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1.1 Photonic Crystals. 

1.1.1 The concept. 

A photonic crystal is a material in which the refractive index (RI) is 
periodically modulated on a length scale comparable to the desired operation 
wavelength. It is said to be a “crystal” because it is formed by a periodic 
arrangement of basic building blocks. The term “photonic” is added since photonic 
crystals are designed to affect the propagation properties of photons. 

In general, the wave propagation is importantly affected when it enters into a 
material where some feature that concerns this wave is modulated. The wave 
scatters coherently at the interfaces between different featured regions. In the case 
of photons this feature is RI. For other systems propagating as waves, such as 
sound or electrons within a semiconductor, these features are the Young’s module 
and the electric potential respectively. 

The behavior of a photon with a certain frequency will depend on the 
propagation direction within the photonic crystals. The modulation of the RI will 
cause that certain energies and directions are forbidden for photons. A region of 
energies where the photonic crystal does not allow photons to propagate regardless 
of their direction and polarization is called a complete photonic band gap (cPBG). 

1.1.2 Important crystal features and parameters. 

In order to design a photonic crystal with a cPBG or a specific band behavior 
there are some crystal features and parameters that must be engineered. 

o Dimensionality. The periodicity of the refractive index will determine the 
dimensionality of the photonic crystal. We may have one (1D), two (2D) 
or three (3D) dimensional lattices. Stacks of planes, sets of columns and 
any of the Bravais lattices are examples of each of those structures (see 
Fig. 1.1 a-d). 

o Symmetry. The position of the building blocks of our photonic crystal will 
set the symmetry of our lattice. Examples of several three-dimensional 
symmetries can be found in Bravais lattices: simple cubic (sc), simple 
hexagonal (sh), body centered cubic (bcc) and face centered cubic (fcc). 
Other important lattices are formed from Bravais lattices with additional 
atoms within them. Typical examples are the hexagonal close-packed 
(hcp) and diamond structures (Fig. 1.1 shows a graphical example of each 
of these lattices). 

o Topology. A lattice with a given symmetry may present variations in its 
topology that will importantly affect the photonic band structure. The 
topology can be varied by interpenetrating the building blocks (network 
topology) or isolating them (Cermet topology). Fig. 1.2 shows examples of 
different topologies for an fcc lattice. 
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o Lattice parameter. This is a fundamental distance which is used to 
characterize the separation between scattering building blocks. In the case 
of cubic lattices it is usually taken as the side of the cube. The range of 
wavelengths of the optical spectrum where our photonic crystal works will 
be proportional to the lattice parameter (a). 

 
Fig. 1.1: Computer rendering showing different kinds of symmetries. a) simple cubic, b) 
simple hexagonal, c) body centered cubic, d) face centered cubic, e) hexagonal close 
packed and f) diamond lattice. 

o Filling fraction and effective refractive index. The relative amount of 
material composing the scattering building block is called filling fraction 
(ff). The effective refractive index (neff) is usually calculated as the square 
root of the average dielectric constant (εav). As happens with the lattice 
parameter, the range of wavelengths of the optical spectrum where our 
photonic crystal works will also depend on neff. 

o Refractive index contrast (δ). This value offers a general idea of the 
scattering strength of a two components crystal. This parameter is defined 
as the ratio between the RI of the high dielectric constant material (nh) and 
the low dielectric constant material (nl). δ=nh/nl. 

o Scalability. One of the most appealing characteristics is that there are no 
fundamental length scales or dielectric constant values implicit in 
equations. As a consequence, the results extracted from theory are 
completely scalable. The solution of the problem at one length scale 
determines the solutions at all other length scales. The region of the 
spectrum where the photonic crystal optical properties are to be observed 
will depend only on the RI of the crystal components and their filling 
fraction and will be directly proportional to the lattice parameter. 
Therefore, frequency (ω) is usually normalized by the lattice parameter 
since if we keep the rest of the features unchanged, the quantity ωa will 
remain invariable. This means that if the lattice parameter is doubled, the 
mode frequency will be divided by two. 
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Fig. 1.2: A lattice with the same symmetry (fcc in this case) may present different 
topologies. a) isolated dielectric spheres in air, b) interpenetrated dielectric spheres in air, 
c) isolated air spheres in a dielectric and d) interpenetrated air spheres in a dielectric. 

1.1.3 Photonic band structure. 

The photonic band structure gives us information about the propagation 
properties of electromagnetic (em) radiation within the photonic crystal. It is a 
representation in which the available energy states are plotted as a function of 
propagation direction. 

In order to understand how the photonic band structure is constructed a 2D 
system will be studied and compared with the case of a homogeneous dielectric. 
Although samples presented in this thesis are 3D photonic crystals, a 2D system is 
easier to explain and the arguments that will be used are immediately applicable to 
the 3D case. However the polarization effects are more important in 2D systems. 
As the example presented in this and next sub-section has only a tutorial purpose, 
the optical response to different polarizations will be ignored. Calculations will be 
limited to the case of transverse electric polarization (TE modes, transverse to the 
periodic plane). 

The relationship between the wave-vector and frequency (also known as 
dispersion relation) for free photons in vacuum is well known: ω=ck, where c is the 
vacuum light velocity. If photons are propagating through a homogeneous and 
isotropic dielectric then ω=ck/n, where n is the RI of the dielectric material. As can 
be seen, the frequency (and therefore photon energy) depends linearly on the ratio 
between wave-vector module and the material RI. With an isotropic material there 
are no directions with special properties and consequently only the norm of the 
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wave-vector is required to obtain the photons energy. But, what happens if the RI is 
modulated along some directions? Obviously the dispersion relation written above 
is not valid for this case and should be different for each propagation direction. 

A 2D structure made of cylinders and forming a square lattice is shown in Fig. 
1.3. The distance between cylinders is the lattice parameter a. Vectors α and β in 
this figure point in directions which present a different RI modulation. Therefore, 
the dispersion relation for each impinging angle should differ. Fortunately thanks 
to the symmetry of the lattice there are directions which are equivalent, as shown in 
Fig. 1.3 b for α and α’. When two directions are equivalent, the periodicity of the 
RI is the same and the dispersion relation is the same for both. It can be deduced 
then, that it is not necessary to represent all the possible. 

 
Fig. 1.3: 2D square lattice of cylinders. In a) two directions with a different modulation of 
the refractive index are pointed out. b) shows two directions in which the periodicity of the 
refractive index is equivalent. 

The method to represent the dispersion relation is the same that is used in solid 
state physics1,2 for the electron energy levels in a semiconductor. Bloch theory is 
used to demonstrate that any wave-vector in the reciprocal space (wave-vector 
space) can be translated to the first Brillouin zone (BZ) with a linear combination 
of reciprocal lattice primitive vectors. The result is a compact representation of the 
most important directions. 

In our case the real space primitive vectors are a1=a(1,0) and a2=a(0,1). The 
primitive vectors of the reciprocal space are b1=2π/a(1,0) and b2=2π/a(0,1). They 
fulfill the condition ai·bj=2πδij. Therefore the reciprocal lattice is a square lattice as 
well. The first BZ is the figure formed by the lines bisecting the segments joining 
one of the lattices points with its closest neighbors. In this BZ three high symmetry 
points are highlighted: Γ, X and M. These points constitute the vertices of the 
irreducible zone. Other points in this BZ can be obtained by applying symmetry 
operations (mirror reflection, inversion and rotation) on the irreducible zone. Any 
other point outside the first BZ can be translated to it by a translation operation 
with a linear combination of b1 and b2. The reciprocal lattice, primitive vectors and 
BZ is shown in Fig. 1.4 a. 

In order to be able to compare the dispersion relation of a photonic crystal with 
a purely isotropic dielectric, the RI of the cylinders is set to such a value that δ is 
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very close to unity. Therefore, we have is a system where dispersion relations must 
be very similar to the case of photons in a homogeneous dielectric. 

 
Fig. 1.4: a) shows the primitive vectors and some points of the reciprocal lattice for a 2D 
square lattice. The first Brillouin zone and most important symmetry points (Γ, X and M) 
are indicated as well. b) An arbitrary wave-vector k propagates in the ΓX direction. 
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Fig. 1.5: A photon propagates parallel to ΓX, the dispersion relation is folded by applying 
translations which are linear combinations of the reciprocal lattice primitive vectors. The 
reduced-zone scheme representation for the dispersion relation is shown in the graph to the 
right. The frequency is in arbitrary units. 

A photon that propagates with k contained in the ΓX direction, as shown in 
Fig. 1.4 b, would follow the behavior given by ω=ck/n. Any of those wave-vectors 
not lying within the first BZ can be translated to it by a translation operation with a 
linear combination of the reciprocal lattice primitive vectors (b1 and b2). The 
dispersion relation can then be plotted from -π/a to π/a, as shown in the left graph 
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of Fig. 1.5 (dotted line). Since it is symmetric, the plot from -π/a to 0 is redundant 
and plotting from 0 to π/a gives all the necessary information. These are precisely 
two important coordinates named as Γ and X respectively (see Fig. 1.4). The final 
representation is shown in the graph to the right of Fig. 1.5. This kind of 
representation is called reduced-zone scheme. 

However, the representation in Fig. 1.5 is incomplete. As explained before, 
every other wave-vector k that lies on a point in the reciprocal lattice that can be 
translated to the ΓX segment should be represented as well. An example of a wave-
vector to which this operation can be applied is shown in Fig. 1.6 a. The relation 
dispersion for any vector that lies on the dotted line follows this equation: 

2
1

2
2 2


















+= Γ a

k
n
c π

ω X  

where kΓX is the projection of k in the ΓX direction. The result is plotted in Fig. 1.6 
b. (dashed line) and the reduced-zone scheme representation is shown in Fig. 1.7 a. 
The whole band structure (Fig. 1.7 b) is calculated3 for a square array of cylinders 
(radius=0.3a) with a RI of 1.261 and embedded in a dielectric with n=1.260. All 
the important directions in the first BZ are depicted in this representation. The 
frequency is normalized by the lattice parameter and other constants to explicitly 
state the scalability of the calculations and the real structure (ωa/2πc is a typical 
expression for normalized frequencies, a/λ is used instead many times and it is 
completely equivalent. Both of them are dimensionless). Of course, there are 
infinite other positions in the reciprocal lattice that can be translated in this way to 
the ΓX segment. As a result, many other curved bands appear at higher energies. 

 
Fig. 1.6: In a) the wave-vectors k can be translated to the ΓX segment applying the 
translation operation –b2. Any wave-vector that lies on the dotted line can be translated 
with a linear combination of b1 and b2. The relation dispersion for this kind of vectors is 
plotted in b) (dashed line). The frequency is in arbitrary units. 

The representation of band structures for 3D photonic crystals is done 
similarly. However, the number of high-symmetry points is usually higher and the 
possibilities of having bands that come from non-linear dispersion relations are 
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also larger. Generally speaking, the complexity of the band structure increases as 
the dimensionality of the system rises. In appendix I the BZs of the most common 
lattices are briefly described along with their most important high-symmetry 
points. 

 
Fig. 1.7: a) The reduced-zone sheme for wave-vectors propagating in the ΓX direction 
calculated from the dispersion relations. b) Plane wave calculation of the band structure for 
photons propagating in the most important directions of the first Brillouin zone of a square 
lattice made of cylinders (radius=0.3a and n=1.261) embedded in a dielectric (n=1.260). 

1.1.4 Pseudo-gaps and complete photonic band gaps. 

When light enters into a photonic crystal it is scattered at the interfaces 
between different dielectric regions. Due to the periodicity, scattering can be 
coherent for certain directions and frequencies. As a result, some propagation 
directions are forbidden for photons of certain energies. In the photonic band 
structure diagram this is represented as a range of energies not covered by any band 
in that direction: this is called a photonic band gap. 

The photonic crystal represented in Fig. 1.7 b has almost no RI contrast (δ) 
between different dielectric regions (δ=1.0008) and scattering effects are very 
weak. Consequently no gaps are observed. However, if δ is increased, gaps begin 
to open. In Fig. 1.8 the band structure for the ΓX direction is compared to the 
theoretical transmission spectrum4 for the same structure with δ=1.5 since the RI of 
the cylinders is now set to 1.890. As can be observed, between the first and second 
band (plotted in black and red respectively) there is a region of energies where no 
bands are available. As a result, photons of these energies cannot propagate 
through the crystal and, therefore, transmission goes to zero at those frequencies. 
The interpretation of the band structure is not always such a trivial task. It may 
happen that photons do not couple to states that are apparently available (the region 
is covered by a band). An example of this can be seen in Fig. 1.8 for a normalized 
frequency around 0.7. Despite the third band (in green), some transmission dips 
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can be observed. Coupling of photons to certain bands depends on symmetry 
considerations which are out of the scope of this introduction.5 
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Fig. 1.8: The band structure (plane wave method) in the ΓX direction (left panel) is 
compared with transmission (right panel) theoretical calculations (transfer matrix method) 
for a square lattice made of cylinders (radius=0.3a) with a refractive index contrast (δ) of 
1.5. Gaps between bands (grey labels) result in transmission dips. (Only TE modes). 
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Fig. 1.9: Band structure calculations (plane wave method) for different δ values of a 
square lattice made of cylinders (radius=0.3a). a) δ=1.5, b) δ=2.0, c) δ=4.0 and d) δ=6.0. 
a) and b) show pseudogaps and c) and d) a complete photonic band gap (grey labels). 
(Only TE modes). 
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Fig. 1.9 shows the photonic band structures for the same photonic crystal in 
which δ is gradually increased: a) 1.5, b) 2.0, c) 4.0 and d) 6.0. In the first case, a 
gap appears in the ΓX direction (same as that depicted in Fig. 1.8). When δ is 
augmented to 2.0, another gap opens in the ΓM direction. A further increment of δ 
causes both gaps to overlap. As can be observed in c) and d) the gap occurs now 
for all propagation directions. This means that photons within that range of 
frequencies cannot propagate through the crystal. Under these circumstances the 
gap is called complete photonic band gap (cPBG). Conversely, gaps that are open 
just for certain directions (as those shown in Fig. 1.9 a and b) are called 
pseudogaps. 

Obtaining a cPBG strongly depends on having a high δ value. As Fig. 1.9 
shows, for a square lattice of cylinders such as the one described before, no cPBG 
opens until δ>4.0. From a practical point of view this means that achieving a cPBG 
in the optical regime with this kind of lattice is very difficult since few materials 
with such a high RI exist in nature. Fortunately, formation of cPBGs is not only a 
question of large refractive index contrasts. The choice of an appropriate symmetry 
and topology plays a very important role as well. 

To obtain a cPBG, the pseudogaps for different propagation directions must 
overlap. Increasing δ usually entails the widening of gaps and facilitates this 
overlapping. However, if pseudogaps for different directions open at very 
dissimilar energies, the overlapping is less probable. From solid state physics we 
know that gaps happen for wave-vectors that lay on the BZ boundary. 
Consequently, photonic crystals with a circular BZ will have pseudogaps opening 
at similar frequencies and therefore will be better to achieve a cPBG. For 2D 
photonic crystals, a hexagonal lattice would be a wiser election than a square 
lattice. In the case of 3D photonic crystals a sphere-like BZ optimizes the lattice 
symmetry to obtain a cPBG. Among 3D Bravais lattices, the face centered cubic 
(fcc) one has the most sphere-like BZ (see Appendix I). 

Topology of the lattice is also a parameter to take into consideration. Although 
not explained here, photonic crystals where high dielectric constant regions which 
are both all but isolated and linked by narrow veins favor the opening of cPBGs.6 
Fig. 1.2 d shows a 3D example of such topology. 

1.1.5 Light within Photonic Crystals. Anomalous band dispersion. 

It is well known that when light with a given frequency (ω) passes from one 
dielectric with a certain RI (n1) to another (with n2) the propagation direction 
changes (see Fig. 1.10 a). This phenomenon is called refraction. In the wave-vector 
space, the parallel components of the wave-vector must be conserved.7 Of course 
the energy, and therefore the frequency, is also conserved. As ω=ck/n, the equi-
frequency surfaces (EFS) follow this form: ω=c/n (k⊥

2+k||
2)1/2. This means that the 

EFSs have a circular shape (spherical in 3D). We also know that propagation 
direction can be obtained from the group velocity expression: vg=∇kω. Fig. 1.10 b 
shows the EFSs for photons with a certain energy in two different dielectrics where 
n1<n2. Knowing that the parallel component of the wave-vectors must be conserved 
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and that k2 must be normal to the EPS the Snell law can be easily deduced. Indeed, 
ki||=ki·sin(θi) and ki=ωni/c, therefore n1·sin(θ1)=n2·sin(θ2). In the case of circular 
EFSs, vg and k2 will be parallel. 

 
Fig. 1.10: Refraction of light when it enters a material with a different refractive index. 
Refraction scheme in the a) real space and b) in the wave-vector space. The parallel 
component of the wave-vector is conserved and the propagation direction is derived from 
the gradient on the equi-frequencial surface. 

 
Fig. 1.11: Photonic band structure showing the first two bands of a square lattice of 
cylinders (r=0.3a) with δ=1.10. The inset shows the Brillouin zone and the points at which 
the structure has been calculated. For a given frequency the branches are intercepted 
(horizontal dotted line) at different values for the wave-vector. (Only TE modes). 

This holds for isotropic dielectric materials but, what happens with photonic 
crystals? The dispersion relation depends on the RI and this is not isotropic any 
more. In order to plot the EFS, it is necessary to know the allowed wave-vector for 
each direction. This information can be extracted from the photonic band structure. 
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Fig. 1.11 shows the first two bands* of the same square lattice presented before 
with a δ=1.10. For a given normalized frequency (ω=0.20) the wave-vector values 
are obtained for three different directions: Γ-X, Γ-∆ and Γ-M. With this 
information only three points of the EFS are obtained. Bands for other directions 
must be calculated to complete the EFS. Fortunately only directions within the 
irreducible zone are needed since the EFS must have the same symmetries than the 
BZ. 

 
Fig. 1.12: Equi-frequency surfaces for a photonic crystal made of cylinders (r=0.3a) in a 
square lattice with δ=1.10. a) EFSs for two frequencies below the psedogap and another 
frequency that overlaps with the pseudogap (ω=0.392). The EFSs are obtained from the 
first band, their shape is circular and their radii increase with frequency. b) EFSs for 
frequencies above the pseudogap and belonging to the second band. The shape of the EFSs 
is star-shaped and its size decreases with frequency. (Only TE modes). The irreducible 
zone is shaded in grey. 

Fig. 1.12 shows the EFSs for several frequencies. Although 32 points form the 
EFSs, in fact only five points were calculated within the irreducible zone (shaded 
areas) for each of them, symmetry properties allow to infer the rest. In Fig. 1.12 a 
three EFSs obtained from the first band are represented. The first two EFSs have a 
circular shape and their radii increase with frequency. This means that refraction of 
photons at that energy is similar to that of conventional isotropic dielectrics. The 
reason is that for low energies the wavelength of photons is large compared to the 
periodicity of the photonic crystal and the material is “seen” as homogenous. When 
the frequency of the EFS lies in the pseudogap (ω=0.392), the surface is 
discontinuous and wave-vectors with certain directions do no propagate through 
the photonic crystal. It is also interesting to notice that curvature of the EFS close 
to the BZ is different from the rest since effective refractive index is higher here. 
The shape of the EFSs dramatically changes when frequencies above the 

                                                   
* Surfaces corresponding to other bands should be plotted as well since photons may couple 
to several bands when more than one is available. Each band would have its own EFS and 
light would be diffracted when more than one possibility were available. For the sake of 
explanations simplicity only two bands will be used for calculations here. 
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pseudogap are scanned. Fig. 1.12 b shows EFSs for three different frequencies that 
belong to the second band. This time the shape is not circular at all and its size 
decreases with frequency, therefore vg (which gives the propagation direction) 
points inwardly. The non-circular shape of the EFS will entail an anisotropic 
response of the photonic crystal in terms of refraction (which is always assumed to 
be in the forward direction). The propagation direction is not necessarily parallel to 
the wave-vector anymore. As an example, Fig. 1.13 shows the refraction of two 
photons with same frequency (ω=0.545) and different incidence angle. In the first 
case (Fig. 1.13 a) the photon propagates through the crystal with a very small 
change in its direction as if the photonic crystal were a dielectric with a RI close to 
that of the environment. In the second case (Fig. 1.13 b) the EFS presents a 
strongly curved shape in the point where conservation is held, therefore there is a 
drastic change in its propagation direction. So drastic that the resulting refraction is 
negative! 

 
Fig. 1.13: Anomalous refraction for photons with ω=0.545 for a square lattice of cylinders 
with δ=1.10. a) and b) show examples for two different angles of the impinging photons. 
Propagation direction is obtained from the group velocity vg=∇kω. In the first case light is 
slightly refracted while in the second case photons are negatively refracted. 

Depending on the curvature of the EFS the photonic crystal may behave as a 
collimator, a divergent lens or a convergent lens as shown in Fig. 1.14.8 Negative 
refraction can be achieved as well for photonic crystals with a high δ since EFS 
tend to be more circular above the gaps and vg still keeps pointing inwardly.9 
Although negative refraction effects can be achieved for non-circular EFSs, 
circular EFSs allow defining a (negative) RI that remains constant for all 
propagation directions. 

It is important to realize that anomalous refraction in photonic crystals does not 
depend on the existence of a cPBG. Actually, the effects shown in Fig. 1.14 are 
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more likely observed in structures with a low δ value. In 3D photonic crystals, the 
behavior is basically the same. The main difference is that real space and wave-
vector representations are three dimensional and this makes its comprehension 
harder. 

 
Fig. 1.14: Behavior of photons of same frequency for different curvatures of the EFS. For 
some range of directions and energies, photonic crystals may act as collimators, convex or 
concave lens. 

1.1.6 Defects. 

As it happens with semiconductors, the interest of photonic crystals with a 
cPBG would be limited without the inclusion of controlled defects. A defect 
creates allowed states for particular photon frequencies in the band gap. 

A line defect within a photonic crystal can guide photons through the system. If 
the frequency of light lies within the cPBG, it will have to be confined to the defect 
line since propagation is forbidden through the rest of the photonic crystal. The 
advantage of such a system over conventional optic fibers or waveguides is that in 
this case, light confinement does not rely on total internal reflection. Therefore 
sharp bends should not present any transmission losses (only reflection). 

 
Fig. 1.15: Point defects in a square lattice made of dielectric rods (radius=0.2a). 
Depending on the radius (r) of the point defect, localized states are created within the 
cPBG. This figure has been extracted from ref. 6. 
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Point defects are of paramount importance for spontaneous emission 
inhibition10 and light localization.11 A point defect consists of an imperfection 
created deep in the bulk of the crystal. It can be obtained by removing one of the 
building blocks, changing its refractive index or modifying its size. In Fig. 1.15 we 
can see an example of the effects on the band structure of a point defect in a square 
lattice of dielectric rods. In this case defects are created by varying the radius of the 
cylinders. When the defect involves the removal of dielectric it is called air defect 
and an allowed mode appears close to the bands below the cPBG (also called 
dielectric bands) and evolves towards bands above the cPBG (air bands). 
Conversely, defects involving dielectric addition are called dielectric defects and 
the cavity mode evolves from air to dielectric bands as dielectric is added.6 Point 
defects can be regarded as cavities in which light can be trapped and their size and 
topology can be designed to tune the frequency of the resonance. 

Spontaneous emission is directly related to the density of states (DOS) since 
the emission rate of an atom depends on the density of available em modes for the 
emitted photon. DOS can be modified and conveniently tailored with the 
combination of cPBGs and resonant cavities. The magnitude describing the 
confining power of the cavity is called quality factor Q≡ω/∆ω, where ω is the 
frequency of the transition and ∆ω is the frequency width of the resonance. 

1.1.7 Applications. 

The numerous potential applications for photonic crystals have made this 
research field very appealing to many scientists. Some of the possible applications 
are shown here. 

Although it is still under study, the effects of anomalous dispersion are very 
promising. Photonic crystals without a cPBG can be designed to obtain super-
collimators and super-lenses (see Fig. 1.14).8 Based on the same effect, two 
photons that impinge a photonic crystal with the same angle but a slightly different 
energy, may find EFSs with a very different curvature. As a consequence their 
propagation angles would be very dissimilar. This is known as super-prism effect 
and could be applied to the fabrication of small integrated multiplexers.12 Besides, 
all-angle negative refraction13 (Fig. 1.16) can be used to obtain super-lenses that 
could potentially overcome the diffraction limit inherent in conventional lenses.14 
The origin of this negative refraction must not be confused with that obtained in 
left handed materials15 where both the dielectric constant and magnetic 
permeability are negative. 

Fabrication of integrated circuits in which information carriers were photons 
instead of electrons is one of the most expected applications for photonic crystals. 
In this sense wave-guides (WG) based on 2D photonic crystals have been designed 
by researchers at MIT16-19 (see Fig. 1.17) and are being continuously improved by 
engineers. Although there is already a large amount of work done on WGs based 
on total internal reflection, photonic crystals provide some advantages. For 
example sharp bends in a photonic crystal based WG do not present losses as high 
as those based on total internal reflection. In order to obtain integrated circuits that 
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could perform logical operations a photonic transistor would be necessary. In this 
sense John et al.20 has proposed a system based on two-level atoms having 
population inversion near the cPBG edge. 

 
Fig. 1.16: Negative refraction. a) experimental observation of negative refraction as 
explained in the scheme b) (both images taken from ref. 12 ). Negative refraction could be 
used to fabricate super-lenses (image taken from ref. 21). 

 
Fig. 1.17: Waveguides. a) wide-angle splitter, b) wave-guide crossing, c) lossless bends 
and d) channel-drop filter. Images extracted from refs. 16-19. 

Optical fibers based on photonic crystals are one of the applications already 
being commercialized. Fig. 1.18 shows two examples of these fibers. The first 
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case, the “omni-fiber”,22 is a hollow core surrounded by an omni-directional Bragg 
reflector.23 The Bragg reflector is in reality a 1D photonic crystal which consists of 
a stack of layers. In the second case, the fiber is again a hollow core but this time 
surrounded by a 2D photonic crystal.24 

 
Fig. 1.18: Photonic fibers. a) Cross-section images of the omni-guide (ref. 22). This guide 
is based on the omnidirectional Bragg mirrors. The fiber in b) consists of a hollow core 
surrounded by a 2D photonic crystal that confines light within the core (ref. 24). 

Inhibition of infrared thermal emission has been demonstrated by Fleming et 
al.25 with metallic photonic crystals that could be used as highly efficient light 
sources. Low-threshold lasers26 are already being developed although, so far, 
presented works are limited to 1D and 2D photonic crystals. In the microwave 
regime photonic crystals can optimize performance and directionality of 
antennas.27 

1.2 Calculation methods. 

As a consequence of the similarities found between electron bands in solid state 
physics and photonic bands many of the calculation techniques and concepts 
applied and developed in the former discipline find an use in the latter. An 
excellent comparison between both can be found in Appendix A of reference 28. 

The interaction of em radiation with photonic crystals can be modeled with the 
macroscopic Maxwell equations. As there are no free charges or currents these 
equations take the following form (Gauss units system): 
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where E and H are the macroscopic electric and magnetic fields and D and B are 
the displacement and magnetic induction fields. 

These equations are difficult to solve even numerically; however, there are 
certain assumptions that simplify calculations very much. Obviously these 
assumptions will restrict the number of cases in which results can be applied. 
Nevertheless, the results obtained from simplified equations will be valid for all the 
photonic crystals presented in this thesis. Here forth our system will be constrained 
by the following assumptions: 

a) The system has a linear response to em radiation. 

b) The material composing the photonic crystal is isotropic and 
macroscopic. 

c) The frequency dependence of the dielectric function is neglected. Its 
value is assumed to be constant for the frequency range where results 
are required. 

d) Magnetic permeability is assumed to be unity. 

From a) and b) we have that D=ε(r,ω)·E, from c) ε(r,ω)=ε(r). Finally from d) 
we can conclude that H=B. 

Due to the linearity of Maxwell equations, harmonic modes can be separated 
into a space dependent field pattern and a time dependent sinusoidal expression: 

                                                     E(r,t) = ℜ{E(r) eiωt}                                          (2) 

where a complex exponential is used to simplify notation. The same can be done 
with H, B and D. Thanks to these expressions, the time dependence can be dropped 
from Maxwell equations: 
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If these equations are decoupled we obtain: 

0;
)(

1
2

2

=⋅∇=







×∇×∇ )()(

c
)( rH      rHrH

r
ω

ε
                      (4) 

[ ] 0)(;
)(

1
2

2

=⋅⋅∇=×∇×∇ )()(
c

)( rEr       rErE
r

ε
ω

ε
                  (5) 



Chapter 1: Introduction to Photonic Crystals. 

32 

0;
)(

1
2

2

=⋅∇=







×∇×∇ )()(

c
)( rD      rDrD

r
ω

ε
                      (6) 

Of course, solving any of the sets of equations from (4) to (6) is enough to 
solve the problem since H, E and D are closely related by equations shown in (3). 
The spatial periodicity of the dielectric function within the photonic crystal must be 
taken into account as well. Indeed, ε(r)=ε(r+R), where R is an atom location in the 
real lattice. 

Mainly, there are three methods that have been extensively applied to the 
calculation of photonic band structures:29 plane wave method, Green’s functions 
expansion method and finite, time or frequency, difference method. The first one 
computes the available energy states for a given wave-vector within the BZ. The 
other two methods look for all the wave-vectors for a given energy. 

1.2.1 Plane Wave Method (PWM). 

The PWM is an adaptation of a classical method to calculate band structures in 
semiconductors that takes advantage of the periodicity of the lattice. Translational 
symmetry allows expanding fields in terms of Bloch-vectors.1 The dielectric 
function periodicity permits obtaining its Fourier transformation (in the wave-
vector space) only in terms of reciprocal lattice vectors. Fourier transformation is 
now a discrete summation and the problem is reduced to diagonalize a matrix.  

Apart from all the assumptions explained before, the PWM requires a real 
dielectric function; this means that the composing materials of our photonic crystal 
must be lossless. 

1.2.1.1 Full vector calculations. 

In the case of em radiation the field used for calculations is the macroscopic 
magnetic field H(r). E(r) or D(r) could be used for calculations as well, but on the 
one hand the operator applied on D(r) (left side of equation 6) is not Hermitian and 
on the other hand E(r) is not a continuous function. Conversely H(r) is a 
continuous field and the operator applied to it (left side of equation 4) is Hermitian. 
These facts simplify calculations and allow some symmetry properties to be 
applied in a straight forward manner. (A more detailed discussion can be found in 
Chapters 2 and 3 of reference 28). 

The expressions for H(r) and ε(r) in the reciprocal space are: 
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where k is a wave-vector in the BZ, ek is a unit vector perpendicular to k and 
parallel to H (polarization vector), and G is a vector of the reciprocal space lattice 
(see Appendix I for more information). 



1.2 Calculation methods. 

33 

Combining expressions in (4) and (7), we obtain a 2N x 2N matrix problem of 
eigenvalues that must be computed. N is the number of plane waves and the 
accuracy of the calculations increases with N. In this method the accurate 
calculation of the Fourier components of the dielectric function is especially 
important. (Appendix III shows calculations for some specific cases). 

1.2.1.2 The scalar wave approximation (SWA). 

In the scalar wave approximation the full vector character of em fields is 
neglected. Instead, light is treated as a scalar field and consequently the resulting 
equations are simpler. This approach is useful to obtain basic information without 
complicated calculations. 

As an approximation, the utilization of SWA must be done very carefully since 
some of the results can lead to wrong conclusions. For example all the effects 
caused by polarization are neglected. Therefore some effects concerning band 
degeneracy can be mistreated. 

A further simplification of this method consists in using just one plane wave. 
This is similar to the weak periodic potentials solved for semiconductors. If we are 
studying a specific direction, say the {111} direction, the Fourier expansion of the 
dielectric constant is truncated as ε(r) = ε(G0) + ε(G111) eiG

111
r and all other terms 

are neglected. Calculations show that ε(G0) is nothing but the average dielectric 
constant and ε(G111) can be easily calculated for many systems (see Appendix III). 
The eigenvalues problem is just a 2x2 matrix that can be analytically solved. 

The solution of the eigenvalue problem gives rise to a simple equation from 
which important features can be calculated with a good degree of accuracy. 
Furthermore, appropriate boundary conditions may give us information about the 
transmitted field through a finite (in the propagation direction) crystal. 

Contrary to full-vector calculations, this method fails for high RI values and 
high energy bands. However, for a number of systems this method gives a great 
amount of valuable information. 

1.2.2 Green’s functions. Korringa-Kohn-Rostoker method (KKR). 

Again, this method is adapted from a classical procedure used in solid state 
physics to calculate semiconductors electronic band structures. It was 
independently developed by Korringa30 and Konh and Rostoker.31 

In the semiconductor case, the method begins with the integral form of the 
Schrödinger equation in terms of Green’s functions. For photons the development 
is similar except for the complications brought about by the full vector character of 
em fields. At some point in calculations, it is assumed that vector field can be 
expanded, to a reasonable degree of accuracy, by a finite number of spherical 
harmonics. 

The expansion of equations in terms of spherical harmonics is itself an 
advantage and a limitation at the same time. On the one hand, for systems made of 
spherical scatterers, the convergence of this method is very fast. Also, the 
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discontinuities of ε(r) are accurately represented. On the other hand this method 
looses its effectiveness when scatterers are not spherical. For example, this method 
is ideal for colloidal crystals where ordered spheres are significantly apart from 
each other. However, for close packed arrangements where planes are much more 
interpenetrated or systems in which spheres are interpenetrated (Fig. 1.12 b or d) 
the spherical symmetry is lost. Another disadvantage is the lack of accuracy for 
high energy calculations (a/λ>1.2). 

A variation of this method called layer-KKR has been introduced to compute 
transmission and reflection spectra of finite (in the propagation direction) photonic 
crystals.32 A detailed description and complete equations for the KKR method can 
be found in works published by Ohtaka,33 Stefanou et al.34 and Wang et al.35 

1.2.3 Finite difference methods. 

The transfer matrix method (TMM) is a real-space method specifically 
developed in 1992 by Pendry et al.36 to compute the transmission and reflectance 
spectra of photonic crystals. This method represents a finite difference frequency 
domain (FDFD) approach based on a discretization of Maxwell’s equations for 
time harmonic em fields. The space is divided into a set of small cells with 
coupling between neighboring cells. The dispersion relation is given through the 
eigenvalues of a transfer matrix that connects the field distribution of the final 
space division with the initial one. Alternatively, Chan et al.37 and Sakoda et al.38 
developed a method based on finite difference time domain (FDTD) approach. 
Instead of Maxwell’s equations the wave equation is discretized in the time 
domain. Solutions within the photonic crystal are obtained for the Bloch boundary 
condition provided by the wave vector under consideration.29 

The advantages of these methods are that there are no conditions over scatterer 
shape, absorption effects can be taken into account by introducing imaginary 
values in the dielectric constant. Furthermore, with appropriate modifications to the 
boundary conditions, calculations can be performed on finite size (in the 
propagation direction) photonic crystals or defect structures.39 

1.3 Fabrication methods. 

Several approaches have been followed to fabricate 3D photonic crystals whose 
properties lie on the optical regime. Crystal periodicity varies from several hundred 
nanometers if needed for application in the visible (vis) regime to a few microns 
for those operating in the near infrared (NIR). The techniques that have been most 
widely used are those based on lithography and the preparation of artificial opals to 
be used as templates. More recently introduced but very promising is holographic 
lithography. 

Other fabrications methods are continuously being developed and have 
provided interesting results. Among the many existing examples we could mention 
block-copolymers self-assembly,40,41 focused-ion-beam milling (see Fig. 1.19 a),42 
glancing angle deposition43 and nanorobotic manipulation.44,45 
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1.3.1 Lithography. 

Lithographic techniques are based on the approach followed in 
microelectronics to fabricate electronic chips. The procedure begins with the 
recording of a 2D pattern on a resist deposited on a wafer (made of a high RI 
material such as Si or GaAs) by means of photo-lithography or electron-beam-
lithography. The name of the technique depends on whether photons or electrons 
are used to write the pattern on the resist. Afterwards, the pattern is transferred to 
the wafer thanks to an etching process. To fabricate the 3D photonic crystal two 
procedures have been developed by Noda et al.46,47 and Lin et al.48,49 although both 
end up with the woodpile or layer-by–layer structure, designed in 1994 to show a 
cPBG between the first and second band. 

 
Fig. 1.19: Photonic crystals obtained by means of different methods: a) focus ion beam 
milling (ref. 42), b) photolithography (ref. 48), c) stibnite inverse opal (see ref. 50) and d) 
holography (ref. 59). 

Noda and co-workers used a wafer-fusion technique.51 A 2D basic structure 
made of parallel bars is made on a GaAs wafer by e-beam lithography and then 
snapped. Then, two halves containing the 2D structure are stacked face to face and 
fused (by wafer-fusion) so that second layer bars are perpendicular to those of the 
first. Then one of the substrates of the fused wafers is selectively removed. The 
result is a 3D structure made of two layers. At this point the wafer is cleaved and 
stacked again, but this time the alignment of the structure is critical since third 
layer bars must be parallel to those of the first layer while shifted half a period. The 
alignment of the structures is carried thanks to a laser beam diffraction pattern 
observation technique.52 

Alternatively Lin et al. developed a five steps process in which for each layer 
(see Fig. 1.19 b), SiO2 is first deposited, patterned (photo-lithography) and etched 
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to the desired depth. The resulting trenches are then filled with silicon and 
following this the wafer surface is flattened using chemical mechanical polishing. 
After all the procedure has been repeated (aligning is achieved thanks to line 
stepper systems) to obtain the required number of layers, SiO2 is etched with HF. 
To reduce the minimum feature size of their crystals, a more complex technique 
relying on the use of fillet processing49 was developed. 

Thanks to lithographic processes photonic crystals with a cPBG at the NIR and 
made of up to eight layers have been fabricated. An important advantage of this 
method is the possibility of including linear defects in a relatively straight-forward 
manner. On the other hand, crystals with only a few layers have been obtained so 
far. It is also a very expensive procedure that many research laboratories cannot 
afford. 

1.3.2 Artificial opals. 

In 1992 Sözüer et al.53 demonstrated that an fcc structure made of touching air-
spheres embedded in a high RI material (n>2.8) could show a cPBG between the 
8th and 9th band. 

The first structure made of touching air spheres with an fcc symmetry (see Fig. 
1.19 c) was obtained by Velev et al.54 in 1997. In this work they fabricated 
crystalline structures assembled from polystyrene latex microspheres. These 
crystals were used as templates for silica polymerization. Subsequently the latex 
was burned away leaving the desired structure. One year later, similar structures 
were presented by Zakhidov et al.55 using artificial opals56 (made of silica 
microspheres) as sacrificial templates. These structures were called hereafter 
inverse opals. However it was not until 2000 that Blanco et al.57 fabricated the first 
inverse opal with a RI contrast high enough to show a cPBG (air spheres in 
silicon). 

The fabrication of artificial opals by means of self-assembly techniques offers a 
cheap method available for many research laboratories. Among the possible 
limitations for self-assembly methods we could cite the restrictions to obtain 
symmetries other than the fcc lattice and the difficulties to control the appearance 
of unwanted (and wanted) defects. However, thanks to the increasing number of 
researchers in this field, the novel methods that are being developed everyday offer 
very interesting and unexpected alternatives. 

As fabrication of artificial opals will be the basis for this thesis, further 
information and detailed discussion of methods will be provided in next chapters 
(especially in chapters II to IV ). 

1.3.3 Holography. 

An interference of four non-coplanar coherent laser beams forms a 3D 
structure. This structure is periodic and its periodicity and symmetry can be 
controlled. Creating this interference within a photoresist renders insoluble the area 
which has been highly exposed. Unexposed photoresist is then dissolved away to 
reveal a 3D structure formed of crosslinked polymer with air-filled voids. This 
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technique is known as holographic lithography. The application of this method to 
3D photonic crystals was firstly proposed by Berger et al.58 in 1997 and its viability 
was empirically demonstrated by Campbell et al. in 2000 (see Fig. 1.19 d).59 

The intensity and polarization of each laser beam, along with their wave-
vector, are the parameters which will determine the resulting photonic band 
structure. The success of this technique is based on the use of an especial 
photoresist named SU8.60 This photoresist shows low radiation absorption and 
presents no photorefractive effect (the RI is not changed by intense em radiation). 

The advantages of this method are numerous. Firstly a 3D photonic crystal can 
be obtained in a very short period of time (a few minutes). Secondly, the number of 
parameters allows considerable freedom to design different symmetries and unit 
cell distribution. Thirdly, the process is relatively cheap. And finally, the method is 
scalable for large-scale production. 

This method is still being developed and improved.61 First optical spectra are 
being presented and the fabrication of a photonic crystal with a cPBG with this 
method is expected for the near future. 

1.4 History and state of the art. 

The interest of researchers in the field of photonic crystals has been incessantly 
growing since they were proposed in 1987. The amount of published work (Fig. 
1.20) shows a spectacular exponential growth and, at present, there are no signs 
indicating saturation. The number of papers coming out each year is so high that it 
is hard to keep track of even the most significant achievements. 

In this section a brief summary of the most important works related to photonic 
crystals will be presented. The section has been divided in four periods of time: 
before the photonic band gap proposal in 1987, the first years after it (1987-1994), 
a second period from 1995 to 1999, and from 1999 to date (2003). The last period 
has been chosen to coincide with the lapse of time in which the work presented in 
this PhD thesis has been developed. That way, the reader will be able to take into 
account the context in which each task was developed and the current state of the 
art. 

1.4.1 Before 1987. 

The creation of terms like “photonic crystals” and “photonic band structures” 
did not occur until 1987. However, the interaction of light in the optical regime 
with ordered dielectric structures had been already observed and studied before 
terms such as photonic band gap or photonic crystal were invented. 

Colloidal particles with diameters close to the optical wavelength were 
available in the first half of the 20th century since the “Dow Chemical co.” 
commercialized polystyrene microspheres. Structural analyses and light diffraction 
experiments were performed on the colloidal suspensions formed by these 
particles. The results were attributed to Bragg reflection of visible light.62 
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On May 15th 1979 Ohtaka published a dynamical theory of the diffraction of 
visible and ultraviolet light.33 The aim was modeling the interaction of light with a 
dielectric system composed of identical spheres ordered in a three-dimensional 
lattice. The equations he presented were based on the KKR method and the 
formulation of low-energy electron diffraction (LEED). Both of them were tools 
widely used in energy bands calculations in semiconductors. To develop the new 
formalism he applied these methods taking into account that vector Helmholtz’s 
equation was governing the behavior of photons (as Schrödinger’s equations does 
electrons’). It is important to notice that Ohtaka took into account the full vector 
character of photons and did not use a scalar approximation. 
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Fig. 1.20: Number of published works per year. Data was obtained by searching for 
“photonic crystal OR photonic band” at the ISI Web of Science.63 (Data is not cumulative). 

Even though Ohtaka developed his theory borrowing many aspects from 
semiconductors, he did not realize (or at least, he did not state it) the possibility of 
having photonic band gaps and their potential applications. For this reason his 
article has remained unknown during many years to some of the photonic band gap 
researchers that, actually, have partly repeated his work (see next sections). 
Besides, the systems he modeled (three dimensionally ordered spherical scatterers) 
in that paper have also had a tremendous importance as photonic crystals. 

1.4.2 From 1987 to 1994. 

On May 18th 1987 two independent works appeared in the same issue of the 
well known journal “Physical Review Letters”. The first one was published by 
Yablonovitch10 (at Bell Communications Research, USA) and dealt with the 
possibility of inhibiting spontaneous emission of em radiation using a three-
dimensionally periodic structure. This lattice should have a photonic band gap, this 
is, a region of forbidden energy states for photons. The second paper was signed by 
Jonh11 (at Princeton University, USA). In that work John discussed the strong 
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Anderson localization64 of photons in carefully prepared disordered dielectric 
superlattices. Defects present within a lattice where certain energy states were 
forbidden for photons should trap em radiation. These two works are considered as 
the origin of the research field henceforth known as “photonic crystals or photonic 
band gap materials”. 

After publishing their work, there were not many clues about which kind of 
structure should be fabricated. They knew that a lattice with a spherical BZ would 
help since gaps for different directions would appear at similar energies. Following 
that argument, the face centered cubic (fcc) lattice seemed to be the best. In order 
to achieve an overlapping of the gaps at every point of the BZ boundary, a high 
refractive index contrast (δ) between the composing materials was required.10 
However very little was known about the minimum values of refractive index for 
each material and the optimal lattice topology needed to obtain a crystal with a 
cPBG. 

About one year and a half later (1989), John published another work in which 
he announced that an fcc structure could show a cPBG between the second and 
third band.65 Applying the KKR method with the scalar wave approximation he 
showed that an fcc lattice with a filling fraction of 11% and δ=3.45 should show a 
cPBG of a 13% gap to midgap ratio. Other values could show narrower cPBGs. 
With these data Yablonovitch began to work on the construction of lattices that 
could prove John’s results experimentally. The empirical procedure followed by 
Yablonovitch et al. consisted on a cut-and-try method and “dozens of fcc structures 
were painstakingly machined out of low-loss dielectric materials”.66 The 
experimental results from this work showed little agreement with theoretical 
calculations. The δ needed for a cPBG seemed to be larger than expected and the 
behavior of photons at the W point of the BZ was not understood. A degeneracy of 
two bands due to group-theoretical properties of the W point was apparently the 
reason for this behavior.67 Including the full vector nature of the em radiation 
instead of using a scalar wave approximation in the theoretical calculations would 
take this fact into account. 

1990 was a very critical and exciting year for photonic crystals. At the 
beginning of this year, and with a few weeks difference, Satpathy et al.68 and 
Leung et al.69 independently published an implementation of the plane wave 
method with the scalar approximation (PWM) to photonic band calculations. Their 
work confirmed the KKR results obtained by John. However, shortly after (May of 
1999) both groups improved the PWM taking into account the full vector nature of 
light.70,71 Their papers appear one after the other in the same issue of “Physical 
Review Letters”. This time theoretical calculations and experimental data showed 
an excellent agreement. Unfortunately calculations confirmed that the cPBG that 
had been previously predicted for an fcc crystal, did not actually exist. 

These events lead the editor of the well known journal “Nature” to assure that 
“Photonic Crystals bite the dust”.72 Only two weeks later Ho et al. published a 
work in which they demonstrated that although fcc lattices with spherical atoms did 
not show the “missing” gap, a diamond structure (Fig. 1.21 a) should do it.73 The 
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reason for the diamond structure success is that it requires two atoms per unit cell. 
Introducing non-spherical atoms in the fcc lattice may lift the degeneracy of the 
bands at the W point in the BZ (notice that diamond structure is an fcc lattice with 
a two-vector basis). Immediately after this discovery, Yablonovitch et al. submitted 
another work presenting a structure based on an fcc lattice with non-spherical 
atoms and which presented a cPBG, this structure was called “Yablonovite”.74,75 

The structure consisted of a dielectric slab with a triangular array of holes with a 
set of parallel holes drilled as shown in Fig. 1.21 b. The resulting crystal is similar 
to a diamond lattice grown in the (111) direction with channels following the (110), 
(101) and (011) directions. It can be easily calculated that these vectors form an 
angle of α = cos-1(2/√6) ≈ 35º 15’ respect to the normal and spread 120º on the 
azimuth. It is worthy mentioning that “Yablonovite” is not exactly like a diamond 
lattice since three more sets would be needed in the (-101), (-110) and (0-11) 
directions. However, these vectors are normal the surface and drilling implies some 
experimental difficulties. A sample was fabricated for the microwave regime to 
show the effectiveness of this configuration and the cPBG was experimentally 
demonstrated. Although it was suggested that fabricating this sample for the optical 
regime by chemical-beam-assisted etching would be relatively easy, it has taken 
about nine years to obtain such a structure working at a wavelength of 3 microns.42 

In 1992, Sözüer et al. improved the plane wave method to show the behavior of 
higher energy bands.53 Surprisingly, they showed that between the 8th and 9th band 
a cPBG was formed for an fcc lattice of air holes in a semiconductor (Fig. 1.21 c) 
when δ was above 2.8. Ironically enough, lattices accomplishing this requirement 
had been experimentally studied by Yablonovitch et al.66 but unfortunately they 
had not probed the behavior of those high energy bands. 

Finally, in 1994, a new proposal of a structure with a cPBG was made by two 
independent groups.76,77 The so-called woodpile or layer-by-layer structures (the 
name depends on the author) follow the diamond symmetry (see Fig. 1.21 d) and 
present a cPBG between the 2nd and 3rd bands. At that time, the advantage of this 
structure over the others was that, presumably, it could be constructed in the optical 
regime by means of photolithographic techniques. 

1.4.3 From 1995 to 1999. 

At the end of 1994 several structures with a cPBG had been proposed and one 
of them, the Yablonovite, had been fabricated in the microwave regime. It had been 
demonstrated that photonic crystals actually worked. The basic theoretical tools to 
calculate band structures and optical properties had been already presented. Some 
other calculation methods were developed during these years, but basically they 
complemented and improved those already published.37,38 The challenge for the 
upcoming years was fabricating any of these crystals with a periodicity around the 
micron so that a cPBG could be observed at optical frequencies. 

During these five years materials science had the key to continue with the 
evolution of photonic crystals. Mainly two methods were followed to obtain 
structures with a 3D micrometric periodicity: lithography and artificial opals. 
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The existing techniques in lithography for microelectronics made this approach 
quite appealing. Soon two groups at Sandia Labs (USA) and Kyoto university 
(Japan) begun to, independently, develop the necessary techniques to apply 
lithography for their purposes. During the second half of 1998 both groups 
presented four-layer crystals based on the woodpile or layer-by-layer structures. 
These crystals showed the effects of the band gap at mid-infrared wavelengths even 
though the number of layers was rather low.46,48 

 
Fig. 1.21: Structures that should present a cPBG. a) diamond lattice, b) Yablonovite (ref. 
74), c) air spheres in an fcc lattice and d) layer-by-layer or woodpile structure (refs. 76, 
77). 

In 1995 Astratov et al.78 decided to follow another approach based on colloidal 
particles self-assembly. Techniques to obtain artificial opals made of silica and 
polystyrene spheres were already known.56 But for the first time they were 
regarded as potential photonic crystals. These structures formed an fcc packing 
with sub-micrometric periodicity. Artificial opals were a method that all research 
laboratories could afford and soon attracted the interest of many other groups. 
Furthermore, loading the opal voids with a high RI material and then etching away 
the opal template would result in a structure of air spheres in a dielectric material 
matrix. Such a structure was precisely the kind of crystal for which Sözüer et al.53 
had predicted a cPBG. In 1997 Velev et al.54 succeeded to obtain the first inverse 
structure (inverse opal). The RI contrast was still to low to present a cPBG, but the 
race to obtain an inverse opal satisfying all the requirements had begun. 

Apart from the experimental developments there was a new aspect in photonic 
crystals that attracted the attention of researchers: the highly dispersive nature of 



Chapter 1: Introduction to Photonic Crystals. 

42 

bands. In 1996 Lin et al.79 observed that photons were strongly dispersed in 2D 
crystals when their frequency was close to the band gap edges. Their explanation 
was given in terms of band curvature and non-linear dispersion. Two years later 
Kosaka et al.12 showed experimental evidences of novel anomalous dispersion 
phenomena (including negative refraction). Their explanation was based on 
dispersion surfaces and group velocity instead. 

1.4.4 From 1999 to date (2003). 

In 1999 the first photonic crystal working in the NIR was presented by Fleming 
et al.49 Again it was a four layer crystal following the layer-by-layer structure but 
the periodicity was reduced to match the NIR frequencies. One year later, Noda et 
al.47 fabricated an eight layer crystal by the wafer fusion method. Additionally they 
introduced a controlled defect in their crystals (specifically a 90º bend). 

The researchers working with opals were finding two main problems. Firstly, 
the RI of the material to infill the pores had to be very high (>2.8) and secondly, 
they also had to be transparent at the desired optical regime. The number of 
materials accomplishing both requirements is not very large. Germanium and 
silicon were two candidates for the NIR. However these materials needed an opal 
template made of silica spheres with a size too large for self-assembly techniques 
(see Chapter III). In 1999 the first artificial opals with the appropriated periodicity 
were obtained80 and in May of 2000 an inverse opal of silicon was presented by 
Blanco et al.57  

Photonic crystals accomplishing all the requirements to present a cPBG in the 
NIR had been obtained both with opal-based and lithographic techniques. This 
range covered the very important wavelength of 1.55 microns which is an optical 
communication window since silica has a local minimum of absorption. However 
the existence of a cPBG still lacks a complete experimental demonstration. Indeed, 
to be able to state its existence all directions should be probed to reconstruct the 
photonic band structure.81 

Many research fronts are open and advances are quickly achieved. A general 
review can be found in reference 82. Some of the current research aims are: 

o New techniques to fabricate photonic crystals have been developed, among 
which, holographic lithography59 seems very promising and it is quickly 
spreading. 

o Crystal quality improvement to avoid unwanted defects.83 

o The introduction of controlled defects to create guides or resonant cavities 
in 3D photonic crystals.84 

o The search for photonic crystals operating at visible frequencies.50,85 

o Fabrication of photonic crystals with metallic components.25,86 

o The design of new structures and topologies87,88 with cPBGs or interesting 
features such as highly dispersive bands or frequencies ranges in which 
light is negatively refracted at all angles.13 
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o Study of the effects of materials with interesting physical/chemical 
properties in photonic crystals. 
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2.1 Introduction. 

The work by Stöber et al.1 showed that hydrolysis of silicon alkoxides leads to 
the precipitation of very monodisperse silica microspheres. This work presented 
the starting point for an extensive research2,3 which indirectly contributed to the, 
currently, most widespread method to fabricate photonic crystals with micrometric 
periodicity. 

As mentioned in the previous chapter, fabrication of photonic crystals obtained 
from artificial opals is one of the pillars of this dissertation. Specifically, artificial 
opals made of silica spheres. In this context, being able to fabricate spherical 
micrometric silica particles with a very narrow size distribution is tremendously 
important since they will constitute the fundamental building blocks of our 
photonic crystals. 

In this chapter a detailed study of the refractive index (RI) variations of 
different diameter monodisperse silica spheres as a function of calcination 
temperature will be shown. The motivation is that opals usually must be subjected 
to thermal treatments like sintering4,5 or guest material synthesis,6 which often 
involves high temperatures. 

The results of this work show that RI and diameter variations induced by 
temperature treatments are significant enough to be taken into account whenever 
optical properties of silica artificial opals are modeled. An explanation of this 
behavior is given in terms of porosity and the removal of hydration water. 

2.2 Silica spheres synthesis. 

In 1968 Stöber et al.1 developed a method to synthesize colloidal silica 
microspheres (called SFB method, honoring creators’ names). The procedure 
consists in hydrolyzing a silicon alkoxide Si(OR)4, R being a radical with the 
general formula CmH2m+1. Subsequently, the hydrolyzed species are condensed 
forming siloxane groups (≡Si-O-Si≡). When reaction happens in a basic medium 
with a pH between 7 and 11, electrostatic repulsion causes monomers addition to 
already condensed species.3 This way, aggregation is avoided and non-soluble 
particles are obtained as opposed to a sol-gel. 

For silica microspheres used in this work, the precursor alkoxide is Tetraethyl 
ortosilicate (TEOS) and the hydrolyzing agent is doubly distilled water (DDW). 
Ammonia (NH3) is used to catalyze the reaction and to obtain a basic medium. 
Finally, absolute ethanol is the common solvent in which reaction happens. 

The hydrolysis velocity will be strongly related to spherical particles quality 
and diameter. This velocity will be proportional to [NH3]0.9:[H2O]1.5 ratio and 
temperature dependent.7 For this reason, TEOS, and NH3 concentrations are 
usually kept constant while [H2O] is varied to obtain different diameters. By means 
of this method, silica spheres with diameters ranging from 200 to 700 nm can be 
obtained with a narrow size distribution around 3-4%. 
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The SFB method allows obtaining spheres larger than 700 nm, however, the 
size distribution is much wider and the resulting particles cannot be used to 
fabricate artificial opals. Bogush et al.8 developed a technique in which SFB 
prepared microspheres where used as seeds for a re-growth process. A slow 
aggregation of TEOS under controlled conditions to the colloidal suspension 
obtained by the SFB method allows increasing the diameter of the existing particles 
without any additional nucleation. Following this procedure the range of available 
microsphere diameters can be expanded up to 1400 nm.9 

2.3 Refractive index of silica spheres. 

This section shows the index matching (IM) method used to measure the RI of 
silica microspheres calcined at different temperatures. Using this technique, sample 
porosity is also demonstrated for certain calcination temperatures. 

2.3.1 The index matching method. 

The IM method consists in finding a solvent with known RI equal to that of the 
sample itself. When this happens the optical boundary between both dielectrics 
disappears and light scattering effects become negligible. This means that forward 
light scattering intensity will present a maximum when the RI of both materials 
matches. Therefore, sample RI can be deduced if we know that of the matching 
solvent. In this section, different solvent compositions have allowed to smoothly 
vary the medium RI while transmission measurements were performed in-situ.10 

The mediums chosen for this study were mixtures of glycerin and water. 
Glycerin is an easy available, non-toxic and water miscible liquid with a RI of 
1.47. This value exceeds that of pure amorphous silica (usually around 1.45) and 
water RI is below it. Consequently, mixtures of both liquids provide an appropriate 
range. Fig. 2.1 shows the RI values as a function of glycerin volume concentration 
for a 589 nm wavelength. This corresponds to the yellow line of a sodium lamp 
(which is a standard). Values are obtained from ref. 11. 

Experimental data can be fitted by a second order polynomial which will allow 
data interpolation for IM experiments: 

n =1.333 + 1.21·10-1 A + 2.1·10-2 A2 

where n is the solution RI and A is the glycerin vol. concentration. 

The IM experiments were carried out as follows: the silica spheres were 
sonicated in a glycerin aqueous solution. While light transmission intensity was 
being measured, a known volume of silica-water from a reservoir was added with a 
micro-pipette. This way, glycerin concentration, and therefore medium RI, was 
always known. Since IM was determined through light transmission, the silica 
concentration in both the initial solution and water reservoir was kept constant at 
0.5 % vol. Therefore variations in silica concentration did not affect light 
transmission values. A tungsten lamp was used as the light source, the adequate 
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wavelength was selected thanks to a monocromator and transmitted light detected 
by a gallium arsenide (GaAs) detector. 
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Fig. 2.1: Refractive index of glycerin aqueous solutions as a function of volume 
concentration. 
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Fig. 2.2: Forward scattering intensity of 589 nm em radiation through a dispersion of 870 
nm of diameter silica spheres as a function of medium refractive index. Each data-set 
corresponds to different calcination temperatures. When the medium refractive index 
matches that of the spheres, a maximum of intensity is achieved. Continuous lines are just 
eye-guides. 
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Fig. 2.2 shows examples of IM measurements for a sample made of 870 nm of 
diameter silica spheres that had been calcined at three different temperatures. As 
the medium RI gets closer to that of the silica sample, transmission intensity 
increases. Once it is matched there is a maximum of light transmission. Moving 
away from the IM situation entails a transmission intensity decrease. 

2.3.2 Calcination temperature effects on silica spheres refractive index. 

Five samples of spheres of different diameters were prepared: 379, 575, 800, 
870 and 1175 nm. Each batch was divided in eleven parts of 100 mg of sample and 
calcined at eleven temperatures in the following manner: the samples were heated 
at 70 ºC for three hours, then the temperature was increased (1 degree per minute) 
up to the desired point and maintained for three hours, finally it was decreased 
down to room temperature (10 degrees per minute). 

The RI of each sample was analyzed by means of the IM method. Fig. 2.3 
shows the results for spheres with diameters of 575, 800 and 1175 nm. The first 
sample was fabricated by a simple SFB method; the other two samples followed 
the re-grown procedure mentioned in previous section. 
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Fig. 2.3: Refractive index of Stöber SiO2 samples as a function of calcination temperature. 
Data for three samples of different diameter silica spheres is presented. 575 nm spheres 
were prepared in a simple SFB process while 800 and 1175 nm spheres followed a 
regrowth procedure. 

Data in Fig. 2.3 together with other results not presented here show that the 
behavior is similar regardless of sphere diameter. For this reason the average 
refractive index for each calcination temperature from all samples is calculated and 
shown in Fig. 2.4 along with its standard deviation. The results of IM 
characterization did not show any important dependence of RI on synthesis 
methods and data variations seem to be related to small deviations in sample 
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production. However, calcination temperature dependence is clear. Roughly 
speaking the RI is constant up to 600 ºC (region I), then it drastically decreases 
until 800 ºC are reached (region II). Finally, RI increases when temperature is 
augmented (region III). 
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Fig. 2.4: Average refractive index of Stöber SiO2 samples as a function of calcination 
temperature. The error bars represent one standard deviation with five determinations. The 
graph is divided in three regions depending on refractive index behavior. 

It was noticed that samples calcined at temperatures around 750 ºC had a RI 
that changed depending on the time they had been soaked in water before 
measurements. This could be only explained if samples were porous and pores 
were being infiltrated with water. Indeed air substitution for water would increase 
the sphere average RI. A sample which showed its minimum refractive index when 
calcined at 750 ºC was soaked in DDW for different periods of time before its 
refractive index was measured. The results displayed in Fig. 2.5 show that water 
enters into the spheres pores. 

The following equation where the second term is a time dependent exponential 
decay fits the experimental data: 

n(t) = nf - ( nf – ni) e-t/τ 

here nf is the final refractive index, that is, the saturating value, ni is the initial 
refractive index when no water has entered the sphere, t is the time in hours and τ 
is the life-time of the process. The lifetime obtained is 210 hours. Such a high 
value can be understood if we take into consideration that most of the pores are 
inside the sphere while its outermost volume remains almost poreless.12 Refractive 
indexes obtained from this graph lead to porosity of 25%. This porosity is obtained 
by calculating the average dielectric constant. The possibility of rehydration 



Chapter 2: Silica microspheres study at different calcination temperatures. 

58 

instead of water filling was discarded since the initial RI recovered by heating the 
sample again just at 200 ºC. 
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Fig. 2.5: Refractive index variation of a 575 nm diameter sample as a function of time due 
to water uptake by the pores. Dotted line represents the fit of experimental data to an 
asymptotic growth. 

2.4 Infrared absorption. 

Ideally, after sample synthesis all oxygen atoms act as bridges that bond silicon 
atoms (siloxane groups). However, in fact, many of these bonds are not completed 
and oxygen atoms form hydroxyl-group: ≡Si-OH. These groups act as dipoles that 
attract other polar molecules such as H2O. When silica samples are calcined, 
hydrogen atoms can be eliminated if temperature is high enough. The reaction 
products are water molecules and new siloxane groups. Depending on the silanol 
group situation (isolated, neighboring, internal, external…) the vibration frequency 
of atoms bonds varies and therefore the energy of the em radiation that they absorb. 
For this reason, em absorption can be used to identify the presence of silanol 
groups. 

In order to characterize the water content, Infra Red (IR) reflectance spectra 
were performed focusing our attention on two principal features: absorption at 
3750 cm-1 corresponding to isolated silanol groups and water absorption below 
3720 cm-1.13,14 This was performed with a Bruker IFS 66/S Fourier Transform IR 
spectrometer and 20 mg of dried (at 70 ºC for 3 hours) sample. Fig. 2.6 shows the 
reflectance spectra obtained for a sample calcined at 10 different temperatures. It 
can be seen that up to 600 ºC (region I) there are not significant changes. 
Conversely, in region II, it can be observed that absorption due to water decreases 
as temperature increases. This happens because water molecules that are bound to 
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silanol groups are being removed. This entails the apparition of isolated silanol 
groups as the absorption dip at 3750 cm-1 shows. The intensity of this dip increases 
until 900 ºC (in region III). For higher temperatures silanols are broken and form 
siloxane groups. At 1000 ºC the presence of isolated silanols is hardly detected. 
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Fig. 2.6: IR spectra from a calcined silica sample with a diameter of 575 nm. See 
absorption band at 3750 cm-1 from isolated silanol groups and the wide absorption band of 
water onset at 3700 cm-1. 

As a complementary study, sample mobility measurements were performed for 
calcination temperatures up to 900 ºC (samples calcined at higher temperatures 
could not be dispersed in water as they sintered). As explained before, the silanol 
groups are responsible for forming dipoles. For this reason, a suspension of silica 
microspheres in water will be sensitive to electric fields. If spheres are negatively 
charged (which is the usual situation unless electrolytes are added or pH modified) 
they will move towards a positively charged electrode. The ratio between particle 
velocity (v) and electric field (E) intensity is called mobility (µ). In the case of 
silica microspheres mobility is expected to be larger if the number of external 
silanol groups is higher. 

The results obtained were around 4.5 µm·cm/V·s in all cases and no significant 
variations were observed. This is in agreement with IR absorption measurements 
since silanol groups do not collapse for temperatures under 900 ºC. 
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2.5 Porosimetry. 

Results shown in section 2.3.2 reveal the presence of pores, at least for samples 
calcined at certain temperatures. However whether these pores are formed during 
the microsphere synthesis or the calcinations process is still unanswered. The later 
possibility has been observed in some oxides.15 

Depending on their size, pores in solids are divided in three groups. Each group 
requires a specific method for their detection: 

o Macropores: Diameter above 50 nm. Method: mercury porosimetry. 

o Mesopores: Diameter between 50 and 2 nm. Method: adsorption 
porosimetry. 

o Micropores: Diameter under 2 nm. Method: X-rays and adsorption 
porosimetry. 

 

Calcination Temperature Specific surface as 

300 ºC 9.1 m2/g 

600 ºC 12.6 m2/g 

700 ºC 11.9 m2/g 

800 ºC 13.7 m2/g 

Table 2-1: Specific surface area for different calcination temperatures. 

The main result from porosimetry experiments is the specific surface area as. 
This is the surface area per mass unit. The more porous the sample is the larger 
specific surface is obtained. For an ideal pore-less sphere the specific surface area 
is simply as=6/ρd (where ρ is silica density, 2.05 g/cm3, and d is the sphere 
diameter). An 875 nm of diameter silica spheres sample was chosen for adsorption 
and mercury porosimetry. If these spheres were pore-less their specific surface area 
would be 3.4 m2/g. Mercury porosimetry detected the interstices between spheres 
but did not show the presence of surface or internal macropores. Liquid nitrogen 
adsorption porosimetry was performed for the following calcinations temperatures: 
300 ºC, 600 ºC, 700 ºC and 800 ºC. Prior to adsorption, samples were heated at 120 
ºC under high vacuum (10-6 Torr) for 16 hours. Specific surface area results are 
shown in Table 2-1. 

Although values in Table 2-1 are larger than those of a poreless sphere, they 
are still very low in comparison to a typical porous material. For example, the 
specific surface area is around 750 m2/g for momtmorillonite, a laminar silicate. 
The obtained results are probably due to sphere roughness and not to porosity. 
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A possible explanation for the inability of these methods to detect pores is that 
they are mainly internal pores and are not easily accessible by non-polar molecules. 
This seems to agree with other researchers results.12 

2.6 Sphere diameter variations with calcination temperature. 

In previous sections it was shown that silica microspheres RI increases for 
calcination temperatures above 750-800 ºC. This fact could be explained if there 
was a sphere contraction. Pores would collapse at this temperatures leading to a 
sphere purely made of amorphous silica with a higher RI and a smaller diameter. 

 
Fig. 2.7: SEM image spheres selected to be measured before and after calcination. Silica 
spheres have been randomly deposited on the substrate and three specific spheres well 
apart from each. Scale bar is 5 microns. 

Spheres having a 25% of their volume occupied by air pores should show a 
significant diameter decrease if pores were removed. Final sphere diameter would 
be around 90% of the initial diameter if this model were true. Such a variation can 
be easily detected with a Scanning Electron Microscope (SEM) when sphere 
diameters are above 500 nm. Transmission Electron Microscopy (TEM) would be a 
better technique to detect small size variations. However SEM allowed using 
templated substrates that could be heated up to 950 ºC and, therefore, locating 
specific spheres. Silica suspensions in water with a 0.05% solid content were 
prepared and a drop was carefully deposited on the substrate and dried. Fig. 2.7 
shows an example of a templated silicon substrate with the silica sample. Three 
spheres well apart from each other are selected and measured before and after 
calcination. 
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Following this method several spheres of different diameters were measured 
before and after calcinations at 750 ºC and 950 ºC. Results are shown in Fig. 2.8. 
From values fitting it can be calculated that calcination at 750 ºC causes an average 
decrease of 97% ± 3% of the original diameter, which is almost a negligible but 
systematic effect. However, for a calcination temperature of 950 ºC, the average 
diameter decreases to 89% ± 3%. This variation is in excellent agreement with the 
expected value and supports the pore collapse model to explain the RI increase 
from 750 ºC to 1000 ºC shown in Fig. 2.4. 
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Fig. 2.8: Diameter variation for six samples from room temperature to 750 ºC (solid 
squares) and 950 ºC (hollow circles). 

2.7 Summary. 

In this chapter the refractive index behavior of silica spheres with calcination 
temperature (from room temperature to 1000 ºC) has been characterized. A strong 
dependence was observed between 600 ºC and 1000 ºC that can be assigned to pore 
formation and water removal. Although nitrogen and mercury porosimetry have 
not shown the presence of pores, their existence has been demonstrated by filling 
the silica spheres with DDW and by checking their compaction when calcined 
above 750 ºC. 

In a previously published experiment,5 optical properties of structures made of 
silica spheres were studied for different calcinations temperatures. In that work 
they did not find a fully satisfactory explanation to the diffraction peak shift when 
temperatures around 600 ºC were exceeded. Thanks to results obtained in this 
chapter for the refractive index behavior the optical properties of those structures 
can now be explained.16 
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2.7.1 Conclusions. 

o An appropriate RI value for as-synthesized silica spheres is 1.425±0.005. 

o Temperature treatments under 600 ºC hardly affect the silica spheres RI. 
When temperatures exceed this value their RI shows important variations 
that must be taken into account. 

o The behavior of silica spheres RI versus calcination temperature does not 
seem to be dependent on sphere diameter or re-grown synthesis 
procedures. 

o As-synthesized silica spheres present porosity typically around 25%. These 
pores can be accessed by water molecules. 

o For temperatures above 750 ºC pores begin to collapse and sphere 
diameter significantly diminishes. 

2.7.2 Future research. 

Even though several agreements between this work and some published papers 
have been found, there are two points that apparently contradict results presented 
here. Thermogravimetric measurements done by Sacks et al.13 showed water loss 
with calcination temperature mainly under 300 ºC. However, an important release 
of water should be observed between 600-800 ºC to explain the RI decrease. The 
same authors performed picnometry experiments showing a continuous increase of 
mass density with calcination temperature. Again, a decrease of this parameter 
should be observed between 600 and 800 ºC. These are two questions that would 
require further research. 

Finally, although sphere diameter diminution from 750 to 950 ºC has been 
shown, TEM measurements could help to obtain a more accurate characterization 
of sphere size variations. 



Chapter 2: Silica microspheres study at different calcination temperatures. 

64 

 



2.8 References. 

65 

2.8 References.

 

1 Stöber, W., Fink, A. & Bohn, E. Controlled Growth of Monodisperse Silica Spheres in 
Micron Size Range. J. Colloid Interface Sci. 26, 62 (1968). 

2 van Helden, A. K., Jansen, J. W. & Vrij, A. Preparation and Characterization of 
Spherical Monodisperse Silica Dispersions in Non-Aqueous Solvents. J. Colloid 
Interface Sci. 81, 354 (1981). 

3 Iler, R. K. The Chemistry of Silica (John Wiley and Sons: New York, 1979). 

4 Sacks, M. D. & Tseng, T. Y. Preparation of SiO2 Glass from Model Powder Compacts 
2. Sintering. J. Am. Ceram. Soc. 67, 532 (1984). 

5 Míguez, H. et al. Control of the photonic crystal properties of fcc-packed 
submicrometer SiO2 spheres by sintering. Adv. Mater. 10, 480 (1998). 

6 Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete 
three-dimensional bandgap near 1.5 micrometres. Nature 405, 437 (2000). 

7 Harris, M. T., Brunson, R. R. & Byers, C. H. The Base-Catalyzed-Hydrolysis and 
Condensation-Reactions of Dilute and Concentrated TEOS Solutions. J. Non-Cryst. 
Solids 121, 397 (1990). 

8 Bogush, G. H., Tracy, M. A. & Zukoski, C. F. Preparation of Monodisperse Silica 
Particles - Control of Size and Mass Fraction. J. Non-Cryst. Solids 104, 95 (1988). 

9 Ibisate M. Cristales fotónicos basados en ópalos. (PhD. thesis, Universidad Autónoma 
de Madrid, 2003). 

10 van Blaaderen, A. & Vrij, A. Synthesis and Characterization of Monodisperse 
Colloidal Organo-Silica Spheres. J. Colloid Interface Sci. 156, 1 (1993). 

11 Wolf, A. V.; Brown, M. G.; Prentiss, P. G. Handbook of Chemistry and Physics, 57th, p 
D-218 (CRC Press: Boca Raton, FL, 1976). 

12 Vrij, A. et al. Light-Scattering of Colloidal Dispersions in Non-Polar Solvents at 
Finite-Concentrations - Silica Spheres as Model Particles for Hard-Sphere Interactions. 
Faraday Discuss., 19 (1983). 

13 Sacks, M. D. & Tseng, T. Y. Preparation of SiO2 Glass from Model Powder Compacts 
1. Formation and Characterization of Powders, Suspensions, and Green Compacts. J. 
Am. Ceram. Soc. 67, 526 (1984). 

14 Míguez, H. Los ópalos artificiales como cristales fotónicos. (PhD. thesis, Universidad 
Autónoma de Madrid, 2000). 

15 Wilson, S. J. & Stacey, M. H. The Porosity of Aluminum-Oxide Phases Derived from 
Well-Crystallized Boehmite-Correlated Electron-Microscope, Adsorption, and 
Porosimetry Studies. J. Colloid Interface Sci. 82, 507 (1981). 

16 García-Santamaría, F., Míguez, H., Ibisate, M., Meseguer, F. & López, C. Refractive 
index properties of calcined silica submicrometer spheres. Langmuir 18, 1942 (2002). 





 

 

Chapter 3: Artificial opal fabrication 
methods. 

 

 

3.1 Introduction. __________________________________________________ 69 

3.2 Crystallization._________________________________________________ 69 

3.3 Natural sedimentation.___________________________________________ 72 

3.3.1 Sedimentation velocity. _____________________________________ 72 

3.3.2 The large spheres problem. __________________________________ 73 

3.4 Colloidal crystal in aqueous suspension. _____________________________ 74 

3.5 Electrophoretically assisted sedimentation.___________________________ 77 

3.6 Vertical deposition of thin film opals. _______________________________ 80 

3.7 Summary._____________________________________________________ 83 

3.7.1 Conclusions. ______________________________________________ 83 

3.7.2 Future research. ___________________________________________ 83 

3.8 References. ___________________________________________________ 85 

 

 



 



3.1 Introduction. 

69 

3.1 Introduction. 

In order to obtain photonic crystals working in the visible or near infrared 
range of the spectra, monodisperse building blocks in shape and size are needed. 
As periodicity for such crystals must be of the order of microns, the kind of 
particles used as building blocks are among those known as colloidal particles. 
Under certain conditions colloids may spontaneously form ordered lattices. This 
phenomenon is called self-assembly, an important subject of research since the 
beginning of the second half of the 20th century. 

Nature provides some examples of colloidal particles forming crystals. In 1957 
Williams et al.1 found a crystallizable insect virus whose suspensions showed 
iridescences. The Tipula Iridiscent virus size is around 130 nm and forms a face 
centered cubic (fcc) close packing array in concentrated suspensions. The 
gemstones known as opals are another example. In 1964 Sanders2 discovered that 
precious opals were formed by silica microspheres in a random stack of close-
packed layers.3 Darragh et al.4 suggested that formation of opals could be based on 
the precipitation of silica and a posterior aggregation of the spherical particles to 
make the opaline structure. Only two years later (1968) Stöber et al.5 showed a 
method to synthesize silica colloidal microspheres (see Chapter 2). However, it 
was not until 1989 that Philipse6 fabricated the first solid packings of colloidal 
silica spheres, in other words, artificial opals. 

In the photonic crystals research field, artificial opals have been of paramount 
importance since Astratov et al.7 published in 1995 an experimental work in which 
opals made of silica spheres were envisioned as templates valid as photonic 
crystals. The method to fabricate the opals they used was based on the natural 
sedimentation of silica spheres. Later on, a large effort has been put on improving 
the opal fabrication methods to obtain samples free of defects in short periods of 
time. 

When this PhD Thesis begun in 1999, natural sedimentation in water was the 
most widespread method. However, this approach allows little control on opal 
characteristics and is not well suited to obtain crystalline sediments of silica 
spheres larger than 500 nm. In this chapter, a brief introduction to the 
crystallization mechanisms will be presented along with the description of the 
fabrication methods used to grow the opals shown in this dissertation. These 
methods will include the electrophoretically assisted sedimentation, by means of 
which silica spheres with diameters over 500 nm were self-assembled for the first 
time. A brief description of other crystallization methods is presented in Appendix 
IV for the sake of completeness. 

3.2 Crystallization. 

The crystallization of monodisperse colloidal suspensions of micrometer-sized 
spheres is still under extensive research. Systems with long-range repulsive 
potentials show a richness of phases which makes them quite complicated for their 
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understanding.8 For that reason most of the theoretical models and experiments to 
explain the crystallization mechanisms have been performed with hard spheres 
where no interactions must be considered. 

A suspension of hard spheres can be regarded as a non-ideal gas whose 
equation of state is: 
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where P is the osmotic pressure, V is the system volume, N is the number of 
spheres, kB is Boltzmann’s constant, T is the temperature and Bn are the so called 
virial coefficients. It can be shown that in reality, the expression on the right can be 
expressed as a function of the spheres volume fraction (φ). Therefore: 
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where N/V has been expressed as φ/Vsp, this is, the sphere volume fraction divided 
by the sphere volume. Reduced osmotic pressure (Π) is the dimensionless value 
usually presented. To obtain it P is divided by P0 which is the osmotic pressure the 
system would have for a close-packed configuration if the system were an ideal 
gas: 
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φcp=π/√18 being the volume fraction of spheres for a close-packed array and d the 
sphere diameter. 

Computer calculations performed by Alder et al.9 showed that hard spheres 
systems should have a first order transition between a solid and a liquid phase. 
Several virial coefficients were calculated by Ree et al.10 among others which led 
to approximate equations for the liquid and the solid phase. A valid equation for 
the former case is that of Carnahan-Starling:11 
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In the case of the solid equation, Hall’s expression offers accurate results: 
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Hoover at al.12 made a Monte Carlo determination of the pressure and absolute 
entropy to discover the density of the coexisting liquid and solid phases present in 
these systems. They found that the hard-sphere solid and fluid phases are in 
thermodynamic equilibrium of pressure and chemical potential over a density 
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interval from 0.494 to 0.545. The critical osmotic pressure for this coexistence 
region was calculated to be Πc=8.27 (Pc=11.7·kBT/d3). The equations of state 
showing the solid, liquid and coexistence regions are shown in Fig. 3.1. 

From all the results presented so far, a solid phase of hard spheres could be 
obtained if spheres are concentrated till the osmotic pressure value is higher than 
Πc. However, a solid phase can be crystalline or glassy. If a crystalline solid phase 
is required, another condition must be fulfilled: the compression rate of spheres 
must not exceed the maximum crystallization rate. Intuitively this means that the 
velocity by which new spheres are added must be slow enough to allow the system 
to crystallize, otherwise an amorphous solid results. The maximum crystallization 
rate (γ) is proportional to the self-diffusion coefficient of the spheres in the liquid 
divided by the sphere diameter: γ ∝ kBT/ηd2, where η is the medium viscosity.13 
This relationship reveals that small spheres will crystallize faster and therefore 
allow a higher aggregation rate. 
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Fig. 3.1: Reduced osmotic pressure as a function of volume fraction of hard spheres. The 
liquid phase is represented by the Carnahan-Starling equation of state, while solid phase is 
given by Hall’s equation. A solid-liquid coexistence region exists for the volume fraction 
regime 0.494<φ<0.545 and a reduced osmotic pressure of 8.27. 

The experimental confirmation of liquid to crystal (solid) phases over the 
density interval 0.494<φ<0.545 was obtained for spheres of polystyrene (PS),14 
poly(methyl methacrylate) (PMMA)15 and silica.16 Attractive or repulsive 
potentials between spheres had to be cancelled to obtain an ideal system of hard 
spheres. In all cases the surface charge of the spheres was screened or eliminated 
by high ionic strengths or low dielectric constant mediums and the attractive van 
der Waals forces suppressed by a refractive index matching medium. 
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So far it has been said that crystallization occurs for close-packed arrays. 
However there are three possible structures with a close-packed volume fraction. 
Namely the hexagonal close packed array (hcp), the fcc lattice or a random stack of 
hexagonal layers. In 1997 Woodcock17 demonstrated the fcc phase is the most 
stable thanks to a small entropy difference. 

3.3 Natural sedimentation. 

Natural sedimentation of silica spheres is probably the simplest method to 
fabricate artificial opals.18 The silica spheres are just dispersed in an aqueous 
solution to obtain a diluted suspension (usually 0.5% volume) and allowed to settle 
down on a flat surface. Once sedimentation is completed, the supernatant is 
removed by evaporation at 45ºC and the opal sintered19 to give it a higher 
mechanical strength. 

Obviously sedimentation accomplishes the requirements stated on the previous 
section. Firstly, it offers a way to obtain a concentrated suspension where the 
volume fraction is high enough to begin crystallization. Secondly, provided a low 
enough sedimentation velocity and initial volume fraction, the aggregation of 
spheres will not be faster than the maximum crystallization rate. Although the 
surface charge of the spheres is not screened and therefore the system is not ideally 
composed of hard-spheres, the qualitative results obtained are comparable. 

3.3.1 Sedimentation velocity. 

Sedimentation velocity will be a very important parameter to control the 
growth of high quality artificial opals with this method. High velocity values may 
result in glassy sediments. The model of constant velocity particle packing is based 
on the interaction of gravitational (Fg=1/6πρsgd3), Archimedes buoyancy 
(FA=1/6πρmgd3) and frictional (Ff=3πηdU0) forces. Where ρs and ρm are the spheres 
and medium mass densities, g is the gravity acceleration and U0 is the sphere 
velocity. When all forces are balanced, the Stokes law is obtained: 
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This easily obtained equation allows obtaining accurate results for dilute 
suspensions of spheres. However the actual velocity U of a particular sphere differs 
from U0 owing to the hydrodynamic interaction between the various particles in the 
dispersion. The study of sedimentation has been quite extensive, in 1952 Kynch20 
stated that actual sedimentation velocity should have the form: U=U0(1-φ)β where β 
has an uncertain value ranging from 5 to 7.21,22 A theoretical study done by 
Batchelor23 showed that U=U0(1-6.55φ) for low concentrations (φ<0.05). In any 
case, for the particular case of natural sedimentation in which the volume fraction 
is typically around 0.005 the sedimentation velocity is ca. 0.97·U0, meaning that 
there is almost no hydrodynamic interaction since colloidal dispersion is very 
diluted. If sphere diameter is calculated from Stokes law for this diluted dispersion 
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without taking into account hydrodynamic interactions the value is underestimated 
only by a 1.5%. Since sphere polydispersity is usually around 5%, corrections for 
such diluted dispersions are negligible. In natural sedimentation experiments with 
silica spheres in water at room temperature: η =1.005 cP, ρs-ρm =1050 kg/m3. For 
spheres with a diameter between 0.2 and 0.5 microns, sedimentation velocity 
ranges from 90 to 590 µm/h. As sedimentation tubes are about 6 cm high, the 
whole process may take from one month to 5 days. In the case of smaller spheres a 
good way of accelerating sedimentation is increasing the suspension temperature 
since water viscosity is very sensitive to this parameter. Indeed, water viscosity at 
10ºC is 1.792 cP whereas at 40ºC viscosity decreases down to 0.656 cP. 
Unfortunately, higher temperatures are not advisable since convection forces may 
prevent the spheres from settling. 

Natural sedimentation to obtain artificial opals is not exclusive for silica 
spheres, however, sedimentation times needed for PS or PMMA spheres is much 
longer since their density is very close to that of water. When sediments made of 
this kind of spheres are needed, centrifugation is used to assist the sedimentation. 

3.3.2 The large spheres problem. 

As mentioned in the introductory section, the natural sedimentation method is 
well suited to obtain solid opaline packings of silica spheres with a diameter 
smaller than 500 nm. The reason is that larger spheres sedimentation velocity (U) is 
too high and spheres aggregation occurs faster than the maximum crystallization 
rate (γ). A useful quantity that may help to predict whether conditions will allow 
crystallization or not is obtained dividing U by γ. 
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where Pe is known as the Peclet number. The lower this magnitude is, the higher 
crystalline quality the sediment will have. In the case of silica spheres from 200 to 
500 nm in water at 300 K, the Peclet number goes from O(10-4) to O(10-2). From 
this equation it can be seen that sphere diameter is the most important parameter to 
consider. The influence of the spheres volume fraction is not so clear. From this 
equation it seems that high concentrations will decrease the resulting value since 
sedimentation velocity is slowed down. However, it must be taken into account that 
a high concentration of spheres entails a larger aggregation rate and this fact is not 
included in the equation. For this reason the equation written above should be 
multiplied by a function f(φ) which some authors have assumed to be the volume 
fraction itself and the equation becomes φ·Pe·(1-φ)β instead.24 The rest of 
parameters: density and temperature allow little variations on the final value of this 
equation. 

A work presented by Hoogenboom et al.24 shows that low Peclet number and 
volume fraction do not only result in higher quality crystals; the number of 
stacking faults which make the structure different from an fcc decreases as well. 
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This work also suggests that crystals fabricated from non-hard silica spheres (the 
surface charge is not screened) present a lower number of stacking faults. 

So far, there is no parameter that could be realistically changed to obtain 
crystalline sediments of spheres larger than 500 nm. Nevertheless, it has been 
observed that increasing the medium viscosity by adding ethylene-glycol helps to 
fabricate large sphere opals.25,26 High viscosity involves a lower sedimentation 
velocity which is favorable; however, it also entails poorer diffusion. For that 
reason viscosity does not appear in the Peclet number. Further experiments are 
needed to explain these results. 

3.4 Colloidal crystal in aqueous suspension. 

Natural sedimentation in a tube is a functional method to obtain solid opals but, 
unfortunately, it is not well suited for an in-situ crystallization study. The whole 
sediment thickness is less than one millimeter, the bottom surface has a low 
crystalline quality and upper surface is covered by the settling suspension or water 
once sedimentation is over. Therefore, the different solid, liquid and mixed phases 
present during crystallization and their behavior cannot be well observed. Only the 
water-colloid interface can be clearly appreciated and used to measure the 
sedimentation velocity. 

 
Fig. 3.2: Different phases that can be identified during (left) and after (right) colloid 
sedimentation. 

In this section a different sedimentation mechanism that allows phase 
characterization is proposed. To prepare the cell, a silicon wafer is inserted 
between two glass-slides. The borders of the slides are glued together with a 
molten plastic and once the plastic is solidified the silicon slide is removed. The 
resulting cell contains an air chamber with an approximated thickness of 700 
microns. A 20% volume aqueous suspension of silica spheres is then injected in the 
cell. The advantage of this cells when compared with previous experiments14-16 is 
that small amounts of solid contents allow a clear observation of the different 
sedimentation phases. 



3.4 Colloidal crystal in aqueous suspension. 

75 

Fig. 3.2 shows the different phases that can be observed during and after 
sedimentation. From the initial uniform dispersion of silica spheres in water, 
several phases are formed: the not yet settled uniform dispersion, an amorphous 
sediment at the bottom of the cell, a poly-crystalline sediment where long columnar 
crystals are present, a region known as the fan, at the bottom of which the critical 
osmotic pressure is reached. An interesting characterization of these phases and 
their growth velocity was published by Davis et al.16 Once sedimentation is 
concluded, the fan and the uniform dispersion are no longer present and only the 
amorphous and crystalline sediments remain. Above the crystal, a liquid phase can 
be observed as well. In equilibrium in a gravitational field, the weight of all 
particles above any horizontal cross-section is compensated by the osmotic 
pressure.27 Therefore, on the top of the sediment the osmotic pressure is below the 
critical value and a liquid phase exists. Although it is always present, this phase is 
still hardly observable for small spheres since the overall height of the liquid phase 
above the interface scales like:28 
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This means that for spheres with diameters around 200 nm, the height of this phase 
is of the order of a hundred microns, however for spheres of 500 nm, the height 
decreases to a few microns. 

The amorphous sediment at the bottom of the cells is also present in solid opals 
grown by sedimentation (previous section) and offers an explanation to the low 
optical quality of the bottom side of those samples. 
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Fig. 3.3: Volume fraction of the crystalline phases obtained from optical measurements for 
different silica sphere diameters. The three regions predicted for hard spheres (solid, liquid 
and coexistent) are also depicted. The dashed line is a linear fit indicating a possible 
relationship. 
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The crystalline phase volume fraction for different diameters samples was 
obtained from optical measurements once the sedimentation process was over. The 
{111} planes are parallel to the glass slides. The results are shown in Fig. 3.3. The 
liquid, solid and coexistence phases predicted for hard spheres are also depicted. It 
can be seen that in our case most of the samples show a crystalline phase at a 
volume fraction region that belongs to the liquid-solid coexistence range for hard 
spheres. In fact, two of the samples show a crystalline phase for φ<0.49. The 
explanation to these differences is that our system is not formed by hard spheres 
since their surface charge has not been screened. However, their qualitative 
behavior is very similar to that of hard spheres.24 In some occasions this kind of 
systems are said to be made of nearly-hard spheres. Hard spheres equations are 
used introducing an effective diameter larger than that of the real sphere. In the 
case of charged spheres the Coulomb forces are added to the osmotic pressure to 
keep the spheres apart from each other. 

Another interesting result from these experiments is that samples made of 
spheres larger than 500 nm presented a crystalline phase with good optical 
properties. In ref. 16, where the silica spheres surface charge was screened, spheres 
with diameters larger than 400 nm formed an amorphous sediment. Although other 
factors such as monodispersity are important to fabricate good quality crystals, 
results shown here suggest that surface charge may help to obtain crystals made of 
large spheres. 

It is also remarkable that solid opals fabricated by means of natural 
sedimentation do not present good optical properties for diameters over ca. 500 
nm. However, in the case of colloids in a suspension, same size spheres show a 
crystalline phase. A possible explanation is that the drying process destroys the 
existing crystals. Indeed, for large spheres, these crystals must be smaller since 
optical properties are worse. Therefore, perturbations may easily turn them into an 
amorphous solid. 

The distance between two neighbor spheres (surface to surface) in terms of the 
volume fraction is given by: 
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from this equation it can be calculated that for crystals shown in this section where 
the volume fraction typically ranges from 0.45 to 0.60, the nearest neighbor 
distance varies from 18% to 7% of the sphere diameter. This is an interesting 
indication of the long range effects of electrostatic repulsive forces. In experiments 
with hard spheres, crystals show a volume fraction around 0.65. Consequently, the 
distance between spheres is only a 4-5% of the sphere diameter. 
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3.5 Electrophoretically assisted sedimentation.* 

This technique was proposed as a solution to the problems which arise when 
SiO2 monodisperse microspheres of diameters under 300 nm or over 550 nm are 
used to obtain opal based photonic crystals.29,30 If the microspheres are too small, 
the sedimentation rate is very slow or even may never occur, a problem that has 
seemed as an inconvenience somewhat difficult to solve.31,32 Conversely, if spheres 
are large enough no significant order can be achieved because sedimentation 
velocity and Peclet number are too high. Both problems make it quite unpleasant to 
work out of the limits of this reduced diameter range (300-550 nm) which 
corresponds to sedimentation velocities from 0.2 mm/hour to 0.7 mm/hour 
according to Stokes law. 

 
Fig. 3.4: Experimental set up of the electrophoretic cell. (Design and scheme made by M. 
Holgado) 

The method here presented, based on the electrophoretic phenomenon, allows 
controlling the sedimentation velocity. The forces between particles33 and the 
effects of electric fields over colloidal particles have been widely observed,34,35 e.g. 
modulation of lateral attraction between particles and particle clustering.36 The aim 
of this method is using the electric field to drive the sedimentation velocity and 
keep it around 0.4 mm/hour to solve the difficulties mentioned before. 

                                                   
* Results presented in this section were obtained in collaboration with M. Holgado who 
initially made use of electrophoresis with titania coated silica spheres.30 
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It is well known that silica microspheres in a colloidal suspension have a 
surface charge density when they are away from the point of zero charge (PZC), in 
which case the electric charge is null. Taking into consideration the force produced 
by an electric field E parallel to all other forces, the following equation is obtained 
for the velocity: 
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where, the first part of this equation is the classical Stokes law and the second part 
corresponds to the contribution of the electric field to the sedimentation velocity, 
related to the mobility of the spheres µ. Now, the main problem is how to calculate 
the particle’s mobility. The application of the electrophoretic concept can solve it. 
Provided that Stokes velocity without electric field is calculated with great 
accuracy, the electrophoretic mobility can be obtained in a straightforward manner 
if Stokes velocity is subtracted from the experimental velocity of the sample under 
a known electric field. Once the mobility is determined, the electric field necessary 
to achieve a given velocity can be stated beforehand. 
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Fig. 3.5: SiO2 spheres of 500 nm of diameter fall obeying the Stokes law. The 
sedimentation is faster (left) as the pH values move away from the PZC when an electric 
field is applied and slower (right) if it is inverted. The dotted lines are the data fits and 
their slopes give the velocities. 

Several experiments according to what has been explained were performed and 
the mobility values obtained varied from -2 to -8 µm cm/V s in agreement with the 
range of values given by an independent study of the electrophoretic mobility in a 
Delfa Coulter 440. As moving away from the PZC increases the particle’s charge, 
variations of the pH must involve changes in the mobility values. The colloidal 
suspensions of these experiments consisted of silica spheres in double-distilled 
water (with no added salt) in which the solid content was 0.5 vol.-%. The cell 
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where electrophoresis was performed (Fig. 3.4) consisted of a cylindrical tube (2 
cm of diameter) of methyl acrylate fixed to the basis where the opal should settle, 
obtained from a standard silicon wafer sputtered with titanium (with less than 1 
Armstrong of roughness and thick enough to assure a good conductivity). One of 
the main problems when dealing with these experiments was the electrolysis 
phenomenon, which has been reported elsewhere.34 The solution adopted was the 
use of platinum for the upper electrodes because they have the highest Redox 
potential. Then, both electrodes were connected to a dc source used to obtain an 
electrical field. With this method compacts with thickness ranging between a few 
monolayers and 1 mm (depending on the amount of silica spheres used) with 
surfaces about 3.1 cm2 are produced. To measure the sedimentation velocity, the 
height descended by the colloid/clear water interface (setting 0 mm the initial 
height) was monitored with time. The velocity results from experimental fit of 
height vs. time. 

The response of SiO2 spheres was studied. An electric field was applied to 
colloidal suspensions of SiO2 spheres in which the original pH was varied by 
adding HCl to change the surface charge. The PZC of silica occurs at a pH=2.5, so 
pHs of the suspensions were chosen to be different enough without being close to 
the PZC: pH=3.8 and the reference value (no acid added) of pH=8.4. The results of 
the sedimentation velocities for silica spheres of 500 nm of diameter are 
graphically compared with the theoretical Stokes fall of a sample without electric 
field in the left panel of Fig. 3.5. It can be clearly seen that, as one moves away 
from the PZC, the mobility increases and so does µE. 

pH E(V/m) µ (µm cm/V s) U (mm/h) 

3.8 -33 -2.0 2.90 

8.4 -33 -3.9 5.20 

8.4 0.5 -3.9 0.35 

Table 3-1: Mobilities and velocities from SiO2 spheres of 500 nm of diameter at different 
pH and electric fields. 

In order to study the effects of velocity variations on silica particle ordering, 
two more sedimentations were prepared from the same sample. One of them was 
left to fall without electric field, whereas in the other one the electrodes were 
inverted to decrease the sedimentation velocity by opposing the electric field to 
gravity. Since the mobility can be extracted from the previous experiment (µ= -3.9 
µm cm/V s), as explained, the electric field needed to get the desired velocity 
(U=0.4 mm/hour) was calculated to be 0.5 V/m. The experimental value (U=0.35 
mm/hour, see right graph in Fig. 3.5 was close to it. In Table 3-1 the results from 
these experiments are numerically compared. 

Electronic and optical microscopy studies of all these samples were made and it 
was observed that the slowed sedimentation sample presented a better ordering 
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than the one settled without field, while the accelerated samples from the previous 
experiment presented no order at all. Bragg diffraction was performed as well 
showing that the slowed opal presented well-defined Bragg peaks. 

To prove how useful this method could be, SiO2 spheres with a diameter of 870 
nm were used. The purpose was to obtain a well ordered array by decreasing the 
natural velocity of this colloid (no electric field applied). Fig. 3.6 a shows a 
cleaved edge SEM image of a naturally settled opal. A high velocity (1.54 
mm/hour) is obtained for these large spheres and no long-range order is achieved 
as shown by the Fourier transformed image in the insets of Fig. 3.6. An equal 
colloid of the same spheres was prepared and settled under a slowing electric field, 
in which the velocity was kept close to 0.35 mm/hour. Fig. 3.6 a and b show that 
only very small domains appear when electrophoretic technique is not applied 
while large domains are obtained when sedimentation is performed under an 
appropriate electric field. To check this, Fourier transforms from both images were 
performed; the opal settled under electric field presents a clear pattern that is not 
present in the natural settled opal. 

 
Fig. 3.6: SEM images of a cleaved edge of 870 nm of diameter SiO2 spheres opal settled a) 
without and b) with an electric field. Insets show the images Fourier transform to make 
clearer the presence or not of periodicity in the samples. Images taken by H. Míguez. 

A sample of quite small (205 nm of diameter) SiO2 spheres, which would take 
one month to be settled, was prepared for sedimentation. It was accelerated from 
0.09 mm/hour (natural velocity) to 0.35 mm/hour in order to complete the 
sedimentation in less than two weeks without decreasing the optical quality. 

3.6 Vertical deposition of thin film opals. 

In 1999 Jiang et al.37 published a novel method to fabricate thin film solid 
artificial opals. The procedure was based on the results obtained by Nagayama and 
collaborators.38 This method, known as vertical deposition, is becoming widely 
used and has taken over from other methods due to its multiple advantages: 

o Good control over sample thickness. 

o Samples with sizes of several square centimeters can be fabricated in one 
or two days. 
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o Samples are attached to a substrate (usually a glass or silicon slide) and its 
manipulation becomes easier. 

o With the same amount of material used to obtain an opal by natural 
sedimentation several thin film opals can be fabricated. 

o Since opals are much thinner, the number of defects when transmission 
optical measurements are performed is much lower. 

o Infiltration of air voids with guest materials is easier in thin film opals 
since material must penetrate just a few layers. 

 
Fig. 3.7: a) Experimental setup to fabricate a thin film opal by means of the vertical 
deposition method. b) Meniscus formed in the interface between the substrate and the 
alcosol where the silica spheres are aggregated to form an fcc array. 

 
Fig. 3.8: Thin film opal made of 660 nm silica spheres. The “level curves” denote the 
boundary between different number of layers. Scale bar is 250 microns. 
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In the experimental setup (Fig. 3.7 a), a clean substrate is placed into a vial 
containing a silica alcosol. The alcosol is a suspension containing a volume 
fraction ranging from 0.1% to 5% of silica spheres in ethanol. The resulting sample 
thickness depends on the volume fraction. The system is then left at room 
temperature. As was explained in section 3.2, in order to crystallize, the spheres 
must reach a critical volume fraction. In this case capillary forces cause the spheres 
crystallization in the meniscus formed by the alcosol and the substrate (Fig. 3.7 b). 
To avoid a too fast aggregation rate, high initial volume fractions and evaporation 
rates must be avoided. The {111} planes are parallel to the substrate. 

As presented, this method based on convection forces has a drawback: once 
again large spheres fail to crystallize. The reason is that for this method to work, 
spheres must be present at the suspension surface. In the case of silica spheres with 
diameters smaller than 500 nm, the evaporation rate is faster than sedimentation 
and spheres are always present in the meniscus. However, for larger spheres 
sedimentation velocity is higher. If temperature is increased the evaporation rate is 
boosted as well, but unfortunately spheres aggregation is too fast and an 
amorphous solid is obtained. A solution to this problem was presented by Vlasov et 
al.39 Their proposal consisted in placing the vial in a temperature gradient. On the 
one hand the temperature at the surface of the suspension was low enough to obtain 
a valid evaporation rate. On the other hand, the temperature gradient causes 
convection forces and a continuous flow of spheres is directed towards the surface. 
Unfortunately their description was rather incomplete and the growing conditions 
have proven to be dependant on many parameters such as spheres initial volume 
fraction, the angle formed by the substrate on the vial and the kind of material the 
substrate is made of. Currently, there is still a need for a more detailed description 
of a reproducible procedure. Here, a route that has been successful to fabricate thin 
opals from silica spheres of 660 nm of diameter is described. Domains sizes are 
enough to obtain good spectra from areas as large as 330 x 330 µm2. The procedure 
must, however, be improved further to control the number of layers and 
homogeneity. Nevertheless the samples produced were ideal for use in the 
experiments presented in Chapter 5. 

The following recipe provides good results for silica spheres of 660 nm of 
diameter synthesized by means of the Stöber-Fink-Bohn40 method. Although it has 
been said37 that a coating of 3-(trimethoxysilyl)propyl methacrylate (TPM)41 is not 
a key parameter in film deposition of smaller spheres it is our experience that order 
in samples is increased when TPM is used. The spheres are then dispersed in 
ethanol (0.8 % vol.). Si substrates (6 cm x 2 cm) are carefully cleaned in a solution 
of HF (1%) and afterwards another of H2SO4/H2O2 (2:1 vol). It must be noticed 
that conditions for glass slides would be significantly different. Finally the 
substrates are rinsed in doubly distilled water, acetone and ethanol. The dispersion 
of silica spheres and the substrates are placed in a clean scintillation vial (30 ml) 
within a furnace at 36 ºC and covered with a beaker. It is important not to set the 
substrates completely vertical (tilted 30 to 40 degrees respect to the vertical 
direction) or too thin opals (1-3 layers) are obtained. Fig. 3.8 shows an optical 
microscope image taken with a 4X objective from one of the samples fabricated 
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with this method. The number of layers usually varies from 15 to 20 layers. In 
some occasions the number of layers can be counted very easily since “level 
curves” denote the boundary between different layers. 

3.7 Summary. 

In summary, a qualitative description of the parameters that influence 
crystallization and several methods to obtain artificial opals and study their growth 
have been reported. 

3.7.1 Conclusions. 

o Silica spheres in water tend to form crystalline sediments with a volume 
fraction close to 55%. Conversely, hard silica spheres crystallize at 
significantly higher volume fractions.16 

o The crystalline quality of colloidal suspensions decreases with sphere 
diameter. 

o Electrophoretically assisted sedimentation has proved to be a good 
technique to obtain solid opaline sediments made of silica spheres as large 
as 870 nm. In these experiments sedimentation velocity is reduced without 
affecting their diffusion coefficients. 

o Sedimentation velocity could be increased as well to accelerate the 
fabrication of opals made of small silica spheres (200 to 300 nm). 

o A recipe has been developed to fabricate thin film silica opals on silicon 
substrate made of spheres with a diameter close to 660 nm. 

3.7.2 Future research. 

o The effects of ethylene-glycol in the natural sedimentation method must be 
studied in more detail. 

o The electrophoretic concept could be used to control the presence of small 
spheres in sedimentation when monodispersity is not granted. With 
appropriate electric fields small spheres could be directed towards the 
upper electrode while larger spheres form a sediment at the bottom. 

o A reproducible and reliable method to fabricate uniform and thickness 
controlled thin film opals made of silica spheres with diameters larger than 
500 nm is still needed. 
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4.1 Introduction. 

Opals are used as templates to fabricate other topographies which may present 
different optical properties. Obviously it is necessary to have an accurate 
knowledge of the initial structure to understand the final photonic crystal optical 
behavior. In Chapter 3 some of the methods to fabricate artificial opals were 
presented. In order to characterize them, Scanning Electron Microscopy (SEM) 
allowed obtaining some information about the structural properties of the samples. 
Unfortunately this technique is destructive and the amount of information extracted 
does not provide a rich enough description of the opal properties. Lattice parameter 
and refractive index (RI) are two of these characteristics for which SEM does not 
provide as accurate information. In the present chapter techniques based on optical 
characterization will be introduced to complete the photonic crystal description. 

As a structure where the refractive index is modulated, the optical response of 
an opal varies depending on the direction studied. Even though RI contrast is rather 
low for silica opals (1.425:1.000), the anisotropy effects, especially at high 
energies, make the data interpretation a non trivial issue. From sections 4.2 to 4.4 
some of the valid and more widespread approximations to understand the optical 
behavior of the structures will be presented along with their validity limits. The 
remaining sections will show actual cases of opals that have been characterized 
thanks to those theoretical approaches. 

Although optical experiments shown in this thesis correspond to artificial opals 
made of silica spheres, techniques described in this chapter can be applied to other 
similar systems. As an example, optical properties of opals made of polystyrene 
(PS) or poly(methyl methacrylate) (PMMA) spheres are analogous since their 
refractive indexes are relatively close to that of silica. 

4.2 Artificial opal photonic band structure. 

An artificial opal made of silica spheres does not present a complete photonic 
band gap (cPBG).1 As explained in Chapter 1, to obtain a cPBG an fcc structure of 
spheres embedded in a high dielectric constant material should be made so that the 
RI ratio between the embedding material and that of the spheres were above 2.8. 
For this reason opals are usually regarded as templates to load with a high RI 
material. They are used as an intermediate step to obtain a structure with a cPBG. 

Fig. 4.1 shows the photonic band structure of the twenty lowest energy bands 
for an fcc structure made of spheres with a RI of 1.425* in air, calculated with the 
plane wave method (PWM).2 The diagram shown in this band scheme shows the 
most relevant directions. As mentioned above there is no cPBG. However, for 
some directions and energies there are regions not covered by any band, these are 
the so called pseudogaps. These pseudogaps do not allow the propagation of light 

                                                   
* This value was the average refractive index for as-synthesized silica spheres (Chapter 2). 
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through the opal and cause transmission dips or reflectance peaks in the sample 
spectra. Studying the experimental behavior of the pseudogaps helps to 
characterize the artificial opal and gives information about the optically relevant 
parameters (i.e. structure, topography, lattice parameter, refractive index, etc). 
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Fig. 4.1: First 20 bands of the photonic band structure for an fcc structure made of spheres 
with a refractive index of 1.425 in air. 
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Fig. 4.2: Bands 1 to 4 for different directions in terms of the internal angle compared to  
Bragg’s law (yellow circles). Bands are extracted from Fig. 4.1. 

4.3 Bragg’s law. 

Being able to experimentally study all the directions would provide a lot of 
useful information about the photonic crystal. However, opals are usually grown in 
the (111) direction3 and, therefore, only the optical properties around the ΓL 
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direction can be probed. The first pseudogap in this direction will cause a 
diffraction peak centered at a/λ=0.657 (see Fig. 4.1). By introducing the 
wavelength of this diffraction peak in this relationship, the lattice parameter can be 
deduced. In the case of touching spheres in an opal a=√2d and therefore the 
diameter can be calculated as well: d=0.465·λ. 

If the sample is tilted, the diffraction peak wavelength will change. Depending 
on the orientation of the sample, the Brillouin zone (BZ) could be scanned from the 
L point towards the U, K or the W points (see Appendix I). Unfortunately, artificial 
opals usually present domains showing a mosaic spread effect and it is very 
difficult to know the direction under study while tilting the sample. Nevertheless, 
this does not present an important inconvenience since the four lowest bands in the 
vicinity of the L point for an opal structure are identical irrespective of the 
direction along the surface of the BZ for an internal angular range of 0–34° and 
slightly departing from a common behavior only for higher angles. This can be 
observed in Fig. 4.2. 

The experimental results can be compared to the bands shown in Fig. 4.2, the 
impinging external angle is converted into the internal angle by means of the 
Snell’s law. This approach is relatively accurate at low energies but not completely 
strict since refractive index is not well defined in a photonic crystal. In reality 
refractive index depends on the direction and light frequency. For this reason, 
many authors prefer to present bands and data in terms of parallel wave-vector 
instead of internal angle because this value is conserved4 on refraction. 

Although direct comparison of experimental data and band structure gives the 
most accurate results, it is very useful to work with an analytical expression. In this 
sense a simple geometrical approach yields an equation that reproduces the 
behavior of the first pseudogap wavelength with varying angle. This is nothing but 
Bragg’s law and consists in regarding spheres as point scatterers forming planes. 
These planes scatter light and for certain directions and wavelengths these scattered 
waves are added up. The equation can be obtained in the same way it is obtained 
for X-rays but in this case it must be taken into account that the photonic crystal 
has a refractive index different to that of air. With some geometrical considerations 
along with the Snell law this expression is easily obtained:5 

[ ] ;)(sin2 2
1

2
extmc θεεφλ −=    

where φ is the distance between planes, εc and εm are the photonic crystal and 
surrounding medium dielectric constant respectively and θext is the external 
impinging angle with respect to the normal. In the case of the ΓL direction in an 
opal (fcc lattice) the distance between planes is φ=2a/√3 where a is the lattice 
parameter. The results given by Bragg’s law are shown as yellow circles in Fig. 
4.2. To obtain this data, the equation above is written in terms of the internal angle 
and εc is taken as the average dielectric constant of the spheres and the host 
dielectric while εm is air. Thus: 
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where f is the filling fraction of the spheres (ca. 0.74 for touching spheres) and εs 
and εh are the spheres (silica, 2.03) and host (air, 1.00) dielectric constants. 

As can be seen in Fig. 4.2 the results given by Bragg’s law are rather accurate 
for a bare opal although there is a slight tendency to underestimate the frequency at 
which the diffraction peak should be observed. Bragg’s law equation allows 
working with a very simple model to obtain some information about the photonic 
crystal. However this information is limited to the wavelength of the first 
pseudogap and other characteristics such as the peak width remain unknown. Also, 
and due to symmetry reasons, some of the wave-vectors that lie on the Brillouin 
surface are not diffracted however (see for example that there is no pseudogap for 
the ΓX direction at low frequencies, see Fig. 4.1). This fact is not reflected by 
Bragg’s law and more complex approaches are needed to reproduce this behavior. 
Finally, the results obtained with Bragg’s law will strongly depend on the dielectric 
constant we choose for the photonic crystal. Here the average dielectric constant 
was used but this choice is not always valid and this is not a trivial matter as will be 
shown in the next section. 

4.4 Effective dielectric constant. 

As explained in Chapter 1, the RI is not a well defined parameter for a photonic 
crystal.6 Its value can be extracted from the slope of the bands and it may 
drastically differ for each frequency and propagation direction. However, the RI is 
relatively well defined at low energies and some calculations can be done assuming 
a constant value. An example of one of these approximations was explained in the 
previous section for Bragg’s law. There, the effective dielectric constant (εeff) of a 
bare opal was taken as the average value of the materials forming the lattice. The 
questions are: how good this approximation is and, is it always valid? Is the 
average dielectric constant the best choice? 

An accurate way to know the effective dielectric constant for a photonic crystal 
at low energies is to calculate the band structure and obtain it from the slope of the 
bands at low energies (k à 0). It must be noticed that even for energies as low as 
those around the first pseudogap the dielectric constant begins to differ from the 
value obtained at k à 0 since bands begin to warp in the proximity of the Brillouin 
surface. 

Although calculation methods are becoming faster and faster it is still very 
convenient to have an analytic expression to calculate εeff. The average dielectric 
constant ignores the vector nature of light and is the simplest and fastest way but 
not the only one. Another widespread approximation that has proven to give better 
results for some specific cases is that developed by Maxwell-Garnett7 for small, 
isolated and diluted spheres embedded in a medium: 
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The values for εeff obtained with these three methods (average, Maxwell-
Garnett and band calculations with the plane wave method) are shown in Fig. 4.3. 
The graph on the left shows the values obtained for an opal made of dielectric 
spheres in air, central plot shows an opal of silica spheres in a dielectric while the 
graph on the right shows an inverse opal of air spheres in a host dielectric. As can 
be observed, in both cases, the three methods give similar values when the 
materials forming the photonic crystals have low dielectric constants. However as 
the dielectric constant contrast is increased, the values given by the analytical 
expressions begin to substantially differ from the k à 0 value. At sight of these 
plots, it can be seen that the average dielectric constant will give more accurate 
results for direct opals while the Maxwell-Garnett expression is definitively better 
for low RI spheres in a dielectric. This is in accordance with previous works.8 
Nevertheless, for high dielectric constant materials the best option is to calculate 
εeff from the band structure. 
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Fig. 4.3: Effective dielectric constant as a function of the sphere or host material dielectric 
constant obtained from three different methods: average (solid line), Maxwell-Garnett 
(dashed line) and band structure (triangles) with the plane wave method. The values are 
given for an fcc structure of dielectric spheres in air (left), silica spheres in a dielectric 
(center) and an inverse opal of air spheres in a dielectric host (right). The filling fraction is 
0.74. 

Fig. 4.4 shows the normalized frequency at which the center of the first 
pseudogap in the ΓL direction should be located for a direct opal of dielectric 
spheres in air (solid lines) and air spheres in a host dielectric (dashed lines). The 
results from band structure calculations with the plane wave method are compared 
to those obtained with Bragg’s law and the average dielectric constant. Once again 
it can be observed that Bragg’s law is a good approximation for low dielectric 
constant contrasts but insufficient when contrast is increased. Table 4-1 shows 
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some useful data for different configurations of direct and inverse opals, including 
the first pseudogap frequency in the ΓL direction and values of the dielectric 
constant depending on the calculation method. The filling fraction is always 74% 
for the spheres material (touching spheres). 
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Fig. 4.4: Normalized frequency position for the first pseudogap of an fcc lattice of 
dielectric spheres in air (solid line) and air spheres in a dielectric host (dashed line). The 
results obtained from the band structure (circles) are compared to those calculated from 
Bragg’s law (without circles) with an average dielectric constant as the εeff. The filling 
fraction for all cases is 0.74. 

 

Material εs : εh ωa/2πc εkà0 εM-G <ε> 

Silica Opal 2.03 : 1.00 0.657 1.73 1.71 1.77 

Latex Opal 2.53 : 1.00 0.600 2.07 2.00 2.13 

PMMA Opal 2.25 : 1.00 0.635 1.88 1.84 1.93 

Silica IO 1.00 : 2.03 0.777 1.23 1.23 1.27 

Silicon IO 1.00 : 11.9 0.475 3.01 3.13 3.83 

Germanium IO 1.00 : 16.0 0.423 3.69 3.92 4.90 

Table 4-1: Some useful data for different direct and inverse opal (IO) configurations. 
Filling fraction is always 74% for the material forming the spheres Third column shows 
the normalized frequency of the first pseudogap in the ΓL direction. 

4.5 Colloidal crystal characterization. 

In Chapter 3, the formation of a colloidal crystal of silica spheres in water was 
studied. It was shown that the volume fraction of these structures is around 54%. 
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However, the volume fractions for each sample were deduced by means of optical 
measurements, specifically, studying the position of the first order diffraction peak 
in the ΓL direction. For this purpose Bragg’s law should be expressed in terms of 
the volume fraction and the sphere diameter (known beforehand). The volume 
fraction for an fcc structure is: 
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Now we substitute the lattice parameter in Bragg’s equation with the previous 
expression: 
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This equation is expected to give reasonably accurate results for low dielectric 
constant values and contrasts. These conditions are fulfilled in our case since 
εs=2.031 (silica spheres) and εh=1.777 (water). Fig. 4.5 shows an example of 
reflectance spectra at different angles for a colloidal crystal. The volume fraction is 
then extrapolated from the bottom plot which represents the relationship between 
volume fraction and the wavelength. 
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Fig. 4.5: Bragg’s diffraction wavelength (top graph) of a colloidal crystal of 295 nm of 
diameter silica spheres in water is used to determine the volume fraction of the structure 
(bottom graph). For this sample the volume fraction of silica is 49.8%. 

Apart from the volume fraction there is more information that can be extracted 
from the diffraction peaks. Indeed, the quality of the sample is related to the 
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breadth of the diffraction peak; a peak broader than what theory predicts is an 
effect attributed to the disorder within the sample. Bragg’s equation presented in 
the previous section does not give any information about the peak width. In this 
sense the scalar wave approximation (SWA) gives some results discussed 
elsewhere.9 Fig. 4.6 shows the gap to midgap ratio (first pseudogap in the ΓL 
direction) as a function of the volume fraction for fcc lattices made of silica spheres 
in water. The data has been calculated with the PWM.2 
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Fig. 4.6: First pseudogap relative width in the ΓL direction for an fcc structure of silica 
spheres (n=1.425) in water (n=1.333). 
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Fig. 4.7: Experimental relative-width of the Bragg peak of colloidal crystals obtained from 
silica spheres in water compared with the theoretical expectations of the relative-width of 
the first pseudogap in the ΓL direction. Each sample volume fraction is obtained from 
Chapter 3 and its theoretical relative-width from Fig. 4.6. Dashed line is just an eye-guide. 
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The experimental diffraction peak relative-width for each of the studied 
samples is compared with their theoretical relative-width values* in Fig. 4.7. It can 
be clearly observed that experimental peak width broadens as sphere diameter 
increases. This corroborates that the ordering of samples grown by sedimentation 
tends to worsen for larger spheres. 

4.6 Thin film opal optical properties. 

Thin film opals10 present some special characteristics in their optical properties 
which cannot be observed on thicker opals. The interference of light reflected by 
the top and bottom surfaces causes the well known Fabry-Perot interferences.11 As 
a matter of fact these interferences are always present in opals. However, opals 
grown by other techniques such as natural sedimentation or electrophoresis are too 
thick and fringes form a continuous background. In the case of thin film opals these 
oscillations can be clearly observed. Fig. 4.8 shows the band structure (left) in the 
ΓL direction compared with the experimental spectrum of a thin film opal made of 
silica spheres and grown on a silicon substrate (center). The first pseudogap 
position matches the frequency at which the diffraction peak in the experimental 
spectrum appears. The Fabry-Perot fringes can be seen at both sides of the Bragg 
peak. 
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Fig. 4.8: Photonic band diagram in the ΓL direction for an opal of silica spheres in air 
(left). Experimental reflectance spectrum normal to the (111) planes for a 17 layers thin 
film opal of 676 nm diameter silica spheres (center). Theoretical reflectance spectrum 
normal to the (111) planes for the same crystal calculated by the KKR method (right). 

                                                   
* Calculated as the full width at half maximum divided by the center of the peak spectral 
position. 
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Dashed lines are eye-guides to show the frequency position agreement between 
experimental and theoretical results. 

Theoretical calculations with the KKR12 method were performed to simulate a 
17 layer opal of silica spheres in air on a silicon substrate. The result is shown on 
the right plot of Fig. 4.8 and shows an excellent agreement with the experimental 
spectrum. The fringes positions match in both cases, especially at the lowest 
energies. The mismatch at higher energies is probably due to a little difference 
between the RI used for calculation and the real one. Also the diffuse scattering 
effects due to defects present in the sample are responsible of a reflectance 
intensity of the Bragg peak lower than expected by the KKR calculations: 77% and 
87% in the experimental and theoretical spectra respectively. 
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Fig. 4.9: The thickness of the sample can be calculated from the maxima of reflectance of 
the Fabry-Perot fringes (m is the resonance order). The inset shows the actual reflectance 
spectrum for energies below the first pseudogap. 

The thickness of the sample and therefore the number of layers is an interesting 
parameter to consider when studying the optical properties of the thin film opal. 
The experimental spectra could be compared with the theoretical data to know the 
number of layers but calculating it from an analytical expression would be more 
appropriate for the sake of simplicity. From the spectral separation of the Fabry-
Perot fringes the thickness of the sample can be calculated. Local reflectance 
maxima due to the Fabry-Perot resonances will appear at (for an opal on a substrate 
with a RI higher than that of the opal11): 
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where m is the resonance order and h is the sample thickness. Plotting the inverse 
wavelength as a function of the resonance order (that must be an integer although 
its exact value is unknown), a linear relation is obtained. From the slope of it the 
thickness of the sample can be calculated. Fig. 4.9 shows an example of how this 
procedure is followed. In this case the opal has a thickness of 9.698 µm which 
corresponds to a 17 layers thin film opal of 676 nm diameter silica spheres. In this 
case the effective dielectric constant used in calculations is 1.73, which 
corresponds to the dielectric constant obtained at k à 0 from the band structure 
(see Table 4-1). 
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Fig. 4.10: Reflectance spectra from a thin film opal with an increasing number of layers 
(from 2 to 11). The opal is made of silica spheres with a diameter of 507 nm on a glass 
substrate. The ordinate axis (reflectance) for every graph ranges from 0 to 50%. 

The control that thin film opals growth methods allow on the number of layers 
makes this kind of crystals suitable to study the evolution of the photonic 
properties. The theory of photonic band structures has been developed assuming 
that crystals were infinite; of course this is just an approximation and structures 
with a large enough number of layers can be taken as infinite crystals. An 
important question is how many layers an opal should have to be considered as 
infinite. Bertone et al.9 tried to answer this question with some theoretical 
considerations and experimental results extracted from optical density spectra of 
thin film silica opals. Their results showed that a low number of layers (about 13 
for silica spheres in air) should be enough to have a constant Bragg peak width and 
intensity. Experimental results published by Galisteo-López et al.13 for thin film 
opals made of PS spheres have shown that for a real convergence the number of 
layers should be increased up to ca. 35. Fig. 4.10 shows the reflectance spectra of 
thin film opals made of silica spheres of 507 nm with increasing number of layers 
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(from 2 to 11). As can be observed, increasing the number of layers boosts the 
intensity and narrows Bragg peaks while the spectral distance between Fabry-Perot 
fringes diminishes. It is worthy to notice that at 11 layers the Bragg peak 
reflectance still increases and its breadth decreases. However, the high energy 
diffraction peaks centered on 1.25 (normalized frequency) remain constant once 
the opal is 8-9 layers thick. 

Finally, thin film opals allow the study of the hexagonal diffraction patterns 
due to the light diffraction by the first layer of spheres. Actually, this pattern is the 
Fourier transform of the crystal surface. Characterizing the behavior of these spots 
in terms of angular dependence makes possible to infer the size of spheres forming 
the lattice.14 This method is quite advantageous since it is non-destructive and does 
not depend on the effective dielectric constant within the photonic crystal. The 
diffraction pattern has been successfully used as well as a method to orient the 
sample since its Fourier-transform gives the arrangement of the spheres in the real 
space.13 The only disadvantage of this method is that light wavelength used to 
observe the diffraction pattern must accomplish that λ0 < nd cos(30) where n is the 
embedding RI (usually air) and d is the sphere diameter. Fig. 4.11 shows the six 
diffraction spots caused by a He-Ne laser impinging on a sample made of 780 nm 
spheres. 

 
Fig. 4.11: Diffraction spots caused by the {111} planes of an opal made of 780 nm spheres 
when an He-Ne laser hits the thin film opal. Several diffraction orders can be observed 
around the zero order spot in the center of the sample. 

4.7 Opal made of silica spheres with a metallic core. 

The use of composite, nanostructured materials is acquiring a great interest 
both from a fundamental point of view and for an increasing number of potential 
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practical applications. The incorporation of several components with markedly 
different properties opens up a whole range of possibilities that cannot be achieved 
with conventional single-component systems. Within the broad range of 
nanoparticle compositions currently under study, noble metals have received a 
special interest because of the coupled oscillation of surface free electrons when 
interacting with an external electromagnetic wave of a certain wavelength, which is 
termed surface plasmon.15 The frequency of the plasmon resonance mainly depends 
on the metal nature, the size and shape of the nanoparticle, and the surrounding 
medium nature.16,17 

It has been predicted that fcc structures made of metallic spheres (coated or not 
with a dielectric layer) could lead to important improvements in optical features 
over those made of dielectric particles.18,19 Photonic crystals comprising metals in 
their composition have been prepared previously, either by infiltration of 
nanoparticles,20,21 electroless deposition,22 or electrochemical deposition.23 
Preliminary results were also recently shown on the use of gold nanoshells as units 
for opal formation.24 All these methods end up with a system in which bulk-like 
gold is obtained, since there is direct physical contact between neighboring units. 

 
Fig. 4.12: TEM micrograph showing the core-shell morphology of the composite colloid 
spheres used for opal formation. Sphere diameter is 225 nm and gold nuclei are 15 nm ca. 
(Picture obtained by J. B. Rodríguez from the CACTI of Vigo University). 

In this section the optical properties of a novel system that joins together the 
optical properties of metal nanoparticles and photonic crystals are presented. The 
incorporation of metal nanoparticles within colloidal crystalline arrangements is 
made through the synthesis of composite, core-shell colloid spheres comprising a 
metallic nanoparticle as the core and amorphous silica as the shell.25* On the one 

                                                   

* Samples synthesized by V. Salgueiriño-Maceiras and L. Liz-Marzán at Universidade de 
Vigo. 
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hand, the size of the core is uniform enough to display a well-defined plasmon 
band. On the other hand, the thickness of the shell is large enough to enable the 
formation of a crystalline arrangement with a suitable lattice constant to yield 
photonic bandgap effects in the visible. After the synthesis of such composite 
spheres, synthetic opals are obtained by means of the simple natural sedimentation 
method, and the robustness and mechanical stability of the crystals is enhanced 
through a sintering process. Since metal cores are far apart from each other, the 
properties of single nanoparticles are fully preserved in the opal. 

Fig. 4.12 shows representative transmission electron micrographs of the core-
shell particles used for this study, where the monodispersity, both in the core size 
and in the total diameter can be easily observed. 

4.7.1 Reflectance and transmission spectra. 

The study of the optical properties is described, not only for dry opals, but also 
after infiltration with liquids of varying composition (which implies varying 
refractive index). The purpose of such an approach was investigating the possible 
coupling between plasmon absorption and Bragg reflection. Therefore, an optical 
study of the opals was performed through measurements of both transmittance and 
reflectance. In order to cover a range that includes the refractive index of silica, 
mixtures of water (n=1.333) and glycerol (n=1.475) were used. The results are 
shown in Fig. 4.13 and Fig. 4.14 for reflectance and transmittance, respectively. 

In principle, two independent phenomena are expected to govern the optical 
properties of these composite systems. On the one hand, the plasmon resonance 
associated with the Au nanoparticle cores embedded in a medium with the 
refractive index of silica (ca. 1.46). For these systems, the band is expected to be 
around 525 nm23 and it must be clearly observable, since their concentration is 
relatively high, as compared with standard dispersions.* On the other hand, we 
expect Bragg reflection arising from the regular arrangement of the spheres in an 
fcc lattice. The surface plasmon resonance is mainly an absorbance when the 
nanoparticle concentration is low enough and hardly contributes to reflectance for 
interparticle separations larger than 50 nm.26 For this reason plasmon absorption is 
expected to be better observed during transmittance experiments. 

The reflectance spectra shown in Fig. 4.13 are basically identical to what 
would be expected for opals made of 225 nm pure silica spheres, and no sign of the 
gold cores is found. The Bragg peak spectral positions can be fitted with the 
equation given in section 4.3. The 15 nm Au cores have not been included in the 
calculation, since they occupy less than 0.1% of each particle, and therefore their 
contribution to diffraction should be negligible. The specular reflectance spectra of 
Fig. 4.13 simply show a red-shift of the maximum, due to an increase of the opal 
interstices refractive index. The progressive decrease of intensity and relative-
width are a consequence of the optical contrast diminution between the spheres and 

                                                   

* Simple calculations performed assuming a perfect fcc packing (filling fraction equal to 
74%) yield an estimate for the gold concentration in the sintered opals of ca.0.03 mol L-1. 
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the background. The match point would be placed at an intermediate composition 
between 75% and 100% of glycerol, but closer to pure glycerol. This shows again 
that the presence of the metal cores does not visibly alter the diffraction properties 
of the opals. 
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Fig. 4.13: Specular reflectance spectra in different media (air, water and water-glycerol 
mixtures) for sintered opals made of Au@SiO2 particles with 15 nm core diameter and 225 
nm total diameter. The corresponding void refractive indexes are given. 
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Fig. 4.14: Transmittance spectra in different media (air, water and water-glycerol 
mixtures) for sintered opals made of Au@SiO2 particles with 15 nm core diameter and 225 
nm total diameter. The corresponding void refractive indexes are given. 
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A richer description of the optical behavior is found in the transmittance 
spectra, where both the surface plasmon resonance and the Bragg diffraction are 
observed. Several features should be commented from the spectra of Fig. 4.14. 
With respect to the Bragg peaks, their positions basically coincide with those 
measured in reflectance, though for the samples with a low background refractive 
index the peaks are close to the lower wavelength detection limit of the instrument, 
and therefore appear noisy. It is also clear that the intensity of the Bragg peaks 
decreases when approaching the refractive index matching with silica, exactly as 
was observed in the reflectance spectra. 

Regarding the plasmon band, invariance in its position can be seen for all the 
infiltrated samples. The bands are consistently centered at 523 nm, which agrees 
with the predictions for non-interacting nanoparticles dispersed in silica shown for 
thin films.27 The silica shells are sufficiently thick, that gold cores do not “feel” the 
solvent anymore. However, the scattering gets reduced when the index matching 
point is approached, and therefore the global intensity of the spectra (including the 
plasmon band) decreases. The only sample that does not stick to this behavior is 
the dry, non-infiltrated opal, in which the plasmon band is noticeably red-shifted 
with respect to all the others (543 nm). Also, the transmittance is drastically 
reduced, which can be again attributed to a much stronger scattering, since the 
contrast between silica spheres and voids is also much larger than in all the 
infiltrated samples. 
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Fig. 4.15: Transmittance spectra in air (circles) and water (triangles) for opals (solid 
symbols) and disordered packings (open symbols) of Au@SiO2 particles. 

A further experiment was carried out to test the influence of order on the 
optical properties. To this end, a piece of the sintered opal was ground, so as to 
destroy the crystalline structure, and the transmittance was measured, both for the 
sample in air and after infiltration with water. The spectra obtained are shown in 
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Fig. 4.15, where spectra for the corresponding ordered samples are included for 
comparison. As expected, the strong scattering from the disordered sample in air 
renders the gold surface plasmon band hardly visible. In water, there is still a 
diffuse scattering contribution, but the plasmon band is clearly observed. In the 
case of the ordered samples, scattering is coherent (diffraction) and the effect on 
the plasmon band is only observed as a red-shift as explained above. 

4.8 Summary. 

4.8.1 Conclussions. 

o Spectral position and width of the Bragg diffraction from the {111} planes 
in opals give information about lattice parameter, filling fraction, effective 
dielectric constant and crystal quality. 

o Bragg’s law is a good approximation for a first study of the pseudogap 
behavior of an opal around the ΓL direction when refractive indexes and 
their contrast are not high. 

o Both the average and the Maxwell-Garnett equation give an accurate value 
for the effective dielectric constant when materials composing the opal 
have a low refractive index (<2.0). For higher refractive indexes the 
effective dielectric constant must be extracted from other methods such as 
a Plane Wave expansion. 

o The increasing width of Bragg peaks with sphere diameter points out that 
the quality of colloidal crystals of silica spheres in water gets worse for 
larger spheres. 

o Thin film opals number of layers can be calculated studying the Fabry-
Perot fringes. 

o Thin film opals allow the study of optical phenomena that cannot be 
observed in opals grown by other methods (evolution of optical properties 
with number of layers, diffraction pattern, Fabry-Perot fringes…) 

o The optical properties of the opals made of silica spheres with a gold core 
are determined both by the Bragg diffraction inherent to the ordered 
structure, and by the surface plasmon absorption of the metal cores. 

o Plasmon absorption band due to gold cores can be observed with 
transmission measurements while reflectance spectra only show the Bragg 
diffraction peaks. 

o The position of the plasmon band is red-shifted in the dry opal, as 
compared to the isolated particles and to infiltrated opals, which seems to 
be due to a coupling with scattering. 
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4.8.2 Future research. 

o Further research is needed to explain the red-shift of the plasmon 
absorption band in dry opals and confirm its relationship with scattering 
effects. 

o Spheres with larger metallic cores must be synthesized and ordered in a fcc 
lattice to obtain a cPBG in the visible. 
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5.1 Introduction. 

As was explained in Chapter 1, the fabrication of crystals with a cPBG in the 
NIR or VIS has been probably the most-wanted achievement by the researchers in 
this field. Works related with the infiltration of materials within opals were usually 
concerned with completely loading the opals since these structures were afterwards 
inverted to obtain a cPBG. For this reason little attention has been paid to 
incomplete infiltrations. However there is an increasing number of publications 
showing that photonic crystals without a cPBG may present interesting effects with 
many potential applications. The anomalous band dispersion effects observed1 and 
predicted in 2D and 3D structures are a good example. Superprism effect (Fig. 5.1 
a), all angle negative refraction2 (Fig. 5.1 b), high group velocity dispersion3 or the 
improvement of non linear optics effects are beautiful consequences of what can 
happen when light couples with the appropriated bands. Thus, smart engineering 
on the band structure becomes an important discipline. 

 
Fig. 5.1: a) The superprism effect observed by Kosaka et al. shows how two photons with 
very similar and parallel input wave vectors can follow very different paths within the 
Photonic Crystal (from Ref. 1). b) An appropriate design of the band structure may give 
rise to All Angle Negative Refraction effects (from Ref. 2). 

 
Fig. 5.2: Inverse opals of a) silicon (ref. 4) and b) germanium (ref. 5). These structures 
satisfy all the requirements to present a cPBG in the NIR. 

In order to tailor the shape of a photonic band structure, a good choice of the 
lattice symmetry is important. Unfortunately, self assembly methods allow few 
variations since fcc structures of touching spheres are the most usual result. 
However, when it comes to band engineering, it must be taken into account that 
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photonic bands not only depend on the underlying lattice but on the primitive cell 
structure. So, accurate control of the materials composing an fcc crystal is a 
remaining tool for band engineering. The use of high refractive index 
semiconductors importantly affects band structure. Also, varying the topography 
would involve changes and therefore is, another tool to be considered. 

The potential of silicon and germanium as materials for photonic applications 
has been well stated since the appearance of two works published by A. Blanco4 
and by H. Míguez5 respectively (Fig. 5.2). For the first time they presented crystals 
(based on opals) accomplishing all the requirements to present a cPBG in the NIR. 
Apart from their high refractive indexes, both materials have a long established 
technological tradition. 

In this chapter a method to accurately control the synthesis of these 
semiconductors, amorphous silicon and germanium, within thin silica opals will be 
described. Growth of semiconductor mono-layers or even multiple layers 
combining air, silicon and germanium will be presented. By means of this method 
it will be possible to modify the photonic properties of the opals. Optical spectra in 
accordance to theoretical calculations will be provided to support the statements. 

To achieve the results presented here, thin silica opals were prepared by 
vertical deposition on silicon substrates. A reduced number of layers in these 
samples was not a problem since it has been shown that a low number of layers 
(>18) may be taken as an infinite crystal.6 The samples were made of silica spheres 
of 660 nm of diameter. Domains were large enough to obtain good spectra from 
areas as large as 330 x 330 µm2 (see Chapter 3). 

Once the experimental procedures are explained, theoretical calculations will 
be presented to prove that the photonic band structure of the opals may be 
manipulated by means of these techniques. 

5.2 Controlled growth of Silicon and Germanium by CVD. 

Both amorphous semiconductors were synthesized by chemical vapor 
deposition (CVD) performing slight modifications over already published 
methods.4,5 In this system, basically, the sample is placed in a cell where the 
precursor gas is condensed with liquid nitrogen. The precursor gases used in this 
work were disilane (Si2H6) for silicon and germane (GeH4) for germanium. The 
former gas is explosive in the presence of air and the latter is poisonous as well. 
For this reason the whole system is previously subjected to high vacuum (3x10-6 
Torr) to avoid the presence of air. Once the precursor gas is condensed, the cell is 
isolated and placed in a furnace at the selected decomposition temperature. 

5.2.1 Process optimization. 

Essentially, two parameters will govern the growth of the semiconductor, 
namely, the precursor gas pressure and the temperature of decomposition. A low 
pressure presents important advantages. Firstly, it is safer in case of gas leaks and 
secondly, the waste of precursor gas is reduced. Therefore the precursor gas 
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pressure was set at 150 Torr for all the experiments. Decomposition temperature 
plays a very important role in two aspects: growth velocity and the presence of 
undesired particles. The higher the temperature is, the faster the precursor gas will 
decompose. As we are interested in controlling the amount of semiconductor 
loaded in the opals, low growth rates are needed. It has also been observed that 
high temperatures induce the growth of undesired particles. Due to their high 
refractive indexes, these particles severely affect the optical measurements making 
the spectra rather difficult to interpret. In the case of silicon the precursor gas 
decomposition temperature selected was 375ºC while for germane it was set at 
270ºC. Lower temperatures resulted in very slow synthesis rates while higher ones 
allowed little degree of control. Indeed, as Fig. 5.3 a and b show, large spherical 
particles of silicon or tubular germanium wires grew on the sample surface. It is, 
however, noticeable the similarity existing between Fig 1b and the α-GeO2 
nanowires recently presented and studied by J-Q Hu et al.7 These samples contrast 
with the clean surfaces of the resulting composites (Fig. 5.3 c and d) at the 
optimized temperatures. 

 
Fig. 5.3: Top images show unwanted particles in a) silicon (450ºC) and b) germanium 
(350º). This ‘contamination’ is drastically reduced at lower temperatures for c) silicon 
(375ºC) and d) germanium (270ºC). Opals are made from silica spheres of 660 nm of 
diameter. All scale bars are 5 microns. 

5.2.2 Experimental results and optical data interpretation. 

For silicon and germanium, these being semiconductors with a very high 
refractive index, optical measurements will be the best method to keep track of the 
opals infiltration. Samples are oriented so that {111} planes are parallel to the 
surface of the substrate. Therefore, the wavelength at which the first pseudogap in 
the Γ-L direction is observed will provide the necessary information to know the 
amount of loaded semiconductor. 

Electron microscope images show that the growth of these semiconductors 
takes place in a layered manner.8 This fact has especial relevance when theoretical 
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calculations are performed. A very easy and widespread method to calculate the 
amount of material loaded in the opal relies on applying Bragg’s law. In this 
method it is assumed that the opal is fully loaded with a material with a dielectric 
constant equal to the average of air and semiconductor present in the pores. In 
other words, the effective dielectric constant in the pores is calculated as the 
average of the composing materials (air and semiconductor). However, this method 
is not very accurate for layered growths. Indeed, the effect of a sharp boundary 
between air and semiconductor on photons can not be neglected, especially when 
the semiconductor has a high refractive index. In this case it is much better to 
compare the experimental results to the photonic band structure obtained by 
theoretical calculations performed with a plane wave method that takes into 
account the real symmetry of the primitive cell.9 

To obtain the photonic band structure the relationship between the amount of 
layered material loaded in the crystal and its thickness must be calculated 
beforehand. Analytical expressions can be obtained for low infilling ratios but they 
get more and more complicated as this ratio is increased. A Montecarlo calculation 
for an fcc structure shows this relationship in Fig. 5.4. 
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Fig. 5.4: Semiconductor layer thickness dependence of filling fraction for an fcc. Layer 
thickness is relative to lattice parameter and shown as a percentage. The arrow points at 
the value where the {111} plane pores are closed. 

The width and position of the first stop band in the Γ-L direction were 
calculated for both semiconductors. The refractive index values used for SiO2, Si 
and Ge were: 1.43,10 3.8011 and 4.1011 respectively. On the other hand, to obtain the 
experimental spectra, light was collected at normal incidence with respect to the 
{111} planes. A 4X objective with a numerical aperture of 0.10 was used to focus 
and collect the light. 

Fig. 5.5 and Fig. 5.6 show the experimental data and theoretical calculations 
for silicon and germanium respectively. In these spectra we can observe the 
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diffraction peak caused by the first pseudogap, the Fabry-Perot fringes due to the 
finite thickness of the sample and other reflection peaks associated with various 
other photonic bands. Apart from the percentage of loaded semiconductor some 
other information can be deduced from the spectra. From the Fabry-Perot fringes 
thickness of the sample can be extracted. Thin opals were typically made of 14-16 
layers, having a final thickness of 13-15 microns. The right panel in both figures 
summarizes positions and peak widths of the first pseudogap extracted from 
reflectance spectra as in the left panels. For low semiconductor filling fraction full 
width at half maximum (FWHM) decreases with increasing infiltration and then 
increases again for further loading. The pseudogap almost closes for a 20 % of 
silicon in the pores and 15 % in the case of germanium. We shall refer to this 
percentage as index matching infilling value (IMIV). This is the result of matching 
the effective refractive index of the pore (air plus semiconductor) and the silica 
spheres.8 It is important to mention that the effective refractive index of the pore 
differs from the average value. The former can be extracted from Bragg’s law at 
the L point: neff=(√3/2)/(a/λ), and for IMIV a/λ is around 0.60 and neff≅1.44 (very 
close to that of silica spheres). The values obtained for an average refractive index 
will be higher (≅1.75). FWHM of the experimental Bragg diffraction peaks is 
compared with theoretical expectations in right panel of both figures. The 
agreement is fairly good. 
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Fig. 5.5: Left panels show the reflectance spectra of the samples loaded with different 
amounts of Si for opals of 660 nm diameter spheres. The right panel shows the centre (full 
circles) and edges (open circles) of the first pseudo-gap in the (111) direction as a function 
of germanium layer thickness along with the theoretical calculations (lines). Frequency 
units are normalized to the lattice parameter. 

Around the first pseudogap the wavelength involved is close to the lattice 
parameter for which reason the sample is viewed as a uniform medium and Fabry-
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Perot fringes show up. (The features of the fringes are determined by sample 
thickness and effective refractive index). This is much more so near IMIV, where 
any contrast in the system is washed out making the samples behave as a 
thoroughly homogeneous thin film. Here, the Bragg reflectance peak will be 
indistinguishable from the rest of the fringes. It is, however, interesting to notice 
that even at IMIV the sample crystalline nature can be probed by shorter 
wavelengths as seen at higher energies. Indeed, although the spectra show that the 
first pseudogap has almost disappeared, some structure related to the 5th to 9th 
bands can be observed. 
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Fig. 5.6: Left panels show the reflectance spectra of the samples loaded with different 
amounts of Ge for opals of 660 nm diameter spheres. The right panel shows the centre (full 
circles) and edges (open circles) of the first pseudo-gap in the (111) direction as a function 
of germanium layer thickness along with the theoretical calculations (lines). Frequency 
units are normalized to the lattice parameter. 

The key parameter to control the amount of semiconductor loaded in the opals 
is reaction time. This is the time the sample remains at a certain temperature at 
which the decomposition of the precursor gas takes place. Fig. 5.7 summarizes the 
percentage of pore loaded with silicon or germanium as a function of synthesis 
time. It is important to mention that time lengths are quite reasonable since layer 
thickness variations of only a few nanometers may be achieved with just several 
minutes differences. Under these experimental conditions, it can be seen that, for a 
single reaction, silicon reaches a maximum at approximately 53% of pore infilling 
(24 nm of layer thickness for opals made of 660 nm silica spheres). In the case of 
germanium, the pore can be loaded without saturation. Pressure built up by 
hydrogen production is a limiting factor since it will inhibit the synthesis of the 
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semiconductor. This factor is more important for silicon since synthesis 
temperature is 105ºC higher than for germanium and that involves a higher 
hydrogen pressure. This is probably the reason for such a saturation curve in silicon 
growth. Another difference clearly appreciable is that germanium growth is rather 
slow at the beginning of the process when compared with silicon. The temperature 
at which germanium is grown is very close to the decomposition temperature of 
GeH4. This transformation begins with the formation of GeH2 species.12 At such a 
low temperature, the activation energy needed to complete the first step delays the 
final reaction as can be observed in Fig. 5.7. 

As a result, silicon, as opposite to germanium, will need further cycles to obtain 
higher filling fractions. The only limitation for complete infillings seems to be a 
geometrical one related to the closure of the pores in the {111} close packed 
planes. This happens for a grown layer of thickness equal to the 5.47% of the 
lattice constant (corresponding to an 86% infilling, see Fig. 5.4).13 Of course, this 
top limit is valid for defect free samples. Polydispersity in spheres diameter and 
vacancies may lead to exceeding this value. This explains why filling ratios close 
to 100% have been reported.4 
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Fig. 5.7: Infilling as a function of single reaction times. Si (full circles) is formed at 375ºC 
and Ge (open circles) at 270ºC. Silica spheres of 660 nm of diameter are used. 

5.3 Multilayer structures. 

With this degree of control over the silicon and germanium synthesis the 
growth of multilayer structures can be tackled. This method allows not only 
growing both materials on silica but either on the other, as will be shown shortly. A 
further degree of freedom will be provided by the selectivity of different solvents 
that can be used to remove some of the materials. Aqua regia (a [3:1] mixture of 
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hydrochloric and nitric acid) can selectively remove germanium damaging neither 
the silica spheres nor the silicon layer. Furthermore, germanium can be oxidized at 
500ºC without changing the properties of the rest of materials: silica spheres 
remain unaffected and higher temperatures are required for silicon oxidation. 

5.3.1 Si/Ge/Air multilayer. 

To test the possibility of growing a semiconductor multilayer, a sample with a 
30% of the pore loaded with germanium was re-grown with silicon up to the 80%. 
Then, germanium was etched with aqua regia. Fig. 5.8 shows an electron 
microscope picture of the resulting structure after etching. The silicon network is 
interconnected and fixed to the substrate and remains separate from the spheres by 
the air layer. Fig. 5.9 a shows a diagram with the necessary steps to obtain this 
structure. 

 
Fig. 5.8: Cleaved edge SEM images of a doubly connected structure. The pictures show a 
a) {111} plane and a b) {100} plane. The continuous Si layer is separated from the 
continuous silica structure by an air shell. The dark lines in the cleaved edge are the air 
gaps between Si shell and the silica spheres. Scale bars are 1 micron. 

A more complicated structure was fabricated and optically characterized. First 
a sample was loaded with Si up to 20% of the pore, then a layer of Ge to complete 
45% and finally Si to a 60%. At this point the composite presents the following 
composition: SiO2(74%)-Si(5.2%)-Ge(6.5%)-Si(3.9%); percentages representing 
the total volume fraction of each material and a 10.4% air remaining. This sample 
was then dipped in aqua regia for 60 minutes. The outcome is two homogeneous 
Si shells separated by an air gap, the inner shell being connected to the silica 
spheres. The process is schematically shown in Fig. 5.9 b. 

Fig. 5.10 shows the reflectance spectra evolution at different stages. The bare 
opal (Fig. 5.10 a) is loaded with silicon (Fig. 5.10 b) up to a value close to the 
IMIV. The first pseudogap all but disappears while higher energy features become 
clearer. Further loading with germanium (Fig. 5.10 c) raises the first pseudogap 
and increases reflectance peaks width. A new layer of silicon (Fig. 5.10 d) further 
red-shifts and widens photonic features. At this point, germanium begins to be 
etched. Before it is completely removed, spectra collect information from areas 
with and without germanium at the same time. Both diffraction peaks 
corresponding to the first pseudogap of each case appear in the spectrum at 2.22 
µm and 1.85 µm respectively (Fig. 5.10 e). After the etching was completed in 60 
minutes (Fig. 5.10 f) the peak at 2.22 µm has completely disappeared. 
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Fig. 5.9: Diagram showing the formation of multilayer systems. Beginning with a bare 
opal, subsequent growth of semiconductor layers and final selective removal of 
germanium may give rise to air gaps a) between the silica spheres and silicon or b) 
between two silicon layers. 
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Fig. 5.10: Reflectance spectra of a sample after successive semiconductors infilling and 
etching. a) Bare opal; b) a Si layer is grown; c) a second layer of Ge and d) a third layer of 
Si; e) partial etching of the Ge; f) etching is completed and regions with a pseudogap at 
2.22 µm disappear. 
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5.3.2 Other possible materials for multilayer growth. 

At this point the possibility of growing multilayer systems of silicon, 
germanium and or air has been proved. However there are many other possibilities 
available. For example germanium can be oxidized to obtain germanium dioxide 
(GeO2) at 500ºC. Optical spectra of an opal loaded with germanium and then 
oxidized are shown in Fig. 5.11. This temperature is too low for silicon oxidation 
or producing any change in silica spheres. For this reason the oxidation of 
germanium can be regarded as a selective process in these systems. However, it 
must be taken into account that for layers of germanium above ~10 nm it may 
become rather difficult to oxidize the entire semiconductor. If larger amounts are to 
be oxidized, it may be advisable to do more than one cycle of germanium growing 
and oxidation. The refractive index of this material is approximately 1.60. 
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Fig. 5.11: Optical spectra of a sample where 46% of the available pore volume was loaded 
with germanium. The top graph shows the optical data after the sample has been oxidized 
at 500ºC. The oxide in the pore (together with possible remains of Ge) fit the IMIV so that 
no stop-band can be differenced from the Fabry-Perot fringes. 

Apart from the materials that can be grown directly or indirectly with a CVD 
system, other materials that grow in a layered way may be added to increase the 
number of possibilities. As an example of a compatible method, H. Míguez et al. 
developed a new technique to directly grow silica by CVD at room temperature 
and atmospheric pressure.13 Such a technique can be used to interpenetrate the 
spheres and strength the sample. 

Yet another tool is hydrofluoric acid (HF), which can selectively remove both 
oxides (GeO2 and SiO2). 
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5.4 Engineering on the Photonic Band Structure. 

Although limited by the fact that symmetries other than fcc are very difficult to 
obtain since self-assembly gives rise to fcc lattices, engineering on the photonic 
band structure is still possible. Indeed, subtle variations in topography or refractive 
index contrast may lead to very interesting band structures. 

5.4.1 First Stop-Band behavior. 

In this section the behavior of the first pseudogap in three of the highest 
symmetry points (of an fcc lattice) is studied as a function of different infilling 
ratios of germanium. Qualitatively, silicon presents a similar behavior. 
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Fig. 5.12: Theoretical calculations of the first pseudogap behavior in three different points 
of an fcc lattice: L (normal to the {111} planes), X (normal to the {100} planes) and K 
(normal to the {110} planes). 

Fig. 5.12 shows the theoretical predictions for the gap width (gap to midgap 
ratio) at three important points in the Brillouin zone. The L pseudogap width firstly 
decreases for initial infiltrations, almost closing at 17%, and then increases again 
after further loading of semiconductor. This agrees with the experimental results 
shown in Fig. 5.6 where for low infilling ratios (around 20%) the pseudogap was 
too narrow to be distinguished from the Fabry-Perot fringes. In the case of the X 
point, the pseudogap is closed for bare opals. However when 50% of the available 
pore volume is loaded with germanium, a wide stop-band is predicted by theory. 
This gap closes again, although not completely, when pores are fully loaded. 
Finally, the Γ-K stop-band width varies increasing and decreasing for different 
infilling ratios. 

Some researchers have shown fcc structures that were grown along the (100) 
direction.14,15 However, optical measurements of the first pseudogap in this 
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direction were rarely provided. The probable reason is that in this direction when 
the opal is bare or fully loaded with a material, the pseudogap is closed or very 
narrow. The results of this section show that a layered growth to load 50% of the 
available pore volume should help to observe the pseudogap in this direction. 

5.4.2 Flat bands. 

Within a photonic crystal the group velocity (vg) of photons will depend on the 
band to which these photons are coupled. The value of vg will be proportional to 
the derivative of the band with respect to the wave-vector k. Photons coupled to 
flat bands will propagate through the crystal with very slow vg. As vg is inversely 
proportional to the effective refractive index, photons will “see” a medium with a 
very high refractive index. 

 
Fig. 5.13: Fifth band behaviour in the Γ-L direction for different infilling germanium 
ratios. For infillings around the 50%-60% the band becomes very flat. For very high 
infillings the shape becomes curved again. Arrows point at the band for a 50% of available 
pore volume loaded with germanium. 

Materials in which light propagates with a low vg are important for non linear 
(NL) optics. If a photonic crystal with flat bands is made from a NL active material 
photons would “stay longer within the crystal” and the efficiency of the NL 
material would be much increased. If photons of different frequencies couple to 
bands of unlike curvature, the photonic crystal will present high group velocity 
dispersion. This is an appealing phenomenon that has attracted the interest of 
several researchers in the last few years.3 

Theoretical calculations show how controlled growth of semiconductor may 
vary the shape of photonic bands. Specifically, the fifth band in the Γ-L direction 
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may become very flat when the opal is loaded with germanium (same is true for 
silicon) around 50% of the available pore volume. Fig. 5.13 shows how the fifth 
band shape gradually changes from curved to flat and curved again as the opal is 
loaded with germanium. 

5.4.3 Structure with a doble complete Photonic Band Gap. 

In 1998, K. Busch et al.16 showed that slight variations in the topography of the 
inverse opals of silicon could lead to important enlargements of the cPBG between 
the 8th and 9th band. They considered separately the effect of air spheres 
interpenetration and that of incomplete loads of the pore volume. 

 
Fig. 5.14: Photonic band diagram of interpenetrating air spheres coated with amorphous 
Ge (n=4.1) in a fcc lattice. The radius of the air spheres is 0.3645a and the external radius 
of the semiconductor shell is 0.409a. Two gaps are developed: one between the 5th and 6th 
and another between the 8th and the 9th. The inset shows the corresponding real space 
structure. 

Here the joint effects of air sphere interpenetration and incomplete 
semiconductor (Ge in this case) load are taken into account. This four-step process 
illustrates a particular case where the multilayer technique may be applied to tailor 
the photonic bands. First, an opal is loaded with Ge to a 25% of the available 
volume, followed by its oxidation. A further Ge load completes 86% of the initially 
available volume. Finally the oxides (GeO2 and SiO2) are removed with HF. The 
corresponding photonic band structure is shown in Fig. 5.14. Two cPBG open 
now: a larger one (12.6%) between the 8th and 9th bands and a narrower one (1.3%) 
between the 5th and the 6th bands. The latter is an interesting case that only very 
recently has been reported for fcc-based structures.17 The method could be 
simplified if SiO2 CVD was used instead of growing germanium and then 
oxidizing it. 
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5.5 Summary. 

5.5.1 Conclusions. 

o The optimization of the procedure to grow accurate amounts of silicon and 
germanium by CVD free of contamination in opals has been performed. 

o The samples have been optically characterized and results agree with 
theoretical calculations of band structures. 

o Multilayer systems of both semiconductors have been fabricated. Samples 
have been optically characterized and observed with a scanning electron 
microscope. 

o Selective removal of germanium with aqua regia has proven to be 
possible. 

o Theoretical calculations show that subtle variations of the topography may 
give rise to important effects (flat bands, pseudogaps openings, wide 
cPBGs…) 

o A photonic band structure with a cPBG between the 5th and 6th band has 
been provided and the method to obtain it has been explained. 

5.5.2 Future research. 

It would be impossible to discuss all the possible structures that could be 
obtained from samples with different number of layers and materials forming them. 
However, there are many interesting possibilities that could be studied in a 
relatively straightforward manner. 

o Study of the flat bands effect on light propagation. 

o Study of the formation of high energy bands with the controlled infilling of 
silicon and germanium. 

o Fabrication of a sample with a double cPBG as shown in section 5.4.3. 

o A mapping of the cPBGs formation when air sphere interpenetration and 
semiconductor infilling ratios are varied. 

o Including other materials grown by CVD to this technique. 
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6.1 Introduction. 

As explained in Chapter 1, inverse opals may present a cPBG between the 8th 
and 9th band when the refractive index contrast (δ) is above 2.8 (see Fig. 6.1 a). 
However, optical features at high energies are strongly affected by the presence of 
defects and gaps are said to be “weak”. Indeed, the cPBG present in fcc structures 
is very sensitive to the non-uniformity in crystals.1 Defects such as diameter 
variations of the air spheres will significantly reduce the gap and may eventually 
close it. Summarizing, the high δ value required to give rise to the cPBG and its 
fragility makes the fcc structure a non altogether ideal candidate. 
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Fig. 6.1: Photonic band structures of a) close-packed fcc arrangement of touching air 
spheres (ff=74%) in silicon and b) diamond lattice of interpenetrated (ff=50%) air spheres 
in silicon. 

A gap at lower bands would be desirable. However, the symmetry-induced 
degeneracy at the W point prevents the formation of a cPBG between the 2nd and 
3rd bands for the fcc lattice. This degeneracy could disappear if the primitive cell 
symmetry was changed while keeping the same Brillouin zone. Soukoulis et al2 
showed that dielectric spheres arranged in the diamond lattice provides this 
symmetry change and shows the desired behavior since it possesses a cPBG 
between the 2nd and 3rd bands (see Fig. 6.1 b). Diamond structures of 
interpenetrated air spheres may show a wide and robust low energy cPBG. 
Furthermore, the required minimum δ value is reduced to 2.0. 

In terms of cPBG formation, diamond lattice present nothing but advantages 
over the fcc structure (Table 6-1). Unfortunately the construction of these 
structures has proven to be extremely difficult by self-assembly methods. Unlike 
fcc arrangements, this structure is not stable enough to self-assemble. For this 
reason, up to the publication of this work, only lithographic methods have 
succeeded to obtain 3D structures with this symmetry in the optical regime.3,4 

In this chapter a method based on robot-aided micromanipulation5,6 will be 
presented. It opens the possibility of building up 3D photonic crystals with 
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diamond structure (15 microns in size typically). Robot-aided manipulation of 
single microspheres on a template substrate allows assembling a body centered 
cubic (bcc) lattice, which in fact, is the combination of two diamond structures. 
The experimental results obtained after the application of these techniques will be 
presented as well. 

 

 Diamond fcc 

Gap position 2nd-3rd bands 8th-9th bands 

Required RI contrast 2.0 2.8 

Other Wide and robust cPBG Narrow and weak cPBG 

Table 6-1: Main differences in terms of cPBG formation for two lattice configurations: 
Diamond and fcc. 

6.2 The idea. 

To date, fabrication of a diamond structure made of micrometric spheres by 
self-assembly methods has not been possible, therefore, developing alternative 
routes is necessary. In this section the main features of the method that has been 
developed to obtain a diamond lattice in two different orientations will be 
described. The method takes advantage of concepts and disciplines such as 
colloids, robotics, epitaxial growth, plasma etching and photolithography. 

6.2.1 Instability of the diamond lattice. 

As fcc lattices of micrometric spheres are easily obtained it is natural to wonder 
which is the reason that makes it so difficult to fabricate a diamond arrangement. 
When the positions of the “atoms” are studied, it can be observed that, contrary to 
fcc, diamond structure positions are unstable. 

 
Fig. 6.2: Pictures showing the stable spheres disposition for an fcc structure in the a) (111) 
direction and the b) (001) direction. 

As can be observed in Fig. 6.2 spheres occupy stable positions (absolute 
minima energy locations) for fcc stuctures. In the case of {111} planes, each sphere 
is supported by three spheres of the layer underneath. For {001} planes the number 
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of supporting spheres is increased to four. Coversely, some spheres in the diamond 
structure are placed in very unstable locations. In the case of {111} planes (Fig. 6.3 
a) the spheres of the second layer are supported by three spheres which is, again, 
stable. However, the next layer must be placed exactly on top of the second; 
obviously not a very stable position. The stability of {001} planes (Fig. 6.3 a) is 
not much better since spheres are supported just by two of the layer beneath (Fig. 
6.3 b). 

 
Fig. 6.3: Pictures showing the instable spheres disposition for an diamond structure in the 
a) (111) direction and the b) (001) direction. 

Together with a low stability, diamond structures of touching spheres have a 
very reduced filling fraction. Indeed the amount of material is a 34% in contrast 
with 74% for fcc lattices. The diamond structure is therefore much less compact 
than the fcc as shown in Fig. 6.4. 

 
Fig. 6.4: Primitice cells of an a) fcc lattice and a b) diamond structure. 

6.2.2 The mixed body centered cubic lattice. 

Since self-assembly methods are not effective for diamond structures a 
technique in which the positions of the spheres can be selected must be used. In 
this sense a nanorobot (described in the experimental section) that allows to 
arrange the spheres one by one turns out to be a valid tool. However, even with a 
nanorobot, the direct construction of a diamond lattice is not possible because 
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positions of the microspheres must be at energy minima. Since this condition is not 
fulfilled by the diamond structure, the use of a sacrificial scaffold is needed. 

 
Fig. 6.5: A bcc lattice can be regarded as the sum of two diamond lattices. A bcc structure 
made of two kinds of spheres (e.g. organic and inorganic) each one forming diamond like 
arrangements is defined as a mixed bcc (mbcc). 

It is well known that a body centered cubic (bcc) lattice can be regarded as the 
sum of two diamond lattices (see Fig. 6.5). The crucial point at this moment is 
designing a way in which the right atoms from the bcc structure can be removed in 
order that the remaining ones are arranged in the sought for diamond structure. A 
solution is provided if sacrificial atoms are of a class, in some sense (chemically), 
different from the other atoms thus providing a means for their dissolution. This 
can be done with inorganic vs. organic microspheres arranged in the points of a 
position of a bcc lattice. So the method starts with the construction, of a 
heterogeneous structure of mixed inorganic and organic (e.g. silica or silicon and 
latex) spheres in a bcc lattice. This structure, composed of two kinds of spheres, 
will be called, from now on, mixed body centered cubic (mbcc) although it must be 
realized that the actual lattice is an fcc with a two-atom basis. Subsequently, upon 
selective removal of the organic particles a diamond structure of the inorganic ones 
is obtained. 

 
Fig. 6.6: The bcc lattice (center). The positions of spheres when growing in the (111) 
direction (left) or the (001) direction (right) are both stable. 

The construction of an mbcc lattice as an intermediate step presents some 
advantages over direct diamond lattice assembly. The mbcc lattice allows stacking 
spheres along, at least, two orientations: (001) and (111). As Fig. 6.6 shows, in 
both cases sphere positions are minimum energy locations once the first layer is in 
place. In either case the initial layer should be ordered on a template. 
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6.2.2.1 Algebraic description of the mbcc lattice. 

In order to algebraically describe the lattices let summarize: a two 
interpenetrated diamond structures form a bcc that can be represented as an fcc 
with a four-atom basis. This choice is based on the fact that the most convenient 
description of a diamond structure is as an fcc with a two-vector basis. The mbcc 
will be presented too as an fcc with two two-atom bases made of different 
materials: e.g. inorganic (i) and organic (o). The fcc primitive vectors are: 

a1=a/2(1,1,0); a2=a/2(1,0,1); a3=a/2(0,1,1) 

where a is the lattice parameter. The two-vector basis for material i is: 

1/8(a1+a2+a3); -1/8(a1+a2+a3) 

while for material o the basis is: 

3/8(a1+a2+a3); -3/8(a1+a2+a3) 

This particular basis selection will maintain inversion symmetry. The lattice 
parameter may be calculated in terms of sphere diameter (d, same for organic and 
inorganic spheres) imposing that neighboring spheres are in contact: a=(4/√3)·d. 

6.2.2.2 Graphical description of the mbcc growth in two directions. 

Growth in the (001) orientation relies on stacking layers of mixed i-o spheres 
with a square lattice configuration. Here nearest neighbors are of opposite character 
leading to diagonals of like character as a checkerboard. The cyclic arrangement of 
subsequent layers is explained in Fig. 6.7 a. Each layer is shifted with respect to 
the layer underneath by half the pitch. The pitch is (2/√3)·d (where d stands for the 
sphere diameter) and the distance between successive layers results in φ001=d/√3. 

The stacking procedure along (111) direction is shown in Fig. 6.7 b. Here each 
layer presents a triangular lattice configuration and, as opposed to the (001) case, 
layers are homogeneous in composition (completely organic or inorganic). The 
layering sequence reminds that of an fcc lattice (…ABC…) but, in this case, two 
layers of each material are laid successively. For example, AiBoCo-AiBiCo-
AoBiCi…, where sub-indices indicate inorganic (i) or organic (o) particles. The in-
plane distance between neighbor spheres is (√8/3)·d and interlayer distance is 
φ111=d/3. 

6.2.3 From the mbcc towards the cPBG. 

Once the mbcc has been constructed along either (001) or (111) orientation, 
organic particles are selectively removed to leave a diamond structure of inorganic 
particles (Fig. 6.8 b). At this point two different routes can be pursued depending 
on the refractive index contrast of the structure. If the spheres used have a 
refractive index above 2.0, an opal with an omnidirectional gap results. Then, gap 
width may be fine tuned through a re-grown process by means of CVD similar to 
that reported in Chapter 5 (Fig. 6.8 c). A method recently proposed to produce 
monodisperse spheres from several oxides with high refractive indexes could serve 
this purpose.7 Photonic band gap calculations predict full gaps width as large as 
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13% for a diamond lattice of high refractive index spheres e.g. silicon (ε=12) in air 
background when filling fraction is 43% (sphere radius 0.236·a). 

 
Fig. 6.7: Computer design showing the layout of the first four layers in a mixed body 
centered cubic lattice where dark and light gray spheres stand for organic and inorganic 
particles respectively. In a) the stacking is along the (001) direction; the fifth layer is 
exactly as the first one. In b) the stacking is along the (111) direction; the fifth layer lies 
exactly on top of the second layer. The insets represent a top view. 

When the refractive index of inorganic particles is not above the threshold for 
full gap openings (>2.0) one should proceed with the inverse diamond structure 
depicted in Fig. 6.8 d and e. This may hold when silica is used as the inorganic 
material; for instance, in the case of silica-latex particles the following procedure 
would be performed: First, the mbcc structure should be arranged on a patterned 
substrate with the aid of micro-robot technique. Next, latex spheres are selectively 
removed by a calcination process. The remaining diamond crystal is then infiltrated 
with a high dielectric constant material like silicon or germanium, and finally, the 
removal of the silica spheres produces the inverse opal. Since our ultimate goal is 
to obtain an inverse structure with a cPBG, one should take into account that 



6.2 The idea. 

137 

touching air cavities (filling fraction ~34%) in a dielectric medium provide a very 
narrow gap unless air filling fraction is increased. Again a re-growing process, as 
depicted in Fig. 6.8 c, must be performed prior to the infiltration. This provides the 
necessary handle to design inverse structures with tailored full gap. Fig. 6.9 shows 
the photonic band structure calculations for a silicon infiltrated diamond opal of 
silica spheres. The inverse structure resulting from silica etching was presented in 
Fig. 6.1 b. The filling fraction of the silica diamond opal is taken to be 50% 
(sphere radius 0.251·a) which determines the air filling fraction of the inverse 
silicon structure. Maximum values of the gap width are obtained for air spheres 
filling fractions of 81% (sphere radius 0.325·a) if desired.2 

 
Fig. 6.8: Computer simulation showing, in five steps, the fabrication of an inverse 
diamond structure with a full photonic band gap. First a mixed body centred cubic lattice is 
assembled (a) after which, latex sublattice is removed (b); then the spheres are re-grown by 
CVD to an appropriate filling fraction (c); after that, silicon or germanium infiltration (d) 
takes place and, finally, silica is eliminated (e). 

Other possibilities can be considered when device design is envisaged. 
Imperfections or uncontrolled defects in the structure are more critical in photonic 
crystals with larger refractive index contrast. Therefore, one should also consider 
diamond opals with smaller dielectric contrast (as silicon/silica composites) 
providing they have a full gap. Table 6-2 shows the parameters involved in the 
fabrication of several silicon diamond lattices with different dielectric contrasts. 
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Fig. 6.9: Photonic band diagram of a composite diamond opal made of interpenetrated 
silica spheres in a silicon background. The filling fraction for silica is 50%. 

Spheres Background ε1: ε2 ff ∆ω/ω ωa/2πc 

Si Air 11.9 : 1.0 43% 13% 0.45 

Si Silica 11.9 : 2.1 42% 5% 0.41 

Air Si    1.0 : 11.9 50% 12% 0.40 

Air Si    1.0 : 11.9 81% 28% 0.60 

Silica Si    2.1 : 11.9 50% 4% 0.38 

Table 6-2: Values of relative gap width (∆ω/ω) and midgap position (ωa/2πc), where a is 
the lattice parameter) for diamond structures made of spheres with different configurations 
in which materials and filling fraction (ff) percentages have been varied.* 

6.3 The experimental development. 

Here the experimental development of the ideas introduced in the previous 
section will be presented. 

6.3.1 The nanorobot. 

Trapping of micrometric spheres by radiation pressure8,9 or manipulation of 
nanometer-size particles with an atomic force microscope10 has attracted attention 
for the last decades. The utilization of a nanorobot attached to a Scanning Electron 
Microscope (SEM) is particularly suitable for building 3D structures from 
microscopic objects whose size is above 500 nanometers. A probe is controlled 
with high accuracy (a few nanometers) and used to pick and position the particles. 
In this scale of sizes, electrostatic and van der Waals forces dominate the dynamics 
of the micro-objects.6 To date several measurements of forces (order of nN) 

                                                   
* Most of the values presented in the table were calculated by F. J. López-Tejeira. 
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involved in the process have been performed11 together with the development of 
techniques that improve particles manipulation.12 However, a satisfactory 
theoretical model explaining the behavior of micro-manipulated micro-objects is 
still to be developed. 

Fig. 6.10 a shows a schematic drawing of Nanorobot II13 (HMI Co., Ltd.). 
There are three different stages: 

o A base stage in which movement is allowed in two dimensions (X-Y) 
normal to the e-beam. This stage is used to position the other two stages 
under the electron beam of the SEM. 

o The specimen stage (left-hand hereafter) where the sample is attached. 
This stage is to be used for coarse movements (several microns per 
second) such as initial approximation to the sample substrate and spheres 
fetching from distances above 10 microns. The movement of this stage is 
provided by step-by-step motors. 

o The probe stage (right-hand hereafter) where a thermally drawn glass 
pipette covered by a conductive gold layer is attached. This hand is to be 
used for fine movements such as sample approximation or spheres picking. 
The range of movement is limited to 15 microns and the accuracy is 10 
nm. Motion is generated by a piezoelectric actuator. 

 
Fig. 6.10: Nanorobot II (HMI Co., Ltd.), schematic picture showing all the possible 
movements. The top-left inset is an actual picture of the nanorobot. Inset scale-bar is 20 
cm. (This scheme has been adapted from an original design made by H. T. Miyazaki). 
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The manipulator is remotely operated through an interface where several 
joysticks and control switches were present. 

Several factors limit the size of the particles to be manipulated. The tip 
thickness of the probe attached to the right-hand is usually around 200 nm. Due to 
the size of the nanorobot, the working distance (WD) between the objective lens of 
the SEM and the sample is 32 mm, which is not optimal. As a consequence the 
focusing of the electron beam is worse than in normal circumstances. It must be 
taken into consideration that, for real-time observation, the scanning velocity of the 
electron beam must be the as fast as possible, which entails a lower image quality. 
Finally, the electronics of the nanorobot components and the SEM may interfere. 
This causes a worsening in the image due to electrical noise. For all these reasons, 
sizes under 500 nm are not advisable for micromanipulation. In this work spheres 
diameters were always around one micron. 

It is also important to notice that, owing to this configuration, although sample 
and probe are normal to each other, both tilted 45º with respect to the e-beam. As a 
result, the image on the SEM screen will be a 2D projection of our sample tilted 
45º. Fig. 6.11 a shows a SEM image of a template in the observation chamber 
where the electron beam is normal to the sample surface. Fig. 6.11 b shows the 
same template once the nanorobot has been installed. The squared pattern shown in 
the screen appears rectangular due to the tilting. As can be observed, the image 
quality is considerably lower. 

 
Fig. 6.11: SEM pictures of a template fabricated by electron beam lithography. a) shows 
the template in the observation chamber and b) shows the same template when the 
nanorobot has been installed and a few spheres have been deposited. Hole diameter is 300 
nm and depth is 50 nm. Scale bars are 1.2 microns. (templates fabricated at IMM-CSIC by 
J. Anguita). 

6.3.2 The templates. 

In the near past, 3D fcc lattices made of spheres had been fabricated.5 In that 
work, the use of templates was unnecessary since spheres were in contact and 
attractive van der Waals forces rendered the structure stable. In the case of bcc or 
diamond structures, the spheres present on each layer are not in contact. This 
entails two additional difficulties. On the one hand it becomes more difficult to 
know where each sphere must be stacked in the first layer (subsequent layers 
spheres will be positioned at well defined minimum energy locations). This could 
be solved using a graphical template superposed to the SEM screen. However, 
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since layers are not close-packed, the position of first layer spheres could be easily 
modified (accidentally) when stacking the next layer spheres. On the other hand, 
forces between spheres pose a new difficulty. At short distances spheres repel each 
other due to Coulomb repulsive forces. However, when distance is decreased to a 
critical value between spheres attractive van der Waals forces become stronger. 
The order of magnitude of these distances is not much larger than the lattice 
parameter of our structures and, therefore, the effect of these forces can be 
significant. As a consequence, a templated substrate is needed to firmly stack the 
spheres in predefined spatial positions. 

There are two conditions that must be accomplished by the substrate where the 
samples are to be fabricated. First, the substrate must be conductive, otherwise, 
under the e-beam exposure both substrate and sample would get electrically 
charged what would eventually worsen the picture quality or even completely 
prevent the observation. Second, the substrate must be transparent in the IR region 
if transmission optical properties are to be measured. A good candidate that 
satisfies both conditions is a doped (>1017 cm-3) silicon wafer. 

6.3.2.1 Template models. 

The first trial template was a patterned substrate made by means of electron 
beam lithography (see Fig. 6.11).∗ In this template, holes had a diameter of 300 nm 
and a depth of 50 nm. Although these holes were clearly differentiated in the 
observation chamber of the SEM, they could be hardly distinguished when the 
nanorobot was installed; even for the lowest scanning velocities. As an additional 
problem, for unknown reasons, the holes got negatively charged and spheres were 
strongly repelled. This kind of templates was therefore discarded. 

 
Fig. 6.12: Optical images of templates formed by crossings of parallel gold lines on a 
silicon wafer with a 300 nm layer of SiO2 on the surface. a) cross-points of two sets of 
perpendicular lines of gold designate the positions of spheres for growth in the (001) 
direction. b) if the angle between both sets of lines is 60º, cross-points will designate 
locations for growing in the (111) direction. The insets show a low magnification view of 
the templates. (templates fabricated at IMM-CSIC by J. Anguita). 

Another design was fabricated. This time the location for spheres was 
designated by the cross-points of two sets of parallel lines.∗ The template was 

                                                   
∗ These templates were fabricated at IMM-CSIC by J. Anguita. 



Chapter 6: Diamond lattice made of silica microspheres. 

142 

fabricated on a silicon wafer with a 300 nm layer of SiO2 on the surface. For 
growth in the (001) direction sets of lines were perpendicular (Fig. 6.12 a), for the 
(111) direction they formed 60º (Fig. 6.12 b). The advantage of gold is that it can 
be very easily distinguished when observing with a SEM. As SiO2 is not 
conductive, gold lines were grounded so that a system of negative charged and zero 
potential (the gold cross-points) areas would be created. This way, spheres should 
be repelled by SiO2 and the most stable positions would be the gold line crossings. 
However, electrostatic forces resulted to be too weak, and the template was not 
effective. Although the positions for a correct stacking could be clearly discerned, 
the spheres were not firmly attached becoming a bad anchorage for second layer 
spheres. Again, these templates were discarded. 

In 2000 M. Holgado had shown that focus ion beam (FIB) etching could be 
used to fabricate 2D photonic Crystals.14 The samples he fabricated consisted of 
arrays of holes that proved to work when used as templates for spheres stacking 
(see Fig. 6.13). Although lattice parameter was not optimal and hole sizes were 
irregular, this template showed that it was enough to keep first layer spheres firmly 
attached to the substrate. 

 
Fig. 6.13: SEM images of a) an array of holes performed with focused-ion-beam 
micromilling. In b) latex and silica spheres remain firmly attached to the holes where they 
were placed. Scale bars are 3 microns. (Template fabricated by M. Holgado at Lucent 
Technologies ME. SEM images and micromanipulation performed by H. T. Miyazaki). 

 
Fig. 6.14: Templates fabricated by photolithography. a) shows a SEM image of a lattice 
for the (001) direction growth. On b) several templates can be seen. c) Shows a cleaved 
profile of one of the holes. (Templates fabricated by Agere Systems Spain). 
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Since FIB was not an optimal tool to fabricate large a number of patterns, 
photolithography was the technique selected to obtain the definitive templates. This 
procedure is more expensive since previous fabrication of a mask is needed but, on 
the other hand, once the mask is fabricated the lithographic process can be repeated 
as many times as needed and the quality of the patterned substrates is excellent. 
The motives present in the mask are afterwards transferred to a photoresist. The 
resin is developed and the pattern is finally etched on the silicon substrate. A mask 
with many templates of different hole diameters and pitches was fabricated (see 
Fig. 6.14) and used for the photolithographic procedure.* 

6.3.2.2 Hole depth and diameter. 

The features of these holes will depend on the size of the spheres and the 
desired crystallographic orientation of the samples to be grown on the template. 
The spheres must be held in place by the rim of the holes and not touch the bottom 
to make sure that they will not move. To find an appropriate depth and diameter for 
the holes, two constraints must be taken into account. On the one hand, spheres 
must stick out enough to support those from the second layer that, otherwise, 
would lie on the substrate (and not have well defined positions as a consequence). 
On the other hand, holes must be deep enough to provide a good anchorage for the 
beads. If these conditions are fulfilled the spheres fixed in the holes are stable 
extremely difficult to remove from the template. 

In the case of the (001) direction the distance between planes is φ001=d/√3≈0.58 
d, this means that spheres can be half buried without affecting the next layer 
positions. As we want the spheres to be held by the rim of the holes, the only 
constraint is hole diameter (D) smaller than the sphere diameter (D<d) and depth 
above sphere radius. 

 
Fig. 6.15: Scheme showing some considerations about spheres and holes sizes. In a) it is 
shown that maximum depth for spheres must below the interlayer distance, otherwise 
second layer spheres would touch the substrate. b) shows the relationship between sphere 
size and hole diameter. D is hole diameter, d is sphere diameter and φ111 is the interlayer 
distance. 

For the (111) direction, some calculations must be done since interlayer 
distance is smaller φ111=d/3≈0.33 d. This means that the maximum depth of the 

                                                   
* The mask design and photolithographic process were performed at Agere Systems Spain. 
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spheres of the first layer can not be over that value, otherwise the second layer 
spheres would be supported by the substrate and not by the first layer (see Fig. 6.15 
a). If the spheres are to be held by the rim of the holes the value for the maximum 
diameter of the hole can be obtained as explained in Fig. 6.15 b: 

( )2
111

2 2φ−−≤ ddD  

Where D is the hole diameter, d the sphere diameter and φ111 the interlayer distance 
in the (111) direction. For 1 micron spheres, D should be below 0.94 microns. To 
avoid the sphere touching the bottom of the hole is enough with setting a depth 
above φ111 (0.33 microns for 1 micron spheres). 

 
Fig. 6.16: SEM picture showing the silica (white arrow) and latex (black arrow) reservoirs. 
The end of the probe attached to the nanorobot is exactly over the area where the sample 
was fabricated. Scale bar is 600 microns. 

6.3.3 Micro-manipulation and sample stacking. 

Since each sphere deposited with the nanorobot is supported by those of the 
layer underneath (except first layer spheres), structures shown in this work have a 
pyramidal shape. However, vertical walls could be obtained using latex spheres as 
a lateral scaffold. This procedure would not involve any additional difficulty apart 
from a larger number of spheres to be manipulated, and therefore, a longer 
fabrication time. 

The time needed to build up the structures will strongly depend on whether the 
sample is grown along the (001) or (111) direction. Due to our nanorobot 
configuration, one of the most time-consuming tasks was fetching spheres from a 
distant reservoir (several hundred microns away) to the template field. Whenever 
the probe must be carried so far, it is necessary to move it away from the substrate. 
The reason is that in case the probe and the substrate were not perfectly normal, the 
probe could collide and be damaged. This involves a great amount of time because 
the approximation of the probe to the substrate must be done very carefully; the 
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substrate itself can not be distinguished if there is not any motive on it. As the 
screen gives a 2D image, knowing the distance from the tip of the probe to the 
substrate is not trivial. 

6.3.3.1 Growth in the (001) direction. 

To grow a sample in the (001) direction, two reservoirs (one of latex and 
another of silica spheres) were set apart by the template field chosen (see Fig. 
6.16). The beads were picked one by one and placed at the predefined sockets on 
the patterned substrate (first layer) or at the appropriate position in a stable location 
among four supporting spheres from the layer underneath (other layers). The 
average time needed for each sphere was about 7 minutes. Fig. 6.17 shows the 
fabrication sequence. The final structure after setting 165 spheres of latex and 177 
of silica (the sixth layer is composed only of silica spheres). 

 
Fig. 6.17: Sequence of mbcc fabrication in the (001) direction. In each layer (but the last 
one) there are silica and latex spheres. In the sixth layer only silica spheres were stacked. 
The final structure is formed by 165 latex spheres and 177 of silica. The sphere diameter is 
1.18 microns. The pitch of the silicon template is 1.35 µm. Holes depth and diameter is 
450 nm and 1.08 µm respectively. Layer-to-layer distance is 680 nm. 

6.3.3.2 Growth in the (111) direction. 

Growing the mbcc lattice along the (111) direction presents an important 
advantage: unlike (001) oriented crystals, each layer is formed of a sole kind of 
spheres. This meant that the reservoir of silica could be placed right on the 
template itself. Under these circumstances, the average time was reduced to 2.5 
minutes per silica sphere. Fig. 6.18 shows the fabrication sequence of a six layers 
mbcc structure made of 133 spheres of latex and 274 of silica. The first two layers 
are made of silica spheres, the next two layers of latex and fifth and sixth of silica 
again. 
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Fig. 6.18: Sequence of mbcc fabrication in the (111) direction. Only one kind of spheres is 
present in each layer. Layers number 1, 2, 5 and 6 comprise silica spheres. Layers 3 and 4 
contain latex spheres only. The final structure is formed by 133 latex spheres and 274 of 
silica. Layer-to-layer distance is 300 nm. Spheres diameter is 0.9 µm. The pitch of the 
silicon template is 1.45 µm. Holes depth and diameter is 350 nm and 754 nm respectively. 

6.3.4 Sacrificial scaffold removal. 

After the fabrication of the mbcc lattice, it is necessary to etch the latex spheres 
away to achieve the diamond structure. The removal of latex by calcination is a 
well-known procedure to obtain inverse opals. Indeed, many research groups work 
with self-assembled opals made of latex spheres. Once they have loaded the opal 
interstices with an appropriate material, latex is burned at 450ºC.15 

 
Fig. 6.19: a) A two layers mbcc lattice was fabricated to test the effects of latex 
calcination. ab) After burning the latex at 400ºC for 3 hours the positions of silica spheres 
(those labeled) have varied. 

In our case, latex calcination was discarded since it entailed a liquid phase of 
latex. Due to surface tension silica beads were dragged and the structure collapsed. 
Fig. 6.19 a shows a two layers mbcc lattice grown in the (001) direction and used 
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to test the calcination effects. After placing the samples in a furnace at 400 ºC for 3 
hours (Fig. 6.19 b) it can be seen how silica spheres were dragged away from their 
initial positions. Especially affected were those in close contact with latex spheres 
(namely, spheres labeled 2 to 5 and 7). 

 
Fig. 6.20: A three layers sample made of silica and latex spheres to test the stability after 
latex removal by oxygen plasma etching. a) top view and b) tilted 45º. Arrows show the 
time evoulution in periods of 20 minutes. 

 
Fig. 6.21: a) and b) show the sample of Fig. 6.17 before and after plasma etching. Pictures 
are tilted 45º to show {011} facets. c) and d) show the sample of Fig. 6.18 before and after 
latex removal. Pictures are tilted 30º. In all pictures scale bars are 5 microns. 

Oxygen plasma etching provided an alternative to calcination. For this purpose 
a mini-sputtering chamber* was used to create oxygen plasma between two 

                                                   
* Sputtering chamber modifications and experimental setup were done by H. T. Miyazaki. 
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electrodes at 65 mW/cm2 and 30 Pa.16 The plasma selectively removes latex and 
hardly affects the silicon wafer or silica in these working conditions. Since oxygen 
plasma may attack the electrodes and sputter aluminum on our sample, the 
substrates were placed in a glass cell with lateral openings. Fig. 6.20 shows a 
structure (which is not a mbcc) made of silica and latex spheres designed to test the 
stability of the sample after the plasma etching. It can be observed how latex is 
gently removed without disturbing the positions of silica spheres despite of their 
unstable positions. 

Plasma etching was applied to the mbcc structures obtaining the results shown 
in Fig. 6.21. It is interesting to highlight that, in Fig. 6.21 d, the 3rd diamond layer 
lies exactly on top of the second one, in other words each sphere has only one point 
of contact with the layer underneath. Nevertheless the structure is stable after the 
etching. 

6.4 Direct stacking of the diamond structure. 

So far, latex spheres have been used to scaffold a structure where minimum 
energy positions were available for next layer beads. However, latex would be 
unnecessary if silica spheres could be glued to each other while keeping the 
appropriate position. 

 
Fig. 6.22: SEM observation involves the deposition of contamination. Picture a) shows the 
beginning of a sample fabrication, the arrow points at a silica sphere. In b), the sample has 
been finished. The arrow points at the same sphere and it can be clearly observed that size 
of the sphere has increased due to a deposited layer of contamination. Scale bars are 2 
microns. 

6.4.1 SEM contamination. 

It is well known by SEM microscopists that observation involves the formation 
of an amorphous carbon-rich contamination film.17 The effects of this 
contamination can go unnoticed when observation takes place in short periods of 
time. However manipulation implies working for several hours in the area where 
the sample is grown. Fig. 6.22 a shows some spheres of the first layer of an mbcc 
being fabricated in the (001) direction. Once the sample has been finished (Fig. 
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6.22 b), the spheres of the first layer have increased their diameter. This is due to 
the layer of contamination that has affected, mainly, the objects observed for the 
longest times. Notice that the template marks have been covered by contamination 
as well. 

The contamination can be grown on purpose by focusing the SEM electron 
beam on a specific area. This technique is known as electron-beam-induced 
deposition (EBID).18 Fig. 6.23 a shows a layer of contamination that was deposited 
at the junction between a silica and a latex sphere using this method for one hour. 
Plasma etching can remove both latex and contamination as shown in Fig. 6.23 b 
and c. 

 
Fig. 6.23: In a) a rectangular shaped layer of contamination was accurately deposited by 
focusing the electron beam of the SEM for an hour. This contamination is mostly 
composed of organic material and [b) and c)] can be removed with oxigen plasma etching. 

6.4.2 Direct growth in the (001) direction. 

In previous sections, contamination was simply an unimportant inconvenience 
that could be eliminated when latex was etched away. However, as it can be grown 
very accurately, EBID may become a very useful tool when used to glue spheres. 
Silica spheres are firmly fixed if the electron beam is focused on their junction for 
just a few seconds. The contamination is deposited accurately in a small area 
around the contact point. This way, sacrificial scaffolds are no longer needed. The 
method will be eligible provided the junctions between spheres are accessible to 
the electron beam. 

 
Fig. 6.24: Five layers diamond lattice directly grown in the (001) orientation. a) Structure 
made of 165 silica spheres of 0.9 microns of diameter. b) Detail of a contact point between 
two silica beads. Contamination was used to glue them. The pitch of the silicon template is 
1.05 microns. Holes depth and diameter is 450 nm and 770 nm respectively. Layer-to-layer 
distance is 520 nm. Pictures are tilted 45º to show {011} facets. Scale bar is 5.0 microns. 
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Diamond lattices were grown in the (001) direction by means of this method 
(Fig. 6.24 a). In the standard working conditions, the sample is tilted 45º with 
respect to the electron beam while manipulation takes place. This tilting shows the 
{011} planes, and this orientation is optimal because contact points between 
spheres are clearly observable as shown in Fig. 6.24 b. By way of time gauge, it 
must be remarked that the sample shown in this figure was made of 165 silica 
spheres and was finished in 10.5 hours. Fig. 6.25 shows a four layers sample grown 
using the EBID technique as well. It is made of 290 silica spheres. For this sample 
12 hours of nanorobot manipulation were needed. 

There are two obvious advantages of direct growth. Firstly, fabrication time is 
drastically reduced since stacking latex is not needed anymore, besides, the silica 
spheres reservoir can be placed close to the template. Secondly, the quality of the 
samples is improved as can be observed by comparing the SEM images presented 
in this section with those of the previous one. 

The only disadvantage is that with the particular configuration of this 
experiment, the method is ineffective for the (111) growing direction because some 
spheres must be placed exactly on top of another. This would require a 90º and 
consequently their contact point cannot be scanned at 45º since it is not accessible 
to the electron beam. 

 
Fig. 6.25: Four layers diamond lattice directly grown in the (001) orientation. a) View 
tilted 45º and b) top view. The structure is made of 290 silica spheres of 0.9 microns of 
diameter. The pitch of the silicon template is 1.05 microns. Holes depth and diameter is 
450 nm and 770 nm respectively. Layer-to-layer distance is 520 nm. Scale bars are 6.0 
microns. 

6.5 Summary. 

6.5.1 Conclusions. 

o A method to construct opal-like crystals with diamond symmetry by robot 
aided micromanipulation has been shown. It should lead to three-
dimensional photonic crystal structures able to sustain robust full gaps. 
The position of the complete gap and its width may be controlled by 
varying the particles diameter and the filling fraction. 
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o Templates fulfilling all the necessary requirements to firmly attach the first 
layer were designed and fabricated. 

o Oxygen plasma etching has proven to be an optimal technique to remove 
latex spheres without affecting the remaining structure made of silica. 

o Diamond structures with micron size periodicity have been fabricated in 
two different orientations: (001) and (111). 

o A technique in which a sacrificial scaffold is not needed was developed 
and applied to obtain diamond structures in the (001) orientation. 

o Results demonstrate the viability of this method to prepare macroporous 
lattices, open the way to controllable formation of a wide variety of 
microstructures and provide a new route to the study of novel lattices with 
photonic properties. 

6.5.2 Future research. 

At this point diamond structures made of micrometric silica spheres have been 
fabricated. There is, however, some work that has not been done yet. 

o Optical measurements. The dimensions of the samples fabricated in this 
work ranges from 10 to 14 microns of lateral size in their base and the 
number of layers rages from 4 to 6 layers. The substrate is made of silicon, 
with a high dielectric constant compared to that of silica. Under these 
circumstances, obtaining optical data is not a trivial issue. However, with 
appropriate equipments optical spectra of similar sized structures have 
been obtained.19 The problem of low refractive index is expected to be 
solved after semiconductor infiltration. 

o Filling fraction adjustment. The filling fraction of diamond structures 
presented in this chapter is 34%. This value is too low to obtain a cPBG 
even if the lattice is infiltrated with a high dielectric constant material and 
then inverted. To increase the filling fraction, sintering the sample must be 
discarded since it carries a decrease of silica spheres diameter and the 
structure is distorted. An alternative that would not affect the lattice 
parameter is the controlled growth of a Ge layer by CVD (as shown in 
previous chapter) and posterior oxidation. Fig. 6.26 shows the relationship 
between sphere radius and filling fraction of a diamond structure obtained 
from Montecarlo calculation. This would lead to a mixed structure of 
interpenetrated spheres made of SiO2 with a shell of GeO2. These oxides 
could be easily etched away with HF in the inversion stage. Another 
possibility is growing silica by a CVD process.20 The advantage of the 
former method is that accurate control of the deposited layer thickness has 
been already proved (Chapter 5). 

o Semiconductor infiltration. Once an adequate filling fraction is achieved, 
infiltration of the sample with a high refractive material is the next step to 
take. Silicon and germanium are ideal candidates to be grown by CVD. At 
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this stage, crystals should present a cPBG provided the number of layers 
was enough. 
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Fig. 6.26: Relationship between sphere radius (relative to lattice parameter) and filling 
fraction in a diamond structure. The arrow points at the value at which spheres are 
touching each other. Above that value spheres are interpenetrated. 

o Structure inversion. To increase the refractive index contrast the samples 
could be inverted by etching the oxides with HF. The difference with the 
inversion of artificial opals is that, in our case, there would be no silica 
exposed to air and therefore it would be isolated form the acid (in the case 
of artificial opals they are usually cleaved for this purpose). A possible 
solution is applying reactive ion etching to expose one of the sample 
facets.21 

The use of nanorobotic manipulation to fabricate photonic crystals as proposed 
in this dissertation is still far from being really practical for industrial purposes. 
Time needed to fabricate samples and working conditions lead to discard manual 
stacking of spheres at current date. However, many of the limitations could be 
solved with a nanorobot specially designed to fabricate photonic crystals. Custom 
sample-e-beam orientation, especial implementations for beads supply, and some 
improvements (to avoid equipment faults) are some of the ideas this work brought 
up. Research on robotics is still a novel field and many advances are made every 
day. Automatic identification and manipulation of particles by a computer-
controlled nanorobot is already being developed.22 

In terms of basic research, this is the first time that diamond lattices made of 
micrometric silica spheres have been fabricated. Besides, the procedure here 
proposed opens a wide range of possibilities for engineering new structures and, in 
particular allows, the control of structural defects (as point and line lattice defects) 
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for direct and inverse structures. Single inorganic spheres or rows of them can be 
replaced by their organic counterparts in the mbcc to produce point or line defects 
(air cavities and waveguides) after the etching. Nanorobotic manipulation has 
proven to be useful also to fabricate woodpile structures (Fig. 6.27).23 

 
Fig. 6.27: Woodpile structures fabricated stacked with a nanorobot. SEM images were 
taken from ref. 23. 

A very desirable achievement would be the fabrication of diamond lattices by 
self-assembly methods. In this sense, the method presented here may be useful as 
well. A work recently presented by Velikov et al,24 has shown that obtaining non 
close packed structures by self assembly is possible. Samples are obtained by layer 
by layer growth of spheres of different diameters. This method could be developed 
to grow mbcc samples in the (111) orientation since for this direction each layer is 
homogeneous (made only of silica or latex spheres). 

Hopefully this study will serve to foster the development of novel techniques 
that, with the advances in microscopy and robotics, can end up in very promising 
practical applications in different research fields such as photonics or biomaterials 
technology.25 
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Appendix I: Reciprocal lattice vectors and 
high symmetry points. 

 

I.1 Simple cubic lattice. 

A symmetric set of primitive vectors for the simple cubic (sc) lattice is: 

( ) ( ) ( )100;010;001 321 aaaaaa === rrr              

where a is the lattice parameter. The reciprocal lattice vectors generate another sc 
lattice with atom coordinates given by: 

( ) ( ) ( )100
2

;010
2

;001
2

321 a
b

a
b

a
b

πππ
===

rrr
             

The Brillouin zone (BZ) for a sc lattice is a cube as shown in. Fig. I.1. High 
symmetry points are also represented and labeled as Γ (center of the BZ), X, M and 
R. 

 
Fig. I.1: sc Brillouin zone and most important symmetry points. 

The symmetry points coordinates in the reciprocal lattice for the particular 
choice of Fig. I.1 are: 
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I.2 Body centered cubic lattice. 

A symmetric set of primitive vectors for the body centered cubic (bcc) lattice 
is: 

( ) ( ) ( )111
2

;111
2

;111
2 321 −=−=−=

a
a

a
a

a
a rrr              

The reciprocal lattice vectors generate a face centered cubic (fcc) lattice with 
atom coordinates given by: 

( ) ( ) ( )011
2

;101
2

;110
2

321 a
b

a
b

a
b

πππ
===

rrr
             

 
Fig. I.2: bcc Brillouin zone and most important symmetry points. 
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The BZ for a bcc lattice is a rhombic dodecahedron as shown in. Fig. I.2. High 
symmetry points are also represented and labeled as Γ (center of the BZ), P, H and 
N. 

The symmetry points coordinates in the reciprocal lattice for the particular 
choice of Fig. I.2 are: 
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I.3 Face centered cubic lattice. 

A symmetric set of primitive vectors for the fcc lattice is: 

( ) ( ) ( )011
2

;101
2

;110
2 321

a
a

a
a

a
a === rrr              

 
Fig. I.3: fcc Brillouin zone and most important symmetry points. 
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The reciprocal lattice vectors generate a bcc lattice with atom coordinates given 
by: 

( ) ( ) ( )111
2

;111
2

;111
2

321 −=−=−=
a

b
a

b
a

b
πππ rrr

             

The BZ for an fcc lattice is a truncated octahedron as shown in. Fig. I.3. High 
symmetry points are also represented and labeled as Γ (center of the BZ), X, L, U, 
K, and W. 

The symmetry points coordinates in the reciprocal lattice for the particular 
choice of Fig. I.3 are: 
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Appendix II: Geometrical and analytical 
description of some important fcc planes. 

 

In this appendix, computer generated images of different planes present in fcc 
lattices will be provided. For each direction a set of primitive vectors will be 
chosen so that the first layer lies on the X-Y plane. The first two vectors will 
generate the first layer and the third vector will give us information about how next 
layer is shifted along the Z axis. 

In all cases the condition for touching spheres is a=√2·d, where a is the lattice 
parameter and d is the sphere diameter. 

II.1 {001} planes. Γ-X direction. 

 
Fig. II.1: Top view of the first layer of a {001} plane in an fcc lattice (left). Two layers top 
(right-top) and perspective view (right bottom). 

The vectors that will generate these planes are: 

{ } ( ) { } { }






=






==
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1

0
2
1
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1

2
1

;001 001

3

001

2

001

1
aaa aaa            

From these vectors it can be deduced that interlayer distance is a/2. The 
structure is repeated every two layers in the (001) direction. This means that 
spheres in the 3rd layer are exactly above those of the 1st layer. 
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II.2 {111} planes. Γ-L direction. 

 
Fig. II.2: Top view of the first layer of a {111} plane in an fcc lattice (left). Two layers top 
(right-top) and perspective view (right bottom). 

The vectors that will generate these planes are: 

{ } { }

{ }
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a

aa      
 

From these vectors it can be deduced that interlayer distance is a/√3. The 
structure is repeated every three layers in the (111) direction. This means that 
spheres in the 4th layer are exactly above those of the 1st layer. 

II.3 {011} planes. Γ-K direction. 

The vectors that will generate these planes are: 

{ } { } ( ) { }
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1
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From these vectors it can be deduced that interlayer distance is a/√8. The 
structure is repeated every two layers in the (011) direction. This means that 
spheres in the 3rd layer are exactly above those of the 1st layer. 
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Fig. II.3: Top view of the first layer of a {011} plane in an fcc lattice (left). Two layers top 
(right-top) and perspective view (right bottom). 

II.4 {201} planes. Γ-W direction. 

 
Fig. II.4: Top view of the first layer of a {201} plane in an fcc lattice (left). Two layers top 
(right-top) and perspective view (right bottom). 

The vectors that will generate these planes are: 
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From these vectors it can be deduced that interlayer distance is a/√20. The 
structure is repeated every ten layers in the (201) direction. This means that spheres 
in the 11th layer are exactly above those of the 1st layer. 

II.5 {411} planes. Γ-U direction. 

 
Fig. II.5: Top view of the first layer of a {411} plane in an fcc lattice (left). Two layers top 
(right-top) and perspective view (right bottom). 

The vectors that will generate these planes are: 

{ } { } { }
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From these vectors it can be deduced that interlayer distance is a/√8. The 
structure is repeated every six layers in the (411) direction. This means that spheres 
in the 7th layer are exactly above those of the 1st layer. 
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Appendix III: Fourier coefficients of the 
dielectric function for spherical atoms. 

As explained in Chapter 1, thanks to its periodicity, the dielectric function ε(r) 
can be expanded as a discrete summation where wave vectors are positions of the 
reciprocal lattice (G): 

∑=
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GrGr ie)()( εε ; 
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The integral to obtain the Fourier coefficients is evaluated in the Wigner-Seitz 
(WS) cell in the real space. The dielectric function Fourier coefficients are 
complicated to calculate since these cells can take arbitrary forms depending on the 
kind of lattice. However, some cases allow obtaining an exact analytical result and 
photonic band calculations based on plane wave methods can be computed much 
faster. In this appendix some useful examples are presented. 

III.1 One homogeneous spherical atom. 

In the cases in which the WS cell contains just one spherical atom, the 
dielectric function can be expressed as follows: 
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where R is the sphere radius and εs and εm are the sphere and surrounding medium 
dielectric constants respectively. If the sphere is completely contained within the 
integration volume, the following expression is also valid: 
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If this equation is used to calculate the Fourier coefficients we have: 
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The first integral is evaluated in the WS cell, however the second integral can 
be constrained to the sphere volume since it is null in the rest of the space and the 
whole sphere is contained in the WS cell. The advantage is that integration is much 
easier now. 
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Regarding the first integral, it is known that: 
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Therefore first integral only contributes to the dielectric function Fourier 
coefficient where G=0. In general this coefficient is nothing but the average 
dielectric constant of the crystal. This is a general result that does not depend on 
the kind of lattice or the shape or number of atoms within the WS cell. 
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For the rest of coefficients where G≠0: 
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Solving the integral in spherical coordinates: 
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And finally we obtain: 
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where f is the filling fraction. The final expression for Fourier coefficients is: 
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It is important to notice that this expression is valid for all kind of lattices with 
one spherical atom per WS cell. The only condition is that spheres must not 
overlap between them. 

III.2 More than one homogeneous spherical atom. 

This is the case of Bravais lattices with a multiple vector basis. We still have 
that for G=0 the Fourier coefficient is equal to the average dielectric constant of the 
lattice. For other coefficients the integral must be performed for all the spheres 
present in the WS cell each made of a dielectric εn. The atoms positions are given 
by rn. Coordinates transformation can be applied to simplify calculations: 

( ) r'rr'r   rr'r ddd nn =+=+= ; ; 

where r’ is a vector that gives coordinates relative to each of the atoms. Operating 
as done in the previous section, the following equation is obtained: 
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In this case there is a summation to all the atoms in the WS cell, and each term 
is multiplied by e-iGrn. Although these equations are easy to solve, this introduces an 
imaginary term that can be difficult to handle and interpret. However, having 
inversion symmetry in the WS cell implies that for every rn there is an identical 
atom at –rn. Therefore in the summation we will find e-iGrn+eiGrn = 2 cos(Grn). 
Consequently, for lattices presenting inversion symmetry the Fourier coefficients 
are: 
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where fn corresponds to the filling fraction of each of the basis atoms. 

An example of a two-atom basis with inversion symmetry is the diamond 
lattice for which basis vectors can be chosen to be: r1=a/8(111) and r2=-a/8(111). 
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Another example is the mixed bcc lattice with a four-atom basis and inversion 
symmetry. Using the vectors given in section 6.2.2.1 we obtain: 
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In both cases one can be observe that no imaginary terms exist when the lattice 
presents inversion symmetry. The expression of the previous section can be 
recovered if rn=0 and all atoms are made of the same dielectric. 

III.3 Sphere with a dielectric core. 

Another singular case is that of spheres made of a dielectric core (with ε1 and 
R1) in a dielectric shell (with ε2 and R2). The dielectric function is: 
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Again ε(G=0)=<ε>. Repeating calculations as shown for homogeneous spheres 
but taking into account the former expression for the dielectric function leads to the 
following equation: 
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Unfortunately this equation is not useful for artificial opals where 
semiconductor shells have been grown such as those presented in Chapter 5. This is 
a consequence of the overlapping of the spherical shells between neighbors.
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Appendix IV: Other methods to fabricate 
artificial opals. 

Apart from the methods to grow artificial opals explained in Chapter 3, there 
has been an extensive research to improve their quality and develop novel 
techniques. In this appendix three of the most effective are briefly described. As an 
important difference to the previous methods, these techniques or their 
modifications have allowed the fabrication of fcc structures showing {100} planes 
large enough to provide good optical measurements. 

IV.1 Epitaxial growth. 

This method was introduced in 1997 by van Blaaderen et al.1 to obtain 
colloidal crystals forming an fcc array grown in the (001) direction. Before his 
work, all known self-assembly methods resulted in crystals showing the {111} 
planes. 

In the (111) growth direction, once first layer spheres are settled (layer A), the 
next layer spheres may occupy two different stable dispositions (B or C) relative to 
the first layer. An fcc crystal would follow an ABCABCABC… or 
ACBACBACB… sequence while for an hcp array it would be: ABABAB… or 
ACACAC… However, if the sample was grown in the (001) direction, second 
layer spheres would have a single stable possibility and no twinning directions. 
Therefore, the first layer will determine the positions of the spheres for the 
subsequent layers. This is called epitaxial growth. 

As it has been explained in Chapter 3 spheres tend to crystallize in a close-
packed disposition. To force the first layer to be a (001) plane, a template of holes 
was made with electron-beam lithography. The spheres were dispersed in an index-
matching and high ionic strength medium where van der Waals and Coulomb 
forces could be neglected. The size of the spheres chosen was 1.05 µm so that 
Peclet number was ≈0.2, that is, too high to allow crystallization in close-packed 
arrangements. Since silica spheres used in that experiment had a fluorescent core, 
the position of the spheres could be observed in-situ by means of confocal 
microscopy. 

This method presented, however, a drawback: the samples fabricated could not 
be dried to obtain a solid crystal. Four years later Braun et al.2 developed a 
modification of the procedure using a new solvent system based on hydrazine 
hydrate that allowed its removal at the completion of the process. 

The concept of epitaxial growth will have a capital importance in Chapter 6 to 
fabricate a diamond structure. 
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IV.2 Capillary growth. 

Kim et al.3 presented in 1996 a novel method to self-assemble colloidal 
microspheres in micro channels. They made use of a technique to fabricate 
polymeric microstructures of organic material.4 Channels were formed by the 
conformal contact of the patterned elastomeric master and a substrate. The ends of 
the channels were cut to allow the colloidal suspension to enter and air to escape. 
When a suspension reservoir was placed at one of the ends, the fluid filled the 
channels network due to capillary forces. At the other end of the channels, 
evaporation happened causing the aggregation and therefore crystallization of 
spheres in a similar way to the vertical deposition method explained in Chapter 3. 

In the following years, the method was improved by Yang and collaborators. 
They fabricated V-shaped grooves with 70.6º apex angles beneath the surface of 
silicon wafers by means of soft lithography and anisotropic etching.5 The geometry 
of this channels forces the crystal to grow in the (001) direction. With this method 
opal chips of up to 10 layers were reported. In other paper they modified the Kim 
et al. work to obtain opal microchannels with very good optical quality made of 
silica spheres as large as 850 nm.6 

IV.3 Micro-cell confinement. 

This technique was presented by Park et al.7 to obtain thin opals not much 
before the vertical deposition method was published.8 Their experimental setup 
consisted in constructing a cell from two glass substrates and a square frame of 
photoresist tightened with binder clips. Microchannels that could retain the spheres 
were photo-lithographed on one of the sides of the frame. The colloidal suspension 
was then injected through a hole in the top glass substrate. Capillary forces and 
pressure due to a nitrogen flow causes the aggregation of the spheres at the side of 
the frame where the microchannels are present. 

The method, although not as simple as that of vertical deposition, has proven to 
be valid to fabricate thin opals of silica spheres of up to 600-700 nm of diameter or 
even larger (1.26 µm) if ethylene-glycol is used.9 The sample layer number can be 
controlled by simply varying the thickness of the cell. In a less sophisticated 
version of this method the photoresist is substituted by an easily available Mylar 
film spacer.10 

As happened with the capillary growth method, this technique could also take 
advantage of epitaxial growth to obtain solid opals showing large {100} planes.11 
In this case a regular array of square pyramidal pits is etched on silicon wafers. The 
procedure is the same as for V-shaped grooves but in this case the photo-
lithographed motive is a square that becomes a pyramidal pit after the etching 
process. This templated surface is used as the bottom substrate for micro-cell 
confinement. The distance between apexes of neighboring pyramids is an integer 
multiple of the sphere diameter. In each pyramid the crystal grows in the (001) 
direction so that the array of pyramids works as a template designating the 
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positions of the first layers spheres. Epitaxial growth does the rest to obtain thin 
film opals showing {100} planes. 
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CONCLUSIONES GENERALES 
 

Capítulo 2: 
 

o El valor apropiado del índice de refracción (IR) para esferas de sílice 
sintetizadas es 1.425±0.005. 

o Tratamientos a una temperatura inferior a 600 ºC apenas afectan al IR de 
las esferas de sílice. Para temperaturas superiores el IR muestra 
importantes variaciones a tener en cuenta. 

o El comportamiento del IR de las esferas de sílice frente a la temperatura de 
calcinación no parece ser dependiente del tamaño de la esfera o del hecho 
de haber sido recrecida. 

o La porosidad del las esferas sintetizadas es cercano al 25%. Las moléculas 
de agua pueden acceder a ellos. 

o Para temperaturas superiores a 750 ºC los poros colapsan y el diámetro de 
la esfera disminuye significativamente. 

 
Capítulo 3: 
 

o Las suspensiones de esferas de sílice en agua tienden a formar sedimentos 
cristalinos con concentraciones cercanas al 55%. Por el contrario, los 
sedimentos obtenidos con esferas duras tienen concentraciones 
significativamente superiores. 

o La calidad cristalina del sedimento obtenido en suspensiones coloidales 
disminuye al aumentar el diámetro de las esferas de sílice. 

o La sedimentación asistida por electroforesis ha demostrado ser una buena 
técnica para obtener sedimentos opalinos de esferas de sílice de 870 nm de 
diámetro. En estos experimentos la velocidad de sedimentación es 
reducida sin afectar los parámetros que afectan a los coeficientes de 
difusión. 

o La velocidad de sedimentación puede ser también aumentada para acelerar 
la fabricación de ópalos hechos con esferas de sílice pequeñas (de 200 a 
300 nm). 

o Se ha presentado un método para obtener ópalos en lámina delgada con 
esferas de un diámetro cercano a los 660 nm. 

 
Capítulo 4: 
 

o La posición espectral y el ancho de los picos de difracción Bragg por los 
planos {111} en los ópalos dan información sobre el parámetro de red, el 
factor de llenado, la constante dieléctrica efectiva y la calidad cristalina. 
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o La ley de Bragg es una buena aproximación para un primer estudio del 
comportamiento de la primera pseudobrecha (de gap en inglés) en un ópalo 
alrededor de la dirección ΓL cuando los índices de refracción y sus 
contrastes no son demasiado altos. 

o Tanto el promedio de constantes dieléctricas como la ecuación de 
Maxwell-Garnett dan un valor preciso para la constante dieléctrica efectiva 
cuando los materiales que forman el ópalo tienen un bajo IR (<2.0). Para 
mayores IRs la constante dieléctrica efectiva debe ser calculada por otros 
métodos como el de expansión en ondas planas (PWE en inglés). 

o El número de capas en un ópalo crecido como lámina delgada puede ser 
calculado estudiando las oscilaciones de Fabry-Perot. 

o Los ópalos crecidos como láminas delgadas permiten el estudio de 
fenómenos que no pueden ser observados en ópalos crecidos por otros 
métodos (evolución de las propiedades ópticas con el número de capas, el 
patrón de difracción, oscilaciones de Fabry-Perot…). 

o Las propiedades ópticas de los ópalos hechos con esferas de sílice con un 
núcleo de oro quedan determinadas tanto por la difracción Bragg inherente 
a la estructura ordenada como por la absorción del plasmón superficial 
debida a los núcleos metálicos. 

o La absorción de la banda del plasmón puede ser observada mediante 
medidas de transmisión mientras que las de reflexión sólo muestran los 
picos de difracción Bragg. 

o La posición espectral de la banda del plasmón está corrida al rojo en el 
ópalo seco cuando se compara con la de esferas aisladas u ópalos 
infiltrados. La explicación parece estar relacionada con un acoplamiento 
con el esparcimiento incoherente de luz. 

 
Capítulo 5: 
 

o Se ha optimizado el proceso para crecer cantidades muy precisas de silicio 
y germanio con muy baja contaminación por medio de deposición química 
en fase vapor. 

o Las muestras fueron se sometieron a caracterización óptica y los resultados 
obtenidos muestran acuerdo con los cálculos teóricos de las estructuras de 
bandas. 

o Sistemas multicapa de ambos semiconductores (Si y Ge) han sido 
desarrollados. Las muestras se han observado con un microscopio 
electrónico de barrido y caracterizado su óptica. 

o La eliminación selectiva de germanio con agua regia se ha demostrado 
como técnica efectiva para crear cámaras de aire entre dos materiales. 
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o Cálculos teóricos muestran que ligeras variaciones en la topografía del 
cristal pueden dar lugar a importantes efectos (bandas planas, apertura de 
pseudobrechas…). 

o Se ha mostrado una estructura de bandas con una brecha completa entre la 
5ª y la 6ª banda y el método para fabricar el susodicho cristal. 

 
Capítulo 6: 
 

o Se ha mostrado un método para construir ópalos con simetría tipo 
diamante por medio de micro-manipulación robótica. La posición espectral 
de la brecha completa y su anchura puede ser controlada variando el 
tamaño de las esferas y su factor de llenado. 

o Plantillas de agujeros que satisfacen todos los requerimientos para fijar 
firmemente las esferas de la primera capa han sido diseñadas y fabricadas. 

o El ataque por plasma de oxígeno se ha mostrado como una técnica óptima 
para eliminar las esferas de látex sin dañar al resto de la estructura. 

o Estructuras tipo diamante con una periodicidad del orden de la micra se 
han fabricado en las direcciones (001) y (111). 

o Una técnica que no precisa de un soporte de esferas de látex se ha 
desarrollado para crecer estructuras tipo diamante en la dirección (001). 

o Los resultados muestran la viabilidad de este método para preparar 
estructuras macroporosas. También abren el camino para la construcción 
de forma controlada de nuevas estructuras de interés fotónico y su estudio. 
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