the high and low edges of splitting and anticrossings of linear bands 
(defining grey bands in figure 14), as well as the frequency for which the first 
diffraction band becomes dispersionless close to the edge of the Brillouin zone 
(grey line in figure 14). We can see how experimental results follow the same trend 

 

Figure 14: Evolution of the spectral position of band anticrossing, splitting at 
the edges and centre of the Brillouin zone and dispersionless bands. 
Open/closed symbols correspond to experimental data taken from 
transmission/reflection spectra. Lines/grey bands correspond to center/width 
of gaps and anticrossings extracted from theory. 
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as calculated ones for an increasing pore filling fraction. For peaks 3-6 this 
includes a redshift together with a spectral narrowing of the experimental features. 
The coincidence is satisfactory for all features although it can be appreciated that 
for those appearing at higher frequencies a marked redshift is still present in the 
experimental values.  

 

 

Figure 15: Calculated band structure (left), reflectance (middle) and 
transmittance (right) for a SiO2 inverse opal with 70% of the pore filled (a). 
Diffraction patterns projected on the opal and its SiO2 replica (70% filling 
fraction) for reduced frequencies a/λ=1.42 (b, c) and a/λ=1.56 (d, e). 
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Although only hexagonal diffraction patterns were reported in section 4, 
triangular ones were observed for the composite systems. This fact is in agreement 
with observations of thin samples and thick samples filled with ethanol (see chapter 
2 and reference 19) and agrees with predictions of a single scattering model (SSM) 
for FCC crystals.18 The reason why a transition from C6 to C3 symmetry patterns is 
observed as we lower the refractive index contrast remains a challenging question 
at this point. Since SSM predictions are expected to break down for systems with a 
high refractive index contrast such as bare opals, such a study may require the 
calculation of the coupling coefficients for bands responsible for diffraction along 
with its modestructure. 

We can take the study one step further by eliminating the PS skeleton, leaving 
a SiO2 inverse replica of the original structure. This was performed by means of 
calcination at 450º C.29 By doing this we lower the average refractive index of the 
structure, but increase its contrast with respect to the composite system. The optical 
response and the band structure blue shift accordingly, as can be appreciated in 
figure 15a, where the optical response for a sample made out of 505 nm spheres 
with 70% of its pore filled is shown. Here it can be seen that the abrupt drop in 
transmittance blue shifts with the first set of diffraction bands. In the same spectral 
region we observe peaks in reflection, reminiscent of peaks 1 and 2 in the bare 
opal, which present a complicated line shape if compared with the two peaks seen 
in the composite system.  

By doing this we also shift to higher energies the onset of diffraction. Figures 
15b and 15c show that for a reduced frequency a/λ = 1.42, where Bloch modes 
associated with diffraction are only available in the bare opal system, diffraction 
patterns may only be observed in that system. As we raise the frequency to 
a/λ~1.49, we are in a situation where diffraction bands are available for both 
systems and diffraction patterns may be observed. Figures 15d and 15e show 
diffraction patterns projected on the sample itself for direct and inverse structures 
and a reduced frequency of a/λ = 1.56.   

 

6. Conclusions and future work 

In this chapter a first approach to understand the effect of high energy bands on 
the optical response of artificial opals has been presented. Experimental features in 
reflectance and transmittance spectra, which are demonstrated to be scalable with 
sphere size and independent of sample thickness, have been compared with 
calculated bands.  

The relationship between bands originated by folding of wave vectors 
originally not parallel to the incident direction and diffraction patterns has been 
established. Further, the effect of these patterns on the transmission spectra has 
been identified with an abrupt decrease in intensity which was not understood. The 
remaining features in transmission and reflection spectra are likely a combination 
of gaps and anticrossings present in linear bands, associated with wave vectors 
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parallel to the incident direction, and diffraction bands. To properly understand the 
intensities and line shapes of the observed features, a detailed study of the coupling 
coefficients of the incident beam with available bands (along with its 
modestructure) for each fixed frequency is required. By doing this, a better insight 
could be gained into the transition from C6 to C3 symmetry patterns observed as 
we lower the refractive index contrast of the samples. 

In order to extract more detailed information on the effect of individual bands 
it would be desirable to isolate them from each other. Recent developments in band 
engineering by means of infiltration with high refractive index semiconductors 
such as silicon or germanium may be a useful tool.30 A mayor drawback of the 
present system (i.e. PS artificial opals) is its low resistance to the high temperatures 
needed to infiltrate them with these semiconductors by means of chemical vapor 
deposition (CVD). This technique is ideal for a controlled infiltration, and the 
morphology of the samples may be modeled with available calculation methods. 
Therefore further developments in the growth of similar samples with silica 
spheres are needed. 
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                                         CHAPTER 5 

White light interferometry of thin film 
opals 
 
 

1. Introduction 

Reflection and transmission spectroscopy are nowadays the most widespread 
techniques for the optical characterization of three dimensional (3D) photonic 
crystals. They are usually employed to detect the existence of forbidden spectral 
intervals. These appear as regions of low (high) transmission (reflection), 
indicating the exponential attenuation of electromagnetic radiation as it propagates 
through the crystal (see chapter 3). A comparison with calculated bands is 
mandatory when employing these techniques in order to avoid the effects of 
uncoupled modes.1 One major drawback of these techniques is that they usually fail 
to provide information on the dispersion of the bands and knowledge is gained only 
on the existence of energy gaps. Vlasov and co-workers2 reported on spectroscopic 
reflection measurements on artificial opals with reduced refractive index contrast 
through which information on the shape of energy bands in the surroundings of the 
L-pseudogap was collected. Such information was obtained from Fabry-Perot 
oscillations originated from the interference between light reflected at the front and 
rear facets of the sample. This method is, however, limited by sample quality. As 
the thickness of the crystal increases, the contribution from the rear end of the 
crystal decreases as a consequence of light being scattered by defects and Fabry-
Perot oscillations become less defined. 

In order to explore the dispersive properties of 3D photonic crystals, phase 
sensitive techniques have been employed that have allowed the determination of 
the band structure in the surroundings of stop bands. Yablonovitch and Gmitter3 
extracted the band structure of a Yablonovite structure in the microwave regime for 
every direction within the first Brillouin zone. Later on, Watson and co-workers4,5 
used a modified Mach-Zehnder interferometer (MZI) to measure the phase delay 
introduced by colloidal crystals in the vicinity of the L-pseudogap. Another method 
for determining the band structure of a 3D crystal, not based on a phase sensitive 
technique, is that introduced in reference 6. In this approach, studying light 
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refraction of monochromatic beams propagating through the system allowed 
obtaining equi-frequency surfaces from which the band structure was 
reconstructed. 

The above mentioned techniques also fail to provide information on the 
dynamics of light propagating through the crystal. In this case time resolved 
experiments have proven a valuable tool. The main interest in 3D photonic crystals 
has been placed on the spectral region close to the pseudogap edges, where energy 
bands bend near the edge of the Brillouin zone. This band bending implies a 
reduction in group velocity which increases the interaction time of electromagnetic 
radiation with the crystal. Also in a narrow spectral range around the pseudogap, 
time resolved experiments were performed using ultra-short pulses and a group 
velocity reduction was measured near the gap edges.7,8 In the case of reference 8, 
the group velocity dispersion was also measured. Recently, white light 
interferometry was used to obtain the group velocity and its dispersion for thin film 
photonic crystals in a broad spectral range around the L pseudogap.9   

In this chapter phase sensitive measurements are presented on artificial opals 
with an increasing number of layers. Employing white-light interferometry in the 
time domain the phase delay introduced by the samples is measured, which allows 
for the determination of the dispersion relation in a large spectral range. The 
probed frequencies span the interval which goes from below the red edge of the 
pseudogap to the high energy region of the band structure (see chapter 4). By 
derivation of the measured phase we may obtain the group velocity which provides 
information on the dynamics of light in the crystal.  

For frequencies in the surroundings of the L-pseudogap, an effective refractive 
index is extracted from the measured phase delay which presents a region of 
anomalous dispersion across the pseudogap. The group velocity for frequencies 
close to the pseudogap edges presents a decrease which agrees with previous time 
resolved measurements with ultra short pulses and white light interferometry. The 
evolution of these features with the number of layers is discussed. Finally, some 
preliminary results are presented for the frequency range where higher order 
diffractions both by {111} planes and other families of planes take place.  

 

2. Experimental 

The experimental set-up3 employed in the present measurements is that used in 
references 10 and 11 for probing the dispersive properties of silica substrates and 
dielectric mirrors respectively. It consists of a modified Mach-Zehnder 
interferometer (MZI) coupled to a commercial closed scanning Michelson 
interferometer (SMI). A diagram of the set-up is shown in figure 1a. Light from a 
quartz-tungsten halogen lamp enters the MZI and is split into the two arms of the 

                                                      
3 Experiments were performed in the laboratories of the group of Prof. L. C. Andreani at the 
Dipartimento di Fisica “A. Volta”, University of Pavia (Italy). 
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interferometer, one of which contains the sample and the other remains empty. The 
electric field as a function of time at the exit of the MZI may be expressed as the 
superposition of the one in the reference arm E1(t) (without the sample) and the one 
in the sample arm E2(t) (with the sample inserted): 
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Figure 1: (a) Diagram of experimental set-up. Mach-Zehnder interferometer 
(MZI) containing a delay line (DL) is coupled to a scanning Michelson 
interferometer (SMI). Output beam is collected at the detector (D). Sample and 
light source are denoted by S and LS respectively. (b) Measured interferogram.  
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where A(ω) is the spectral amplitude of the reference beam, H(ω) = h(ω)eiθ(ω) the 
transfer function describing the sample response and ∆L the optical path difference 
between the two arms of the MZI, which may be controlled with the delay line.  

The exiting beam is then fed into the SMI. The signal collected by the detector 
in the SMI as a function of the scanning time of its movable mirror is the 
interferogram (figure 1b), which is the autocorrelation function of the two 
overlapped beams:12 
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where the asterisk stands for the complex conjugate. 

A typical interferogram is shown in figure 1b. The central symmetric lobe is 
the autocorrelation of the two signals and corresponds to the second integral in (2). 
Two side lobes, one being the mirror image of the other about the origin, appear. 
They are the cross-correlation, corresponding to the first and third integrals. These 
side-lobes present a strong asymmetry caused by the phase delay introduced by the 
sample. In figure 1b only one of them is shown as the other is its mirror image. The 
separation between the central and the side lobes is just the time delay between the 
two arms of the MZI ∆t = ∆L/c, which can be adjusted by means of the delay line.  

The spectral dependence of the phase difference between the two beams ∆φ(ω) 
may be obtained from the Fourier transform of either of the cross-correlation 
functions:   

                                              )(2)()()( ωϕωωω ∆= ieAhI  
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Therefore to extract the phase delay introduced by the sample alone one has 
only to subtract the phase difference obtained with the sample in the sample arm, 
that is (3), and with the sample arm empty:  
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and then add ωD/c, where D is the sample thickness. Since the sample is 
standing on a glass substrate, the reference measurement is made only with the 
substrate. In order to assure that the phase introduced by the substrate is properly 
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subtracted, its thickness should be the same in both the sample and reference 
measurements. The substrate thickness was observed to remain constant (within 
100 nm) over distances of 2 mm across the substrate. This was done by translating 
the substrate across the probe beam and observing the separation between the auto 
and the cross-correlation lobes in the interferogram, and assuming a refractive 
index provided by the substrate manufacturers (Menzel-Glaser) of 1.51. The 
sample areas to be probed (~125 µm) were chosen so that an exposed substrate 
region was available within 2 mm.    

The set-up allowed for measuring transmission at the exact place where phase 
measurements were performed. This was done by just blocking the reference arm 
of the MZI. In this way the measurement is identical to the ones introduced in 
chapter 3. By doing so the sample thickness could be estimated from Fabry-Perot 
fringes (see chapter 3). Samples with thickness varying between 5 and 40 layers 
were employed in the present measurements. The use of a tungsten-halogen lamp 
together with silicon and indium antimonide detectors permitted measuring the 
phase delay over a wide spectral range (400 - 3000 nm). Employing samples made 
of spheres with diameters of 505 and 705 nm the frequency interval 0.4 < a/λ < 2 in 
reduced frequency units, previously explored in chapters 3 and 4 by means of 
reflection and transmission spectroscopy, could be probed. This represents a clear 
improvement from previous phase sensitive measurements in colloidal crystals 
(0.59 < a/λ < 0.68)4,5 and thin film opals (0.43 < a/λ < 1.15).9 Besides the 
advantages concerning the spectral range covered in the measurements, the present 
technique allows for a time resolution of 10-2 fs, which translates into a resolution 
of 10-2 radians (for a wavelength of 1 micron) when obtaining the phase. 

 

3. Low energy spectral region 

We first study the phase delay introduced by our samples in the spectral region 
0.4<a/λ<0.9, corresponding to the L-pseudogap and its surroundings. Figure 2 
shows the evolution of the phase delay as the number of layers is increased. For a 
small number of layers it is just a straight line, resembling the behavior of a 
transparent homogeneous material. As the thickness of the crystal increases, the 
slope of the phase delay decreases as would be expected for an increasing optical 
path. Further, a phase jump develops for those frequencies contained within the L-
pseudogap, indicated by dashed horizontal lines in the figure. A similar jump is 
known to take place across the forbidden intervals of 1D photonic crystals with a 
sufficient number of layers,11 and to be a signature of anomalous dispersion due to 
Bragg diffraction. In the present case we would expect a similar behavior as these 
systems may be regarded as 1D systems for this particular energy range and 
orientation. At variance with previous determinations of phase delays for similar 
systems,4,5 here the thickness of the samples is such that enough signal is collected 
for frequencies within the pseudogap.  
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Once the phase delay is known we can extract from it an effective refractive 
index neff for our crystals assuming an effective medium behavior. The concept of 
such neff has been extensively explored for 1D photonic crystals.13 It has proven to 
correctly describe the dispersive properties of such structures, especially in terms 
of the possibility of obtaining phase matching conditions for second harmonic 
generation.14 This neff has also been used to successfully account for the 
observation of third harmonic generation in samples similar to the ones used in 
these measurements,15 and second harmonic generation in dye doped colloidal 
crystals.16 The crystal is considered a homogeneous medium with refractive index 
neff and thickness D = d111N, where d111 = a/(3)1/2 is the interplanar distance for the 
{111} planes parallel to the surface and N the number of sphere planes. Under this 
assumption, the measured phase delay θ(ω) may be expressed as:  

                                              Dneffλ
πωθ 2)( =                                                (5) 

In this way we have extracted neff for samples with an increasing number of layers. 
The results are plotted in figure 3. As the thickness of the sample increases a region 
of anomalous dispersion becomes apparent for frequencies around a/λ~0.61 where 
the pseudogap is located. In homogeneous materials anomalous dispersion is 
associated with spectral regions where absorption or gain takes place. In the 
present situation the origin of this anomalous dispersion is related to extinction by 
Bragg diffraction as in the 1D case.13 In order to assure that this is the situation, the 
scalability of the experimental results was checked. In figure 3d identical 
measurements for samples with 10 layers made of spheres having diameters of 505 
and 705 nm are shown. The coincidence is excellent and therefore the anomalous 

 

Figure 2: Phase delay for samples having an increasing number of layers. 
Left to right: 10, 15, 20, 28, 31, 35 and 40 layers.  
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dispersion may be associated with Bragg diffraction due to the periodicity of the 
structure and not to absorption of the materials comprising the crystal. Regions of 
anomalous dispersion due to water vapour absorption may be seen at both sides of 
the main feature discussed.  

In the low energy region the refractive index presents a normal dispersion. For 
a/λ=0.4, the refractive index extracted from the phase delay takes on a value which 
monotonically increases from 1.385 (for 10 layers samples) to 1.405 (for 40 layers 
samples), a value close to the 1.41 predicted by the slope of the bands in the low 
frequency limit. The fact that the measured neff increases with sample thickness is 
probably a consequence of the fact that the approximation of the crystal as a 
homogenous medium becomes more realistic as we increase the number of layers. 
As the crystal thickness increases the region of anomalous dispersion becomes 
spectrally narrower. This evolution coincides with that of the reflectivity peak (see 
chapter 3) as would be expected, both features being associated with extinction due 

 

Figure 3: Effective refractive index extracted from the phase delay 
measurements for samples having different number of layers: 40 (a), 31 (b), 
20 (c) and 10 (d). Vertical dashed lines indicate the edges of the L-pseudogap 
as extracted from band calculations. All samples made of spheres with 705 nm 
diameter except from thick line in figure (c), made out of 505 nm spheres.  
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to Bragg diffraction. Also the maximum and minimum values of neff at the edges of 
the anomalous dispersion region, as compared to the low frequency value, increase 
as a function of crystal thickness. This corresponds to the fact that Bragg 
diffraction (and therefore extinction responsible for the anomalous dispersion) 
becomes more efficient with the number of planes. This shows that if second or 
third harmonic generation is to be observed in such systems, as in references 15 
and 16, the size of the crystal will be determinant in achieving the phase matching 
condition.  

These results represent a clear improvement with respect to previous phase 
delay data measured in colloidal crystals.4,5 On the one hand, the good quality and 
reduced thickness of the samples allow for measuring the phase delay for 
frequencies within the pseudogap, not observed previously due to the lack of signal 
as a consequence of the crystal size. These data then represent the first observation 
of anomalous dispersion in refractive index across the pseudogap of a 3D photonic 
crystal. Further, the increased refractive index contrast of our samples with respect 
to the above mentioned colloidal crystals allow for the observation of variations of 
the effective refractive index of up to 0.015 between the long wavelength limit and 
those frequencies close to the pseudogap. This value is an order magnitude larger 
than the one obtained with colloidal crystals having 1000 planes.   

Once the phase delay is measured, the effective dispersion relation of the 
sample can be obtained in a straightforward manner as k(ω)=θ(ω)/D. Then one 
may obtain the group velocity vg associated with propagation along the ΓL 
direction which is just the derivative of the dispersion relation with respect to the 
frequency. In our case it is the inverse group velocity times the speed of light in 
vacuum that we calculate; 

                                                     
ωd

dk
D
c

v
c

g

=                                                 (6) 

The group velocity can be defined as the velocity at which the peak amplitude 
of a pulse traverses a medium. Therefore it provides information on the dynamics 
of light propagation through that medium. For an infinite photonic crystal, the vg at 
a certain frequency may be calculated as the slope of the corresponding band at that 
frequency. vg equals the energy velocity, that is the speed at which electromagnetic 
energy propagates.13 In the absence of available states neither of them is defined as 
no energy can propagate through the medium. But for a finite crystal the situation 
is different. Here, for frequencies located within a forbidden interval, light will be 
exponentially attenuated but it may still be transmitted through the crystal. In the 
presence of extinction, vg does not equal the energy velocity17 and care must be 
taken when interpreting experimental results.   

In figure 4 the evolution of c/vg extracted from (6) is plotted for samples having 
an increasing number of layers. Some interesting points must be noted in this 
graph. For samples just 10 layers thick c/vg is basically constant with frequency. 
Noisy regions appear which correspond to the anomalous dispersion associated 
with water vapour absorption observed in the results for neff. As the thickness 
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increases, two peaks of low vg develop at frequencies close to the pseudogap edges 
(indicated by dotted vertical lines), and a region of high vg appears in between 
them. For increasing number of layers the two peaks become more pronounced and 
shift closer to the position of the pseudogap edges. Far from these frequencies the 
vg presents oscillations around a constant value. Such oscillations coincide with 
Fabry-Perot resonances observed in reflectance and transmittance,9,11 and are a 
result of the finite size of the sample. 

Near the edges of the pseudogap, energy bands separate from the low energy 
linear behaviour and become flat. Thus, the vg associated with the frequencies near 
the edges becomes extremely low. For an ideal infinite crystal the modes with these 
frequencies become standing waves. For real finite crystals these “heavy” photons 
with such frequencies experience a very long optical path inside the structure, and 
their interaction time with the crystal is enhanced.18, By introducing non linear 
optical materials in 1D photonic crystals this effect may lead to optical limiting and 
switching,19 and enhanced second harmonic generation by adequately tailoring the 
dispersion relation of the crystal.14 If active media are introduced instead, enhanced 
gain could be achieved.18,20 In the results presented in figure 4 the two peaks of low 
vg correspond to the spectral interval where anomalous dispersion was observed 

 

Figure 4: Inverse group velocity for samples with increasing number of 
layers. Top to bottom: 40, 31, 20 and 10 layers. Horizontal dashed lines 
indicate the limit of superluminal velocity vg=c. Vertical dotted lines indicate 
the pseudogap edges predicted by calculated bands.  
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and may then be identified with the appearance of Bragg diffraction by the {111} 
planes parallel to the sample surface. This evolution can then be considered as a 
signature of the formation of the energy bands in this spectral region of the band 
structure, where the decrease in vg can be associated with the bending of the energy 
bands near the pseudogap. For the sample 40 layers thick the trend followed by vg 
coincides with theoretical predictions extracted from the bands as can be seen in 
figure 5. Near the pseudogap edges, experimental values are below theoretical 
ones. This is probably due to finite size effects, as more layers will be needed in 
order to achieve a more pronounced slowing. The observed reduction in vg reaches 
a maximum of 40% at the high energy edge of the pseudogap. This is larger than 
previous vg reductions observed in colloidal crystals with ~1400 planes,8 and thin 
film opals with fewer layers (~20%).9 As in the variations regarding the effective 
refractive index, increasing the photonic strength of our system by augmenting the 
refractive index contrast allows the observation of phenomena related to band edge 
bending with thinner samples, which show a sufficiently large signal within the 
pseudogap.    

For frequencies within the pseudogap, the group velocity is observed to take on 
values above the long wavelength limit, reaching a superluminal behaviour (vg>c) 
for samples only 15 layers thick. Superluminal group velocities have been 
experimentally observed with pulses propagating through 1D photonic crystals21,22  
and also extracted from phase delay measurements.9,11 Such results, although 
striking, are known not to be at odds with causality. For a finite system the group 
and energy velocities are not the same at those regions for which strong extinction 

 

Figure 5: Inverse group velocity as a function of frequency for a sample 40 
layers thick (thin line). Theoretical predictions extracted from the bands 
appear as thick solid line. Vertical dotted lines correspond to pseudogap 
edges. Horizontal dashed line represents the limit of superluminal 
propagation (c=vg). 
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takes place (i.e. inside the pseudogap), and the energy velocity remains below c for 
all frequencies.17  

But slowing at frequencies close to the pseudogap edges is not only related to 
gain or SHG enhancement. The fact that photons experience a longer optical path 
for these frequencies implies that they are more likely to be scattered by defects in 
the lattice. This was already observed in chapter 3 as an enhancement of the diffuse 
intensity generated inside the crystal. One may compare the frequency dependence 
of the optical response of the 40 layers thick sample with the group velocity, as in 
figure 6. Here it is clearly seen that pulse slowing is related to an enhancement in 
diffuse intensity. Taking a close inspection at the figure, there is an evident 
asymmetry between the group velocity and the diffuse intensity. In the low energy 
edge there is a clear enhancement of diffuse intensity which coincides with a 
smaller group velocity, as compared to the high energy edge (where no 
enhancement of diffuse intensity is present). It seems that the generation of diffuse 
intensity counteracts the effect of sample thickness in the evolution of the vg, which 
is expected to decrease with the number of layers.  

 

4. High energy spectral region 

We next consider the evolution of the phase as a function of the number of 
layers in the high energy spectral region where second and third order Bragg 

 

Figure 6: (a) Band structure for a polystyrene opal along the ΓL direction. (b) 
Reflectance, (c) transmittance and (d) diffuse intensity for a 42 layers thick 
sample. (e) Inverse group velocity for a 40 layers thick sample.  



White light interferometry of thin film opals 

 102

diffraction by the {111} planes parallel to the surface are expected together with 
the onset of diffraction. This is shown in figure 7 for samples with variable 
thickness and sphere diameters. The thickest samples considered have 28 layers. 
This limitation was imposed by the low transmission present in this frequency 
range (see chapter 4). At variance with the results for the low energy range where a 
single feature (namely a phase jump) was observed in the measured phase delay, 
here a number of features are present in the reduced frequency window 
1.1<a/λ<1.3, the most pronounced being the one taking place at a/λ~1.1 where the 
onset of diffraction is expected. This is in agreement with the complicated 
reflectance and transmittance spectra previously obtained in this frequency interval. 
For reduced frequencies a/λ>1.3, the phase delay presents a linear behavior, 
expected for a homogeneous medium. This is also in agreement with transparency 
regions observed in reflection and transmission spectra. 

With increasing sample thickness the phase jumps become more defined, 
eventually present a flip in their sign and loose definition again. In particular we 
shall focus on the behavior of the first and most pronounced jump taking place for 
a frequency a/λ~1.1. In figure 7a results for samples grown from spheres of 705 nm 
are presented. The thickness for which the sign flip takes place for the first jump is 
12-13 layers. For spheres 505nm in diameter results are only shown for a number 

 

Figure 7: Phase delay introduced by samples with an increasing number of 
layers. (a) 705 nm spheres samples having, left to right;  4, 6, 7, 10-14, 18, 21, 
25 and 28 layers. (b) 505 nm spheres samples having, left to right; 7-12 
layers. 
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of layers around the critical thickness, which for this sphere diameter turns to be 9-
10 layers (see figure 7b). Here it must be noted that the spectral position of the 
jumps is scalable with sphere size so that one expects them to have their origin in 
the band structure. The fact that the sample thickness for which the sign flip takes 
place for each sphere diameter is different is not understood at this point. More 
results on different samples and also for spheres with different diameters are 
needed in order to further explore this behavior. Nevertheless, the fact that it takes 
place at the spectral region where the onset of diffraction is expected makes us 
think that it is related to the presence of diffraction bands. 

Contrary to the situation in the low energy region described in the preceding 
section, where the phase jump could be associated with Bragg diffraction by the 
{111} planes parallel to the surface alone, here the coexistence of linear and 
diffraction bands complicates an interpretation. In the former situation, incident 
light could only couple to a set of degenerate bands and the contribution to the 
phase delay could be clearly identified. Now light may couple to a number of 
bands, the information contained in the phase delay is due to all of them, and 
extracting single contributions is challenging at this point.  

The next step is to extract the group velocity by deriving the phase delay 
according to (5). Results are plotted in figure 8 for samples with different 
thickness. Results are smoothed by averaging over 4 adjacent points. Raw data is 
also shown in grey in order to verify that none of the main features are lost. As one 

 

Figure 8: c/vg determined from the phase delay measurements for samples 
having different thickness. Black lines are smoothed data and grey lines are raw 
data. 
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would expect, the presence and evolution of the features observed for the phase 
delay has a correspondence in the group velocity. In the spectral region 
1.1<a/λ<1.3 a number of peaks of low and high group velocity are found. Here 
“slow” photons, superluminal and even negative group velocities are observed. The 
flip in the sign of the phase jumps translates into abrupt changes of the sign of the 
features in the group velocity. In this sense, increasing the number of layers by one 
may yield a transition from negative group velocities to extremely low ones (a 
factor of 6 slower than the constant value obtained in the low energy region). The 
existence of a negative value is a rather shocking result, as it implies that the peak 
of a pulse propagating with its central frequency centered in that spectral region 
would leave the sample before entering it.23 Negative group velocities have been 
previously observed in the optical regime for transparent anomalous dispersive 
media24 and 2D periodic arrays of sub-wavelength apertures in metallic films.25 In 
both cases such values for vg were explained in terms of classical interference of 
light which traverses an anomalously dispersive medium.23 In both situations it was 
pointed out that the results were not at odds with causality. 

The present measurements are not an experimental artifact due to the 
derivation process. At the spectral regions where unusual values for vg are found 
the phase does not present an abrupt jump but is rather a smoothly varying function 
(with over 20 measured points in the sharpest features). If such values were a 
consequence of the fact that the phase is lost, a random behavior would be 
expected which is not the case. Instead, an evolution with the number of layers is 
observed which is reproduced with sphere size (although a change in the critical 
thickness appears which is not understood). 

For samples having 18 layers, the group velocity seems to reach a stationary 
behavior. Increasing the number of layers (up to 28 in the present measurements) 
does not introduce further changes in the sign of the observed features. The only 
change is that they seem to become less defined. Therefore it seems adequate to 
choose samples with thickness above 18 layers to compare them with calculated 
bands. This has been done in figure 9, where reflectance and transmittance 
measurements for a sample 25 layers thick are compared with calculated bands and 
the inverse group velocity. It can be seen that features in the group velocity 
correspond to features in reflectance and transmittance in the spectral region where 
flat diffraction bands appear in the band structure. As in the case of spectroscopic 
measurements, assigning features to certain bands is not trivial. In this frequency 
interval light may couple to several bands for a given frequency so that information 
from all of them will be contained in the phase measurements. For reduced 
frequencies a/λ>1.3, we find that vg does not present any more abrupt peaks. This 
coincides with the fact that the samples present a transparency region for those 
frequencies where Fabry-Perot oscillations may be observed (see chapter 4). 

Our situation would be closer to that of the periodic array in reference 25. For 
that system it was observed that vg presented a strong spectral modulation (going 
from negative to positive –but low– values) associated with a modulation in the 
transmitted intensity. In our case, the spectral region where vg undergoes a strong 
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modulation coincides with the region where the optical response presents marked 
features. Further, in reference 25 they observed that the largest negative value for 
vg is at the frequency where the Wood anomaly takes place, where light is 
diffracted at grazing angle and is resonantly transferred to surface wave modes. In 
our case the largest (negative) value for vg occurs for thin samples at the frequency 
where the onset of diffraction takes place. As the sample thickness increases the 
situation becomes more complicated and an analogy with a simple 2D grating does 
not seem realistic, the band structure being a more reliable tool for interpretation.  

To obtain more detailed information from energy bands at this stage is a 
difficult task. As mentioned in chapter 4, knowing the coupling strength of the 
incident frequency to each band would be useful in determining their contribution 
to the measured phase delay. Nevertheless, these results are relevant on its own as 
they represent the first phase sensitive measurements in this spectral region. 

 

 

 

Figure 9: (a) Band structure for an artificial opal made out of polystyrene 
spheres. Thick lines represent linear bands (as defined in chapter 4). (b) 
Transmission for a sample 25 layers thick. (c) Reflection for a sample of the 
same thickness. (d) Inverse group velocity extracted from phase delay 
measurements for a sample with the same thickness. 
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5. Conclusions and future work 

In this chapter phase sensitive measurements obtained using white-light 
interferometry in the time domain have been presented for samples with variable 
thickness and sphere size. The spectral range covered in the present experiments 
spans the low energy region around the L-pseudogap and the high energy region 
where the onset of diffraction takes place. They complement previous optical 
characterization by means of reflectance and transmittance spectroscopy presented 
in chapters 3 and 4. 

In the low energy region, the phase delay is seen to develop a phase jump as a 
consequence of Bragg diffraction by the {111} planes parallel to the surface. 
Assuming an effective medium behavior we have extracted an effective refractive 
index neff for the crystal which presents a region of anomalous dispersion 
corresponding to those frequencies where the phase jump was present. The 
variation observed in the neff as a function of sample thickness indicates caution 
must be taken if similar systems are to be used for obtaining phase matching 
scenarios. Deriving the phase delay we have been able to extract the group velocity 
vg, which presents low values close to the pseudogap edges where energy bands 
flatten, and high (even superluminal) values for frequencies within.   

The phase delay in the high energy region presents a complicated behavior 
with the appearance of a number of features in the same spectral position as those 
observed in reflectance and transmittance spectroscopy. When extracting the group 
velocity in this frequency interval we have observed situations in which 
superluminal and even negative group velocities are present. Such values appear 
for frequencies corresponding to dispersionless bands. The evolution of the phase 
delay with the sample thickness in this spectral region is not well understood at 
present and deserves further attention.  
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                                         CHAPTER 6 

Polarization dependence of the optical 
response of artificial opals 
 

1. Introduction 

The presence of “effective” pseudogaps in the optical response of photonic 
crystals was first pointed out in 1992 by Robertson et al.1 As opposite to “real” 
pseudogaps, originated by the absence of available modes, “effective” ones are due 
to the existence of bands which may not be accessed by an external probe beam 
due to a symmetry mismatch between the external beam and the photonic mode. In 
that work, the way the symmetry of the incident beam affected the coupling of light 
to certain energy bands was observed for 2D systems. In that same year the 
existence of uncoupled modes, that cannot be coupled to for symmetry reasons, 
was also introduced for 3D systems.2 Later, in 1995, Sakoda presented a rigorous 
description of the symmetry of the eigenmodes of a 2D photonic crystal and 
discussed the effect that the polarization of the incident beam would have on the 
optical response of a photonic crystal.3 

Ever since, the effect of the polarization on the optical response of opal-based 
photonic crystals has been observed in a number of systems.4,5 For the particular 
case of artificial opals made of silica spheres, a complete characterization of the 
eigenmodes in terms of their symmetry properties was performed by López-Tejeira 
et al. in 2002.6 In that work it was predicted that the effect of uncoupled modes on 
the optical response of such systems could not be appreciated for normal incidence 
measurements on the {111} planes. This is due to the fact that for this direction, 
uncoupled modes coexist with allowed ones. But this situation changed for 
directions other than normal incidence, in accordance with previous results for 
related systems. The object of the present chapter is to present experimental 
evidences on how light with different polarization can only couple to certain bands 
in the lowest energy range of the band structure of artificial opals. In order to 
achieve our goal we analyze the four bands determining the first pseudogap in the 
vicinity of the L point of the Brillouin zone. This can be thought of as the 
pseudogap associated with diffraction by the {111} set of crystalline planes. This is 
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done by means of angle resolved reflectivity measurements. It is found that the 
polarization of the incident beam influences both, the spectral width and the 
intensity of the reflected beam.  

 

2. Symmetry of photonic bands and incident beam 

The four lowest bands in the vicinity of the L point for an opal structure are 
identical irrespective of the direction along the surface of the Brillouin zone for an 
angular range going from normal incidence to an internal angle of about 34 degrees 
and slightly departing from a common behavior only for higher angles. This is 
equivalent to saying that within a circle inscribed in the hexagonal face of the 
Brillouin zone the photonic bands are isotropic. So, for the sake of simplicity, we 
can take the ΓLU triangle as representative and assume incident light with its wave 
vector k contained in that plane, the tip of k lying on the LU segment (see Fig. 1). 
This allows classifying the bands by their behavior under mirror reflection with 
respect to that plane, which coincides with the diffraction plane. Both symmetric 
(2nd and 3rd) and anti-symmetric (1st and 4th) bands are to be found bounding the 
first Bragg peak.6 

 

Let us now consider the symmetry properties of the incident field for any wave 
vector k contained in the ΓLU plane. The electric field E can always be written as a 
linear combination of two base vectors contained in a plane perpendicular to k. In 

 

Figure 1: Geometry of the experiment. The diffraction plane is 
represented in light gray. The sample surface plane is represented in dark 
gray. The inset shows the first Brillouin zone for a fcc structure. High 
symmetry points are indicated 
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particular, it is convenient to choose such vectors as parallel (ep) and perpendicular 
(es) to the diffraction plane (see Fig. 1). Hence, E = αEs+βEp with Es = E0es; Ep = 
E0ep; es·ep = ek·ep = ek·es = 0 and α2+β2 = 1 where ek is a unit vector in the direction 
of propagation k. When light is linearly polarized perpendicular to the diffraction 
plane (α = 1 and β = 0), the electric field E is equal to Es. On the other hand, E = 
Ep for the case of parallel polarization (α = 0 and β = 1). Then, in the p-polarized 
configuration the E field is contained in the diffraction plane, and mirror reflection 
with respect to that plane leaves the field vector unchanged. However for s-
polarization the E field is perpendicular to the mirror symmetry plane so that the 
symmetry operation changes E into -E. Details on how this can be done may be 
found in reference 6. Thus, the symmetric (A’) eigenstates along the LU direction 
can only be excited by symmetric p-polarized incident fields, whereas the s-
polarized fields can only couple with the anti-symmetric (A’’) states. So, a 
polarization sensitivity of the first Bragg peak width for oblique incidence is 
expected, according to band structure calculations.6 

 

3. Angle resolved reflectivity 

The samples employed in the experiments are artificial opals consisting of 
silica spheres 297 nm in diameter according to SEM characterization. The samples 
were grown by S. Rubio by natural sedimentation, and consist of an ordered fcc 
array, with the surface parallel to the {111} crystallographic planes. A detailed 
description of the synthesis can be found elsewhere.7 A typical sample presents a 
surface of 9 mm2 and a thickness of 0.5 mm. Reflectivity measurements were 
carried out using a configuration identical to that described in chapter 3. Angle 
resolved measurements were performed with linearly polarized light with its 
electric field perpendicular (s-polarization) or parallel (p-polarization) to the 
diffraction plane, as shown in Fig. 1. Reflectivity spectra for s and p polarized light 
as a function of angle are presented in fig. 2. In both cases, the shape of the spectra 
deviate from the flat top peaks with 100% reflectivity expected for perfect infinite 
crystals. Extinction caused by scattering taking place at defects in the bulk and 
surface of the crystal is known to affect the intensity and shape of the peak 
rounding the edges but not affecting the full width at half maximum (FWHM).8,9 In 
the presence of a mosaic spread, beside an additional decrease in reflected intensity 
due to non specular reflections, inhomogeneous broadening could take place.10 
Another source of peak broadening could be the finite size of crystallites in the 
sample.11 These issues will be discussed below, as a comparison with calculated 
bands is carried out. When comparing the spectra from figs. 2a and 2b a difference 
in the behaviour of the absolute reflectivity as a function of the angle of incidence 
is observed. While the spectra for s-polarized light show a nearly constant 
reflectivity with changes below 2% over the entire angular range, the spectra 
associated to the p-polarized light present a stronger decrease of nearly 6% in the 
same range. This difference will be addressed below. Two spectra for s and p 
polarized light, for an external angle of incidence θext of 39 degrees, are presented 
in fig. 2c. Both spectra have been normalized in intensity for comparison. Here we 
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can already appreciate the difference in width between both peaks, indicating 
strong polarization sensitivity.  

In order to compare our experimental results with numerical calculations,6 
several issues have been taken into account. Because of the geometry of the sample 
in our experiment we are mapping the bands for k in the vicinity of the hexagonal 
face of the Brillouin zone (see fig. 1). As the angle of incidence increases, the wave 
vector k will approach the boundaries of the hexagon centered in L in the direction 
of one of the high symmetry points located at the corners (W) and centers (U, K) of 
the sides of the hexagon. This will be determined by the orientation of the sample 
surface relative to the diffraction plane. For each possible orientation of the sample, 
different results are expected (see chapter 3). 

Determining the orientation of the samples is not easy since they are composed 
by a mosaic of monodomains typically 20-50 microns in size.7 While all domains 
show a preferential out-of-plane orientation with the surface consisting of {111} 
planes, they may present a random in-plane orientation. The size of the probe beam 
being larger than a typical domain will cause averaging over many domains. To 
avoid this uncertainty in our measurements, reflectivity spectra were collected from 

 

Figure 2: (a) Reflectivity spectra as a function of external angle of incidence 
for s  polarized light for θext= 6º, 14º, 23º, 29º and 34º. (b) Reflectivity spectra 
as a function of external angle of incidence for p  polarized light for θext= 8º, 
14º, 21º, 25º, 30º and 35º. (c) Normalized reflectivity spectra are shown in 
solid (dashed) line for s- (p-) polarized light, for an external angle of 
incidence of 39º degrees. 
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normal incidence to an internal angle of 32 degrees. As pointed above, for this 
angular range the four lowest lying energy bands are identical irrespective of the 
direction of tilting. The correspondence between internal and external angles can 
be obtained from Snell’s law using an effective refractive index neff which is 
calculated by fitting the experimental angle dependence to Bragg´s law: 

exteffnd θλ 22
111max sin2 −= , where d111 is the interplanar distance for the (111) 

family of planes (parallel to the crystal surface), λmax is the peak center and θext is 
the angle formed by the normal to the crystal surface and the incident beam. This 
expression has proven valid for artificial opals12 at angles below the avoided 
crossing region near the U, K and W points in the first Brillouin zone. The values 
obtained from this fit were: neff=1.336 and d111=244 nm. If we estimate the 
diameter of the spheres from this value of d111 we obtain 299 nm, in agreement 
with the value obtained from SEM characterization.  

 

Figure 3: Calculated photonic bands (lines) and measured band edges from 
reflectance spectra (circles). Continuous (dashed) lines represent bands anti-
symmetric (symmetric) with respect to mirror symmetry. Experimental data 
correspond to light plane polarized parallel (p) and perpendicular (s) to the 
diffraction plane. 

We have assumed the widely used criterion of associating the full width at half 
maximum of reflectance peaks with the edges of a stop band to compare 
experimental reflectivity peaks with calculated bands. In the absence of finite size 
effects or mosaic spread, this approach would be correct as explained above. 
Following this criterion, fig. 3 shows the experimental results for p-polarized and s-
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polarized light respectively (symbols), plotted on top of the calculated bands 
(lines). A fair agreement is observed in both cases. The fact that the FWHM of the 
peak for small angles of incidence matches with the predicted width implies that 
finite size effects are negligible and inhomogeneous broadening due to a mosaic 
spread, if present, will be small. As a matter of fact the broadening observed for 
large angles of incidence could be due to a mosaic spread, since its effect on the 
peak width would become more pronounced as the angle of incidence increases.13 
According to the previous analysis, the outer bands (1 and 4) couple to s-polarized 
light, while the inner bands (2 and 3), defining a narrower stop gap, couple to p-
polarized light. This explains the difference in intensity for s and p polarized light 
reflectivity as a function of angle shown in fig. 2. In the case of p-polarized light, 
the stop band defined by the symmetric bands to which this polarization couples 
dramatically narrows as we move away from normal incidence, therefore the 
penetration length of the incident light into the crystal increases14 and the effect of 
extinction by bulk defects will increase, while for s-polarized light the width of the 
stop band suffers a much smaller narrowing and therefore the change in intensity is 
smaller. Let us remark that in an experiment using unpolarized light, the outer 
bands would be probed while the inner ones would remain hidden since the broader 
peaks contain the narrower.  

 

4. Conclussions and future work 

In this chapter we have presented angle and polarization resolved reflectivity 
from artificial opals, a system that, while not having a full photonic band gap, 
proves to be an interesting playground for studying the complex interaction of light 
with photonic crystals. It has been experimentally demonstrated that 
electromagnetic radiation with different polarization will only couple to certain 
energy bands depending on their symmetry character, in accordance with 
predictions based on group theory and previous results for related systems. From 
these results it is evident that the symmetry character of the photonic bands must be 
taken into account in order to properly interpret optical measurements.  

Also for artificial opals it has been suggested15 that a configuration in which to 
observe the effect of uncoupled modes in the optical response is to carry out 
normal incidence measurements for samples grown along the [220] 
crystallographic direction. Although artificial opals have a natural tendency to 
grow with the {111} planes parallel to the surface, alternative routes to obtain 
samples with their surface parallel to the {220} planes have been recently 
proposed.16,17   
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                                         CHAPTER 7 

Angle resolved reflectivity of single-
domain photonic crystals: Effects of 
disorder 
 
 

1. Introduction 

When probing the optical properties of photonic crystals using coarse beams, 
with dimensions much larger than that of a typical domain, a comparison with 
theoretical predictions extracted from calculated bands may be a complex task. In 
the presence of a mosaic spread, each domain has {111} planes parallel to its 
surface, but its normal randomly oriented, and an inhomogeneous broadening of 
reflectance and transmittance peaks takes place.1,2 Additional broadening may 
happen if different domains present different lattice parameters, its corresponding 
diffraction peaks being centered at different frequency. Besides this “strain”, finite 
size effects are also a source of broadening which may hamper comparison 
between experimental data and theoretical results.3,4 Other forms of disorder such 
as grain boundaries, point defects, dislocations, etc. are likely to introduce diffuse 
scattering as light propagates through the crystal. 

Therefore it makes sense to minimize any spectral or angular features in the 
reflection or transmission spectra due to disorder. In order to do so, one may want 
to probe only single domains. This has been demonstrated in opal based photonic 
crystals with a low refractive index contrast for normal incidence reflectance 
measurements where frequency was scanned.1 

In this chapter we present angle-resolved reflectivity measurements with laser 
beams focused to a 10µm spot for opal based photonic crystals consisting of air 
spheres in a titania (TiO2) backbone. As opposite to normal incidence frequency 
dependent measurements, which probe “vertical” slices of the band structure (fixed 
direction, variable frequency) the present measurements may be considered as 
probes of the dispersion surfaces. While on the former one may obtain information 
on stop bands, here information will be collected on angular and not spectral 
forbidden intervals. First we determine the orientation and size of crystal domains 
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present in the surface of the crystal which allows for assessment of mosaic spread 
and finite size effects on previous measurements using coarse white light beams. 
Then angle resolved measurements are performed and a comparison with 
theoretical predictions proves satisfactory. Finally the effects of diffuse scattering 
are modeled by a small imaginary component of the dielectric function.  

 

2. Experimental 

The experimental set-up used for these experiments is shown in figure 1.d 
Three laser beams with frequencies of 633 (He-Ne), 850 (diode) and 1064 nm 
(Nd:YVO4) were overlapped by a collection of beam splitters and modulated by a 
chopper. A telescope expands the beam which is then focused onto the sample. In 
order to combine a narrow focal spot of 10µm with a small angular aperture of 4º 
full angle, microscope objectives were used with a focal length of 7.35 cm and a 
numerical aperture of 0.05 for both, focusing and detection.  

 

 
Figure 1: Scheme of experimental set-up. Beams from laser L1,2,3 (633, 850 
and 1064 nm) are overlapped by beam splitters (BS). The resulting beam 
passes through a chopper (C) that is connected to a lock-in amplifier, and is 
expanded by a telescope (T). The microscope objective O1 focuses the beam 
on to the sample, and O2 collects diffracted light. In the inset, α and 2θ are 
defined as the angles that the incident beam forms with the normal to the 
surface and the diffracted beam respectively. 

                                                      
d Experimental measurements were performed at the laboratories of the group Waves in 
Complex Media in the van der Waals-Zeeman Institute (University of Amsterdam, The 
Netherlands). 
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The sample lies on the α rotation stage, where α is the angle between the 
incident beam and the sample normal (figure 1). The detection system consisting of 
a microscope objective and a diode detector is placed on a separate 2θ stage, with 
the same rotation axis as α; 2θ is defined as the angle between the incident and the 
diffracted beams. Due to physical limitations imposed by the size of the objective 
holders, the angular range of collection is reduced to the interval 20º<2θ<120º. An 
additional beam splitter is located before the focusing objective to allow for normal 
incidence collection at 2θ = 180º. 

The samples studied consist of a FCC array of air holes in a TiO2 matrix.5,6 
Several are the same as those in references 7, 8 and 9. They have overall 
dimensions of 1 mm2 parallel to the surface, and a thickness of ~200 µm. We have 
employed samples of lattice parameters 847 ± 5 and 477 ± 14 nm with several 
wavelengths in order to measure reflectivity over a wide spectral range in terms of 
the reduced frequency a/λ, where a is the lattice parameter and λ is the wavelength 
of light in vacuum. For the samples and wavelengths used, we achieved values of 
a/λ = 0.754 ± 0.002, 0.796 ± 0.005, and 0.996 ± 0.006. For these values, we will 
probe inside the stop gap associated with the (111) Bragg diffraction, centered at 
a/λ = 0.73 at normal incidence, as well as below and above the centre of the 
avoided crossing of multiple Bragg diffraction taking place at the U-point for a/λ = 
0.85.9 For FCC photonic crystals band degeneracy can take place near the U point, 
narrowing the stop gap for p-polarized light.10 In order to avoid this, s-polarized 
light has been used in all our measurements.  

 

3. Determination of mosaic spread 

We have measured reflectivity for different orientations α of the sample while 
maintaining the detector at a fixed position 2θ chosen so that the wavelength used 
is inside the stop gap for that orientation. By doing this we obtain information 
about the orientation of the different domains constituting the surface. Domains 
with different orientations will show reflectivity maxima centered at different 
sample angle α. We have measured reflectivity systematically in this way over the 
whole surface of the crystals, dividing the surface in a two dimensional grid 
consisting of points separated by 200 µm. In Fig. 2 normal incidence reflectivity 
results are shown for a sample with a lattice parameter a = 477 nm using a 
wavelength λ = 633 nm, which for this sample is contained in the L-pseudogap, 
that is, the stop gap for incidence normal to the {111} family of lattice planes. We 
observe three curves corresponding to measurements done on three different 
domains. Each curve shows an angular aperture equal to that of the reference 
measurement carried out with the mirror. Reflectivity as high as 94% has been 
found, confirming that good quality single crystals are being probed. From the 
position of the peaks, a mosaic spread of ±2º can be deduced. Similar 
measurements were carried out for a sample with a lattice parameter of 847 nm at a 
wavelength of 1064 nm, only that α was increased to 30º in order to be at the center 
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of the stop gap. A reflectivity up to 77% and a mosaic spread of ±3º were recorded. 
For measurements performed on similar samples, but using coarse beams (~600 
µm), reflectivities as low as 20% and 8% were reported for normal incidence and α 
= 30º respectively.7 Therefore probing such small regions offers further 
information about crystal quality and optical performance which remains hidden 
when using coarse beams.   

In both sets of measurements, domains as large as L = 200 µm were found, by 
selecting two points from the grid with the same orientation, repeating the 
measurements for intermediate points, and observing high reflectivity. A 
broadening of the peak due to finite size effects would then be negligible (see 
chapter 3). Out of these domains, regions presenting rather low reflectivity (~10%) 
were found. This would explain the low signal collected in previous measurements 
using coarse beams.7,9 A possible reason for such low reflectivity regions could be 
the existence of zones covered with unstructured TiO2.5  

 

 
Figure 2: Reflectivity for a/λ = 0.754±0.002 (a = 477 ± 14nm, λ = 633 nm), 
measured as a function of α at different points on the sample surface. The 2θ 
detection stage remains fixed at normal incidence (2θ = 180º). 

 

In coarse beam experiments, where many domains are probed simultaneously, 
the inhomogeneous broadening introduced by the mosaic spread will increase with 
the angle of incidence due to the shape of energy bands. It can be estimated that the 
relative broadenings introduced due to the mosaic spread would range from 1.5% 
at normal incidence to 8% for an angle of incidence of 60º.7 
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4. Angle resolved reflectivity 

When trying to measure single-domain angle-resolved reflectivity, the beam 
must be carefully aligned with the rotation axis. Any misalignment will cause a 
translation of the region of the sample exposed to the beams, as well as bringing it 
out of focus as the sample is rotated. We found that the detection optics on the 2θ 
stage must be carefully counterweighted to avoid tilting of the rotation axis which 
also moves the sample out of focus. The counterweight process is done by 
observing the diffraction pattern of a 10 µm thick tungsten wire located at the 
sample holder as the 2θ stage is rotated. The evolution of the pattern is observed 
for different positions of the counterweight. An alignment is achieved such that the 
wire moves less than 10 µm from its original position over the whole angular range 
as is shown in Fig. 3. This result shows that it is feasible to carry out angle re- 
solved scans on objects, including single crystals, of 10 µm dimensions. 

 

 
Figure 3: Measured position of the rotation center of the α stage as a function 
of the angle rotated by the 2θ stage (circles, connected by lines). An overall 
change of less than 10µm is observed. 

 

For the sample with a = 847 nm, angle resolved reflectivity measurements 
were carried out for the frequencies a/λ = 0.796 and 0.996. The results are shown in 
Fig. 4. The excluded angular range due to experimental limitations imposed by the 
set-up is indicated as a crossed block. We see peaks that correspond to those 
directions where the stop gap contains the frequencies used. For a/λ = 0.796 we 
observe a peak centered at α = 30º and showing a half width at half maximum of 
13.2º, and a reflectivity of 77%. The peak associated with a/λ = 0.996 is centered at 
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α = 54º and has a half width at half maximum of 10º and up to 39% reflectivity. 
The shape of the peaks deviate from the flat-top predicted for perfect crystals by 
the dynamical diffraction theory which models similar measurements in x-ray 
diffraction11 and colloidal crystal research.12 In this theory the rounded top shown 
by our peaks is associated with extinction, which in our case can only come from 
diffuse scattering by defects, since for the range of wavelengths that we are using 
TiO2 does not absorb.6 We can also see that as the reflectivity peak appears at 
larger angles, the reflected intensity decreases. This cannot come from any 
misalignment of the beam with respect to the rotation centre, since in the reference 
measurements taken with the mirror, a signal constant within 5% was recorded at 
all angles. It is conceivable that diffracted energy is carried away by multiple 
Bragg diffraction (in directions which may not be collected with the present 
configuration) discussed below, which warrants further study. 

 
Figure 4: Angle-resolved reflectivity on the sample with a = 847 nm for a/λ = 
0.796 (solid circles: λ=1064 nm) and a/λ = 0.996 (open circles: λ=850 nm) as 
a function of α. The collection is done at 2θ=180-2α for every α. The hatched 
rectangle indicates the angular range excluded due to physical limitations in 
the set-up. 

 

To obtain the range where stop gaps are present, we have used the heuristic but 
reliable criterion (see chapter 3) that the full width at half maximum of a 
reflectivity peak corresponds to a stop gap. Data obtained in this way are plotted in 
figure 5. The single point at normal incidence corresponds to the measurements 
done at relative frequency a/λ = 0.754, see Fig. 3. The hatched line at a/λ = 0.796 is 
our estimation of the fraction of the stop gap falling within the forbidden angular 
range. At a/λ = 0.996 two peaks centered at different angles were obtained in 
separate domains. This is probably due to strain which, in this sort of crystals may 



Angle resolved reflectivity 

 123

happen as an uneven shrinkage of the original opal skeleton during calcination. 
Mosaic spread is not likely to be the reason for these two peaks, since each domain 
was properly oriented with respect to the incident beam by measurements similar to 
those shown in Fig. 3. The peaks are plotted together with error bars indicating the 
uncertainty in the width.  

The triangles in Fig. 5 indicate previous measurements with coarse beams.9 For 
the relative frequency a/λ = 0.796, a good agreement is observed between the two 
measurements. At a/λ = 0.996, the results obtained with coarse beams show a 
broader stop gap than that obtained with a focused beam. A reason for this 
deviation could be that for measurements with focused beams, realignment is 
carried out for each domain as described above, in order to avoid any 
inhomogeneous broadening due to mosaic spread. But for the case of coarse beams 
many domains are probed simultaneously, making it impossible to realign each of 
them and therefore introducing inhomogeneous broadening, which for this angular 
range can reach values up to 8% in frequency as discussed above. 

 
Figure 5: Comparison of present angle-resolved measurements (solid circles) 
with previous measurements using coarse beams (open triangles) and 
theoretical predictions (solid lines). 

The drawn curves in Fig. 5 are photonic bands calculated with the plane wave 
expansion using a dielectric model described in Refs. 8 and 9. For normal 
incidence this model reveals diffraction by only the {111} family of planes taking 
place. As the angle of incidence increases we move along the surface of the 
Brillouin zone in reciprocal space. As we reach the U point,13 diffraction from the 
{111} and {200} families of planes will take place simultaneously resulting in 
band repulsion of Bloch states.9 The fact that many waves couple, will cause a 
deviation of the dispersion relation from simple Bragg behavior, thereby flattening 
the photonic bands, a requirement for the formation of a photonic band gap. As 
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shown in Fig. 5, the relative frequencies we have used in our experiments fall 
above and below the avoided crossing, and show good agreement with the 
calculated bands. Any attempt to explain similar results with a model based on 
simple Bragg diffraction will therefore lead to systematic errors. 

 

5. Effects of disorder 

To theoretically interpret our results at normal incidence, we have performed 
calculations using the so-called scalar wave approximation (SWA), that is, using 
the plane-wave expansion in the E-field formulation and retaining only two 
reciprocal lattice vectors.14,15 We have extended the model to include extinction as 
a result of scattering from crystal imperfections. The two reciprocal lattice vectors 
correspond to the incident wave hkl = 000, and the diffracted wave hkl = 111. The 
Fourier components of the dielectric function are derived from the model described 
in Refs. 7 and 8, that accurately mimic the structure of our crystals, and whose 
dispersion relations agree well with reflectivity experiments. The following values 
were employed: ε’000 = 1.643 and ε111 = -0.187961. We take extinction due to 
diffuse scattering (by for instance point defects and grain boundaries) into account 
by a complex component of the average dielectric constant of the crystal ε’’000, 
which corresponds to a uniform extinction throughout the crystal. Note that this is 
different from the situation in x-ray diffraction, where absorption can only be 
present at the positions of atoms and the extinction is thus spatially modulated.11,16  

Figure 6 (inset) shows a calculated reflectivity curve as a function of 
frequency. While we have not measured such a frequency dependence, we can 
nevertheless compare the reflectivity measured at normal incidence (see figure 2) 
to the maximum Rmax of the calculated peak. The dashed curve in Fig. 6 shows Rmax 
as a function of the number of lattice planes in the absence of extinction, that is, 
with a purely real ε’000. It is seen that Rmax strongly increases before saturating at 
near unity for more than 20 planes. The solid curve in Fig. 6 shows Rmax for a 40 
plane crystal as a function of the extinction length expressed in the number of 
layers, that is, for increasing ε'000. It is seen that the maximum reflectivity increases 
with extinction length. From the difference between Rmax versus structure thickness 
in otherwise perfect crystals (dashed) and Rmax versus lext (drawn), it is obvious that 
reflectivity in presence of extinction cannot be simply regarded as reflectivity from 
a crystal with finite thickness. For an lext between 65 and 170 planes, we obtain a 
maximum reflectivity of 94 ± 3 % as observed in the present experiment (Fig. 2). 
Such an extinction length compares favorably with mean free paths of 10 to 20 µm 
or 60 layers, that were measured earlier by Koenderink et. al.17 The extinction 
length corresponds to a small ratio between the imaginary and real components of 
the dielectric function of ε’’000/ε’000=0.0035. It is interesting to consider how long 
an extinction length is required to obtain a maximum reflectivity of 99.99%, that is 
necessary for mirrors surrounding high-Q cavities. For a crystal with a thickness 
larger than 20 layers, the calculated lext, to obtain such a reflectivity is of the order 
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of 104 layers, which would require considerable improvements of all current 
fabrication techniques.18 

 

Figure 6: The dotted line shows the maximum reflected intensity Rmax as a 
function of the crystal thickness. The solid line represents Rmax as a function of 
the extinction length lext for a 40-layer thick crystal. Error bars indicate the lext 
range that accounts for the reflectivity we observe experimentally. Inset: 
calculated reflectivity spectrum at normal incidence for a crystal in the 
presence of extinction. 

Although the introduction of a complex component of the dielectric constant 
has been used in trying to account for disorder in 3D crystals,19,20 information 
obtained from this approach is mainly of heuristic value. In this simple model we 
have not taken into account many factors which have been demonstrated to 
influence light propagation in disordered photonic crystals such as the band 
structure for directions adjacent to the incident one (see chapter 3).  

 

6. Conclusions and future work 

We have measured angle-resolved reflectivity with laser beams focused to 
within single domains. Special care has been taken to assure an alignment of the 
waist of the beam with the axis of rotation to a precision of 10 µm. This technique 
proves valid to carry out reflectivity measurements on samples of 10 µm in 
dimensions. We have observed high reflectivities up to 94% at normal incidence, 
much larger than previous measurements performed on the same samples with 
coarse beams. This value decreases for larger angles of incidence, a behavior not 
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understood at this time. Evidence has been found for small inhomogeneous 
broadening present in previous measurements with coarse beams, due to the 
presence of a mosaic spread of ±3º, and finite size effects are found to be 
negligible. This technique opens an exciting opportunity to study light propagation 
in a photonic single crystal for any direction through the determination of the 
group velocity and the group velocity dispersion using pulsed laser beams, which 
has only been done for normal incidence. With suitable tunable laser sources, this 
method proves ideal to fully characterize dispersion surfaces of any photonic 
crystal. These measurements have given us valuable in situ information about the 
structure of the surface of our crystals, which complements that obtained from 
optical and scanning electron microscopy. 
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                                         Appendix 1 

Photonic band structures for opal based 
systems: PWEM vs. SWA 
 
 
 
 
 

The SWA in the two-band model1 is a simplification of the plane wave 
expansion (PWE) method outlined in chapter 1 which allows obtaining an 
analytical expression for the dispersion relation k(ω) of a photonic crystal. In this 
way one can obtain valuable information regarding the optical performance of the 
crystal without turning to numerical calculations.  

The model is based on two approximations. The first one is to ignore the 
vectorial character of the problem. In doing so one expects the obtained results to 
better reproduce the exact solution for high symmetry directions. This is in 
principle valid for some systems such as artificial opals, for which the growth 
process yields samples with the surface oriented along the (111) direction, and 
therefore the most accessible direction for optical probing is a high symmetry one.  

The second approximation is to consider that in the spectral range of interest 
the Bragg condition is satisfied only for one family of planes. One may then retain 
only two terms in the expansions of the fields and the dielectric constant, 
corresponding to the incident beam and the diffracted one. This should apply to the 
low energy region in the case of artificial opals where the frequency considered 
only meets the first order Bragg condition for the family of planes parallel to the 
surface. 

After taking these approximations, the wave vector as a function of frequency 
is obtained by solving a set of two equations: 
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where (ε0, εG) and (ck, ck-G) are the first two Fourier coefficients in the expansions 
of the dielectric constant and the electric field respectively. Here ε0 is the average 
dielectric constant and εG is given by:1 
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where f is the volume fraction of the spheres, R its radius, G the considered 
reciprocal lattice vector (in the particular case of normal incidence on artificial 
opals G111 is used) and εa and εb the dielectric constant of the spheres and air 
respectively.  

Having an analytical expression for the dispersion relation one can define the 
fields E1 (incident on the sample), E2 (inside the sample) and E3 (transmitted):1 
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where r and t are the reflectance and transmittance, and A is the amplitude ratio 
between the incident and the diffracted wave inside the crystal. One can then obtain 
expressions for r and t by imposing the continuity of the electric field and its 
derivative at both sample interfaces.  

The SWA in the two-band model approach has proven to be a valuable tool 
when modelling the optical properties of opal-based systems with a low refractive 
index contrast.2-6 Further, some authors7  have even used it to predict the conditions 
(regarding refractive index contrast and filling fractions) under which the relative 
width ∆ω/ωc of the pseudogap at the L and X points (and their overlapping) are 
optimized. 

The predictions obtained with this approach were compared8 with those 
obtained from other popular analytical approach for the study of colloidal crystals, 
the dynamical diffraction theory (DDT) borrowed from x-ray research.9 In that 
study it was found that SWA yielded the same results as DDT in the limit of low 
refractive index contrast. But to date no comparison has been performed between 
the predictions of this approach and those of the exact PWEM (save from a result 
presented in reference 6 in which the relative width ∆ω/ωc predicted by SWA and 
PWEM for a Yablonovite structure was presented as a function of filling fraction). 
This comparison will ultimately show the validity of this approach in treating opal 
based photonic crystals. Here we concentrate on the evolution of the results of both 
approaches as we increase the refractive index contrast of an FCC crystal 
containing touching dielectric spheres in a dielectric medium with a different 
refractive index. The study is performed for two systems of interest; dielectric 
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spheres in air and air spheres in a dielectric background. The evolution of several 
parameters describing the pseudogap at the L point (the most accessible one for 
artificial opals) is presented in figure 1. These include the pseudogap high and low 
frequency edges, its relative width and centre frequency. 

From figure 1 it can be seen that in the case of inverse opals, exact (PWEM) 
and approximated (SWA) predictions present an excellent agreement for low 
refractive index contrast in the range of 1-1.6 were materials of interest (such as 
silica and several polymers) are found. For the direct opal, this agreement is 
moderately good, and the refractive index range where most polymers are found 
(~1.6) is just on the limit where exact results begin to diverge from approximated 
ones. For the case of high refractive index materials such as silicon or gallium 
arsenide (necessary for opening a complete PBG in inverse structures), the 
disagreement becomes more pronounced. 

  

 
Figure 1: Evolution of the pseudogap edges (ω+, ω-), centre (ωc) and relative 
width (∆ω/ωc) as a function of refractive index for a direct (a, b and c 
respectively) and an inverse (d, e and f respectively) opal based photonic 
crystals. All expressed in reduced frequency units a/λ. 

 

This disagreement is probably due to the fact that in this version of the SWA 
only two reciprocal lattice vectors are considered, so the effect of bands associated 
with other families of planes is neglected. The effect of these bands becomes more 
pronounced for high refractive index contrasts, as evidenced in figure 2. Here band 
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structures (calculated with the PWEM and SWA) for direct opals with increasing 
refractive index of the spheres are shown. With increasing refractive index 
contrast, a stronger mode coupling takes place which is clearly not well described 
by the SWA. In this approach the bands defining the pseudogap follow an effective 
medium behavior (linear bands) with a gap at the edge of the Brillouin zone due to 
Bragg diffraction by the {111} family of planes. On the other hand, bands 
calculated with the PWEM start to deviate from the linear behavior and shift to 
lower energies as high energy bands degeneracies are lifted and begin to flatten. 
For the case of a direct opal and a refractive index of nsph=2.9, the pseudogaps 
obtained by both approaches barely overlap.    

 

 
Figure 2: Band structures for wave vectors parallel to the ΓL direction 
calculated with the PWEM (open circles) and SWA (solid lines) for direct 
opals consisting of spheres with refractive index 1.1 (a), 1.9 (b) and 2.9 (c). 
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                                         Appendix 2 

INFILTRATION OF POLYSTYRENE THIN 
FILM OPALS WITH SiO2 
 
 
 
 

SiO2 infiltration in thin film opals was performed following a chemical vapour 
deposition method originally proposed by Míguez and co-workers.1 The 
experimental set-up employed (see figure 1) has been thoroughly described 
elsewhere.2 The two reactants, SiCl4 and doubly distilled water (DDW), are 
alternatively transported by a N2 flow from two separate bubblers. The stream 
carries the vapour phases to the reactor containing the sample. 

In a typical procedure DDW is bubbled at a N2 flow of 200 mL/min in a pre-
treatment step in order to moisten the reactor for 30 seconds. After that, the sample 
is placed in the reactor and water is again bubbled during a period of 30 seconds 
(200 mL/min N2 flow). By doing this, a water layer is deposited on the surface of 
the spheres. 

 

Figure 1: Diagram of chemical vapour deposition set-up. 
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Next, the container with the SiCl4 is bubbled (100 mL/min N2 flow) for a 
period of 30 seconds. The hydrolysis of SiCl4 takes place on the sphere surface and 
SiO2 forms in a laminar way around them. Under these conditions the pore filling 
could be controlled in steps of ~5% for spheres 1090 nm in diameter. 

After taking away the sample, a N2 purge (200 mL/min) is used to sweep the 
possible remnants from the set up as a previous step to a new cycle. 

 

 
                                                      
1 Miguez, H., et al. “Mechanical stability enhancement by pore size and connectivity 

control in colloidal crystals by layer-by-layer growth of oxide.” Chemical 
Communications, 2736-2737 (2002). 

2 E. Palacios-Lidón, “Caracterización óptica de sistemas fotónicos basados en ópalos”, 
PhD Thesis, Universidad Autónoma de Madrid, Madrid (2004) 



Conclusiones generales: 
•Se han fabricado ópalos artificiales de esferas de poliestireno en lámina delgada 

sobre diferentes sustratos mediante el método de la deposición vertical. Una 
caracterización estructural de los mismos mediante diversas técnicas ha 
permitido obtener información sobre la forma en que estas muestras crecen así 
como su orientación cristalográfica. Esto ha facilitado una posterior 
caracterización óptica.  

•Se ha estudiado la respuesta óptica de ópalos artificiales de poliestireno en lámina 
delgada en la región de bajas energías mediante espectroscopias de reflexión y 
transmisión. Se ha encontrado que los efectos de finitud en la respuesta óptica de 
este tipo de muestras desaparecen con 35 capas de esferas. Los resultados se han 
reproducido cualitativamente con un modelo basado en la aproximación de onda 
escalar. 

   Se ha estudiado el efecto del desorden en la respuesta óptica. Se ha encontrado 
que la variación espectral de la intensidad difusa producida por defectos 
estructurales depende de las bandas de energía.  

   Se ha medido la reflexión a lo largo de trayectorias que unen direcciones de alta 
simetría. Los resultados coinciden con la estructura de bandas.  

•Se ha estudiado la respuesta óptica en la zona de altas energías para ópalos 
artificiales en lámina delgada. Se ha relacionado la difracción con bandas de 
energía. La respuesta óptica en esta región presenta un comportamiento 
complejo, determinado por la interacción entre las bandas asociadas a la 
difracción y aquellas asociadas a la propagación en la dirección de incidencia.  

•Se han presentado medidas de interferometría con luz blanca en ópalos artificiales 
en lámina delgada. Las medidas han permitido obtener la fase acumulada, a partir 
de la cual se ha obtenido la velocidad de grupo.  

   En la zona de baja energía se ha extraído de la fase un índice de refracción 
efectivo que presenta una región de dispersión anómala. La velocidad de grupo 
en esta región se explica con las bandas de energía y corrobora el 
comportamiento de la intensidad difusa.  

   En la zona de altas energías la velocidad de grupo presenta un comportamiento 
complejo con valores mayores que c e incluso negativos. Esta respuesta coincide 
con la presencia de bandas asociadas a la difracción.  

•Se ha estudiado la respuesta óptica de ópalos artificiales en volumen para 
direcciones diferentes a la incidencia normal mediante espectroscopia de 
reflexión. Se ha verificado su dependencia con la polarización en la región de 
bajas energías. 

•Se ha medido la reflexión en función del ángulo sobre monodominios de ópalos 
inversos de TiO2 en volumen. De esta forma se ha obtenido información 
estructural de las muestras. Asimismo se han medido valores de reflexión mucho 
mayores que los obtenidos con haces de mayor diámetro. Los resultados 
muestran acuerdo con cálculos de bandas. 
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