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Abstract
Photonics, the technology of photons (by analogy to electronics, the
technology of electrons) will be the driving force for the advancement of
areas such as communications and computing, information technology and
probably others such as sensing. Photonic band gap (PBG) materials may
answer many of their demands. Trying to understand the physics involved is
a challenge very eagerly taken on by an ample science community. Although
most of the notions dealt with in this discipline are rooted in solid state
physics concepts, it is worth pointing out that they were originally borrowed
by solid state physics from the theory of electromagnetism. The realizations
of actual structures to fulfil theoretical predictions are plenty and they come
from very distinct fields. Foremost among the approaches to PBGs, colloidal
systems lend themselves to being used as natural starting points for the
purpose of creating and using photonic crystals. A broad range of techniques
and different sources of knowledge contribute to the interdisciplinary nature
of the subject. A whole wealth of materials properties are involved that
spring from their architectural scale. From the molecular level, and up to the
macroscopic structure, micro- and mesoscopic regimes involve new
properties, processes, and phenomena like synthesis in new environments,
mechanical, optical, electronic, magnetic and other properties.

Keywords: photonic band gap, opal, infiltration, templating, photonic crystal,
diffraction, spectroscopy, fabrication techniques

(Some figures in this article are in colour only in the electronic version)

In this review a presentation of the concepts relating to

photonic band gaps is made followed by a summary of the most

successful realization strategies. Finally a review of the optical

properties is accompanied by examples of applications directly

derived from them.

* This article was submitted to the special issue on fundamental aspects of
nanophotonics. This special issue may be accessed online at stacks.iop.org/
JOptA/8/i=4.

1. Introduction

Photonic crystals (PCs) or PBG materials are a class of material
structures in which the dielectric function undergoes a spatially
periodic variation. The length scale in which the variation
takes place (lattice parameter) determines the spectral range of
functioning of the PC and the wavelength at which the effects
are felt corresponds approximately to the lattice parameter.
This can be achieved by structuring a single compound or by
constructing a composite with materials of different dielectric
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Figure 1. Dispersion relation for a homogeneous material (dashed
cyan straight line) and for a periodic material with the same average
RI and period a.

properties. Thus a PC working in the optical range of the
electromagnetic spectrum will present a modulation of the
dielectric function with a period of the order of one micron; one
designed for microwaves should be modulated with a period
of some centimetres; and a PC for x-rays should present a
modulation of some ångströms and this is a solid state crystal.
These present iridescences as a result of diffraction. Some
natural examples are the multilayered structure of pearls, the
flashing wings of several insects [1] and natural opals [2].
The same effect appears in familiar man-made objects such as
compact discs or diffraction gratings.

When modelling the diffraction of light by periodic
media, for example a layered structure, one computes the
phase difference accumulated by rays that suffer scattering in
different planes in the stack and adds up those with a multiple
of 2π (constructive interference). With a little more algebra
this leads to Bragg’s law. A similar approach yields the
(equivalent) Laue formulation and both lead to the concept
of reciprocal lattice. This is a lattice (in a wavevector space)
all of whose points generate plane waves with the periodicity
of the direct lattice [3]. This simple formulation provides
a description of the diffracting properties of the (periodic)
system in the form of sets of pairs of the form [wavelength,
direction] for which the light does not enter the structure but,
rather, is Bragg diffracted. For any given direction several
orders of diffraction may be considered, inspiring the idea of
various bands for a given wavevector. This description is well
suited to x-ray scattering for which it was developed. It relies
on the fact that in these wavelength ranges the refractive index
(RI) negligibly differs from one since the energy of the photons
involved is immensely larger than the elementary excitations in
the material and therefore there is no absorption.

A simple model for optical frequencies might be a one-
dimensional (1D) periodic variation of the dielectric function.
Fourier expansions of periodic magnitudes always become a
summation rather than an integral. This summation contains
a discrete (though infinite) number of plane wave-like terms,
each corresponding (not by chance) to a vector of the reciprocal
lattice. The dielectric function can then be expanded in such
a way, and so can all other periodic magnitudes involved. If
introduced in a scalar wave equation this leads to a dispersion
relation: an expression for the wavevector as a function of
energy. This is a band structure. The interesting result is
that, for certain energy ranges—marked as stripes in figure 1—
no purely real solutions exist and the wavevector has a non-
vanishing imaginary part, meaning that the wave suffers

Figure 2. Two wavefunctions which have the same wavevectors and
only differ in a phase have different energies because they take larger
values in a layer of larger or smaller dielectric function.

attenuation and does not propagate through an infinite crystal.
The wavevector at which this happens is that predicted by
Bragg’s law (producing stationary waves) and the range of
energies where k is no longer real is called the stop band.
Another interesting fact is that for this wavevector there are two
solutions (energies): one above and one below the gap, both
having the same periodicity but spatially shifted with respect to
each other. The electromagnetic (EM) energy is proportional
to the dielectric function and the electric field squared, thus
accounting for different energy despite both states having
the same wavevector. An EM field stores more energy if
it has extrema (rather than nodes) at the regions of higher
dielectric function so that lower energy states concentrate in
high dielectric function regions (see figure 2)1. The stop band
width is mainly determined by the dielectric contrast: the
greater the contrast the wider the gap. It also explains that even
infinite crystals will present a finite diffraction peak width as
opposed to x-ray diffraction where peak width (�λ/λ ∼ 10−6)

is mainly accounted for by crystal size broadening (Scherrer’s
law). This very simple model can be further improved if we
wish to consider the three dimensions [4]. If a single Fourier
term in the expansion is assumed to dominate the sum close to a
diffraction, simple expressions are obtained that fairly account
for the width of diffraction peaks for common structures [5].

A rigorous treatment is required to account for all
possible effects associated with the vectorial character of
electromagnetic radiation. This can be done by expanding the
electromagnetic fields in plane waves and solving the Maxwell
equations exactly in a numerical fashion. This strategy was first
demonstrated for periodic arrangements of spherical atoms in
face-centred cubic (fcc) [6] and diamond lattices [7]. After a
little manipulation, the Maxwell equations can be reduced to a
wave equation of the form

∇ ×
[

1

ε(r)
∇ × H(r)

]
= ω2

c2
H(r)

which is an eigenvalue problem for H(r), the magnetic field.
It can be shown that the operator acting on the field (Θ =
∇ × 1/ε(r)∇×) is Hermitian and, as a consequence, its
eigenvalues are real and positive. That these are the properties
of a Hamiltonian in quantum mechanics offers the possibility

1 This can be otherwise viewed as a statement of a variational principle. The
lowest energy eigenvalue is always orthogonal to all those of smaller energy
and minimizes the energy functional E f = 1

2 〈H(r)|�|H(r)〉/〈H(r) · H(r)〉.
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to extrapolate many properties from quantum mechanics: we
may think of PCs in solid state physics terms [8]. Since
ε(r) is periodic we can use Bloch’s theorem; we also expand
all fields in plane waves. After some more algebra this
equation is reduced to a matrix diagonalization problem whose
eigenvalues are the photonic bands, that is, lists of pairs of the
kind (ω, k)n that can be viewed as successions (labelled by
n) of energies ω for every wavevector k or series of functions
ωn(k). It is crucial to realize that, due to Bloch’s theorem, two
states with wavevectors differing by 2π/a represent exactly
the same state. Therefore this wavevector k can be confined
to the first Brillouin zone (BZ): a region of reciprocal space
closer to the origin than to any other reciprocal lattice point2. If
desired, the bands can be unfolded and extended in reciprocal
space. This is schematically depicted for a 1D system in
figure 1 where energy dispersion is folded back into the BZ
by subtracting some reciprocal lattice vector. It should also
be pointed out that the periodicity of the system changes
wavevector conservation into conservation save for a reciprocal
lattice vector G. This acquires importance when analysing
scattering processes where momentum must be conserved and,
thus, incoming kin and outgoing kout momenta must satisfy
kout − kin = G. Eventually this may reduce to the ordinary
kout = kin for G = 0.

This is acknowledged to be the correct description of
photon states in a periodic medium. The conditions for gap
appearance in these systems are much more restrictive than
for electrons in solids. There is yet another subtle difference:
for photons there is no length scale involved as a Bohr radius.
This lack of an absolute length scale makes the physics of PCs
scalable provided no dispersion of the dielectric function is
assumed. In such circumstances resizing the system resizes
the energy in such a way that the spectrum in units of c/a
is independent of size, where c is the speed of light and a
the lattice parameter. That is, if we scale a system such
that the ratio of the wavelength to the lattice parameter stays
constant all the properties of the initial system at the initial
wavelength range are the same as those of the scaled system at
the corresponding wavelength range. Since ω/(2πc/a) = a/λ

it is customary to use such units to measure the energy. Besides
the scalability in space there is a scalability in the dielectric
function: there is no fundamental scale for ε. Two systems
whose dielectric functions scale by a factor ε′(r) = ε(r)/s2

have spectra scaled by the same factor: ω′ = sω, which means
that increasing the dielectric function by four decreases the
energies by two.

Periodicity can be made to occur in one, two or
three directions. Most of the properties discussed so far
are independent of dimensionality and are well exemplified
by sticking to one-dimensional systems. Such systems,
extensively used in optical applications, are called Bragg
reflectors and consist of stacks of alternating high and low RI
transparent materials that base their superiority over metallic
mirrors on their reflectance without dissipation. There are
however certain aspects that might require some inspection
when more dimensions are considered. Two-dimensional

2 In order to obtain the BZ for any given reciprocal lattice it is sufficient to
draw the bisectors (lines in 2D systems and planes in 3D) of the segments
joining the origin with the lattices points and selecting the region that can be
reached without crossing any such bisector.

Figure 3. Two examples of two-dimensional PCs with different
aspect ratios that cause the existence or absence of a full band gap. If
the point N is much further than M from the origin its associated gap
can have no overlap with that of M.

systems are increasingly used for microphotonic applications
and consist of periodic repetitions of objects in a two-
dimensional arrangement like, for instance, rods periodically
arranged parallel to one another. In this case the dielectric
function varies periodically in a plane perpendicular to the
rods’ axes but it is independent of position along the axis.
Three-dimensional systems present a modulation in the third
direction as in a stack of spheres. Since the energy spectrum
is direction dependent a gap found in one direction will not
be a real gap if there are states in other directions for this
energy. This gives us an initial clue as to how to search for
systems showing a full gap. If periodicity in one direction is
very different from other the BZ will present a high aspect
ratio (see figure 3). Close to the origin (k → 0 or λ → ∞)
bands are straight lines since the system behaves as an effective
medium with an effective RI for which ω = (c/n)k. The
gaps at the BZ edge can be expected around ωBZE = ckBZE/n
with kBZE = π/a where a is the period in a given direction.
If a takes very different values in different directions (for a
multidimensional system) then gaps will open at very different
frequencies and, consequently, will not overlap: no full gap
will open.

2. The photonic band structure

Let us now turn to some aspects of the band structure that
will help in interpreting optical spectra later on. For this,
a good starting point is introductory solid state physics text
books and specialized sources [9], but we shall summarize
the most important results. A typical 3D dispersion diagram
is shown in figure 4. The X axis represents momentum that
for most purposes can be taken as representing wavenumber
and direction of propagation. The Y axis represents energy
measured in very convenient adimensional units: a/λ, where
a is the lattice parameter. The different panels composing the
diagram represent paths between important (high-symmetry)
points in reciprocal space which (not by chance) happen to
be the midpoints of the segments joining the origin to its
nearest neighbours in the reciprocal lattice. Panels starting
at �, e.g. �X, show the dispersion relation for states with
increasing k, all pointing in the same direction (X = [001])
whereas in panels such as XW both direction and modulus
of k vary continuously to sweep from the centre (X) to the
corner (W) of the square faces of the fcc BZ. It can be seen
that the panels have different widths according to the different
distances in reciprocal space between the indicated (high-
symmetry) points. Among the many bands that are plotted
in the �L panel, some have the familiar ω = (c/n)k form
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Figure 4. Dispersion relation for a PC made of silica spheres in a
compact fcc arrangement. For these structures the lattice parameter is
given by a = D

√
2 with D the sphere diameter. Owing to the

scalability of the theory, the band diagram is independent of lattice
parameter (and, thus, of sphere size) so long as the dielectric function
is not dispersive. Therefore any such structure can be modelled by a
single band diagram.

Figure 5. An arbitrary wavevector, k′, is folded back into the first
BZ, k, by subtracting the closest reciprocal lattice vector (G2).

(n being an effective RI) or ω = (c/n)(k − 2π/a) which
results from shifting the previous relation by one reciprocal
lattice vector parallel to the vector involved. This is shown
in figure 1 as a translation of the red curve by 2π/a.3 There
are other bands that result from the folding back into the
BZ by means of vectors not parallel to the �X direction as
depicted in figure 5. These bands have an expression like
ω = (c/n)k ′ = (c/n)[(2π/a)2 + k2]1/2 which makes them
less dispersive. This picture gets even more complicated for
three dimensions, where many more vectors get involved, and
is only simplified by symmetry properties making the bands
degenerate. Of course this degeneracy may be lifted, for
instance, by a slight deformation.

In figure 4 we can seen that, in any given panel, not
all energies have an associated k. The regions where bands
leave unfilled spaces are the gaps. By looking at the whole

3 It is worth noticing that the point X ([001] direction) does not show such
a gap at the edge of the BZ, which is in agreement with a simple prediction
based on the structure factor, as in x-ray scattering. However, if the dielectric
contrast is strongly increased a small gap opens, signalling the failure of that
theoretical approach.
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Figure 6. Comparison between no contrast and high contrast with
the same structure. The bands in the right have been coloured,, trying
to convey the origin of the band in the homogeneous medium (left)
but mixing of bands impedes it.

diagram we can see that none of these gaps is present for all
wavevectors: there are no full gaps.

As mentioned before, RI contrast enhances the width of
the gaps. If we continuously tune the contrast down to a
homogeneous medium with the same average RI the bands
evolve to a situation where no gaps are left; the bands cover
the whole spectrum. This can be expressed by saying that
larger Fourier coefficients lead to larger gaps and large Fourier
coefficients are synonymous with strong modulation. An
example is provided in figure 6, where two band structures are
calculated4 that correspond to an fcc lattice of spheres in close
packing. The left band structure corresponds to a lattice where
the spheres have an RI very nearly identical to the background,
whereas the right band structure corresponds to a system in
which the background is air but the spheres have a high RI
such the average is the same as in the left. There are several
effects that can be seen. Firstly gaps open, for example in
the edge of the BZ where the bands flatten. Secondly, bands
curve and interact with one another, producing crossings and
anticrossings, and generally flatten out as higher energies are
considered. It can be seen that the energies of all the features
are more or less the same in both cases. In the figure the
bands are colour coded to point out their origin in the negligible
contrast (free photon, in analogy with the solid state case)
approximation and highlight the similarities. The gap widths
are governed by refractive contrast while the gap positions
are governed by the average RI. However, the existence of
complete gaps very strongly depends also on the topology.
The lattice alone does not determine the band structure: the
shape of the atoms also plays an important role. As suggested
above, the symmetry of the unit cell may lift degeneracies that,
eventually, can open gaps. That is the reason why so many
more bands show up in the finite contrast band structure as
compared to the homogeneous medium.

In summary the best chances to find a structure with a
complete gap are for lattices with as round as possible a BZ,
with a primitive cell with non-spherical atoms inside and with
the highest possible RI. In three dimensions this points towards
the fcc lattice [11], a particular case of which is the diamond

4 Photonic band structures are computed using a plane wave basis in an
iterative implementation as described in [10].
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Figure 7. Construction of IFSs in a hexagonal lattice. Initially the
IFSs can be drawn as circles that bend upon crossing Bragg planes in
order to meet them perpendicularly. By translating the curves into the
first BZ by the appropriate lattice vectors it is possible to build the
different IFSs corresponding to higher and higher energies.

lattice where every lattice site contains two atoms. It can also
be shown that very low filling fraction (the portion of space
filled by the scattering material) is desirable.

An additional aspect that brings about very important
consequences and gives rise to applications is the deformation
of the isofrequency surfaces (IFSs)5. This is caused by the
fact that an IFS must cross Bragg planes (boundaries between
reciprocal lattice unit cells) at right angles to them [12]. This
can only be achieved if the IFSs are bent and warped in the
neighbourhood of such planes, as is schematically depicted
in figure 7. Here the reciprocal space of a hexagonal 2D
crystal is represented. The centre point is the origin and the
light grey hexagons represent repeated BZs that tile the whole
space each surrounding a lattice point. The coloured polygons
are fractions of BZ bounded by Bragg planes (bisectors of
the segments joining lattice points). Every successive BZ is
divided into more and more fractions: the first one (red, centre
hexagon) is one piece (see top left inset); the second (orange)
is divided into six pieces (bottom left inset); the third one
(yellow) is divided into twelve (bottom right inset), and so on.
These pieces can be brought to form a BZ in the origin by
translating them by the appropriate reciprocal lattice vectors.
For low contrast the IFS are circles but the introduction of
contrast obliges to break them into curves whenever a Bragg
plane is crossed. When the mth BZ is recomposed from
its fragments bringing the IFS sections it contains to the
origin, successive IFSs are built, as illustrated by the coloured
hexagons in the corners of figure 7. These IFSs become useful
when exploiting the superefractive properties of PCs. When
bands depart from the free photon behaviour (ω = ck/n) the
RI must be taken as n = c/(dω/dk) rather than n = c/(ω/k)

and very peculiar behaviours can be obtained. The group (or
energy transmission) velocity, the only meaningful one in these
systems, is now vg = dω/dk rather than v = ω/k. Near the
centre and edges of the BZ the bands flatten out and the group

5 Of course only for homogeneous media, low RI contrast (free photon
approximation) or long wavelengths are these IFSs spheres of radius k =
ωn/c.

Figure 8. Yablonovite: the first 3D structure built to have a complete
PBG.

velocities go to zero. The net effect is that the time taken by
the EM field to traverse the sample is dramatically increased,
enhancing the interaction between light and matter. Since, for
multidimensional systems, the derivative is actually a gradient,
the correct expression for the velocity in the nth band is

vn(k) = ∇kωn(k)

which means that propagation is (as the gradient) normal to the
IFS concerned. For energies near or beyond the first BZ the
IFSs cross many Bragg planes and are strongly distorted. We
can visualize this by taking horizontal sections in figure 4 and
seeing that different k are required to cross a band if searching
in different directions. This has important consequences
because, in this situation, the propagation direction may greatly
differ from the wavevector. If the energy is changed the
surface also changes shape, with the corresponding change in
propagation direction. At some points this change may be
rapid, with the associated swing in direction for small changes
in energy, and the system may be used to separate very similar
frequencies.

3. Top-down fabrication methods

The fabrication of PCs has evolved dramatically since they
were first proposed [13]. The first realization of a complete
PBG crystal was performed by Yablonovitch after a feverish
search of materials and structures [14]. This was machined
into a low loss dielectric material with millimetre-size drills.
The size determined its working range to be in the microwave
regime. The way it was obtained was by boring three tilted
holes in each position of a hexagonal lattice marked on the
surface of the block of material. The network of holes
excavated the material and left behind a structure similar to
a silicon lattice (see figure 8). It was tested and shown to reject
radiation of certain wavelength in any direction it entered the
material.

The race was then started in pursuit of ever smaller
scales in order to reach the optical regions where most
applications were designed. Different dimensionalities were
attempted depending on the application in mind and, in some
respects, it is difficult to assign a dimensionality to some
such structures. They are sometimes described according
to the number of dimensions in which the PC effect is felt
and sometimes according to the opposite criterion. Thus
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Figure 9. Wood pile structure built in a layer by layer fashion using
lithography.

2D systems like multilayers are effectively 1D PCs. They
have been widely produced and used for a long time as, for
instance, antireflection coatings, notch filters or distributed
Bragg reflectors. Usually evaporation techniques are used.

The fabrication of planar systems, where the PBG is felt
in two dimensions, has experienced the greatest development
by using mature techniques borrowed from many areas.
Lithography (optical and electronic) is the main contributor
to this expansion based on the microelectronics thirst for
increasingly precise processing. These 2D PC structures have
acquired the widest diffusion due to the easy, albeit expensive,
implementation of microelectronic technology techniques such
as photolithography and electron beam lithography. Monorail
and air bridges are examples of 1D structures also produced by
these means [15].

Typically Si and III–V semiconductor technology is
applied. Lattices composed of holes or pillars were often
adopted to obtain different structures. The first such realization
was in GaAs/GaAlAs [16] where a lattice of holes was etched
through an e-beam lithographed mask. Wave guides (WGs) can
be defined in these structures by leaving rows of holes filled.
Point defects produced near such multiple wavelength carrying
WGs can be tuned for extraction of selected wavelengths [17].
Although these techniques are mostly applied to produce 2D
systems (where they are most effective) they can also be used
in conjunction with other processes to add a third dimension
to the structures obtained. By using relatively standard
microelectronics techniques in a layer by layer fashion, 3D
crystals were soon fabricated for the IR region [18]. The
process consisted in lithographically defining a 2D array of
bars in a thin layer of Si, the empty space among which is
subsequently backfilled with silica and planarized. A second
layer of Si is deposited and the processing repeated, drawing
the bars at right angles to the first set. These are backfilled
and planarized and the process started over again. Finally
all the silica is etched away and a 3D porous structure like
that presented in figure 9 is obtained. Care must be taken
to place the bars such that the nearest parallel sets do not
overlap vertically. As an alternative, wafer bonding was used
to build the same 3D structures in which WGs can be easily
integrated during production [19]. In figure 10 an example of
another fabrication approach is shown [20]. The process here
consists in making a pattern of vertical holes in a hexagonal
arrangement in an amorphous Si layer and backfilling it with
spin-on dielectric. The latter is etched and polished to the
level of the underlying Si and subjected to a second Si growth,
lithographic recording and etching process taking care that the
new set of holes’ positions and depths are such that the layer

Figure 10. 3D structure obtained with a layer by layer method in
which successive etching/backfilling processes are carried out using
photolithographic techniques.

underneath is partially perforated with a sequence similar to
that of an fcc lattice in the [111] direction. Those regions
where holes belonging to different cycles overlap present a
columnar configuration because groups of six holes leave little
material untouched. If the cycle is repeated and finally the
backfilled dielectric is dissolved, a stack of layers of columns
and layers of holes is obtained that mimic the bonds in a
diamond lattice. This method presents the advantage that four
lithographic processes yield seven lattice layers.

Methods capable of producing entire regions of PBG
material were developed based on holographic techniques in
which several beams are made to interfere in the presence of
a photosensitive resist that is polymerized to fix the pattern
and create a replica of the intensity above a certain threshold.
This is schematically shown in figure 11, where examples are
given of various dimensionalities. When two coherent plane
wave beams interfere, equal phase regions are planes whose
normal vector is the difference in wavevector between the two
interfering beams. Thus, the threshold for photopolymerization
defines a boundary that coincides with a given intensity and
correspondingly to a phase difference. The net results will be
parallel slabs of polymerized and non-polymerized monomer
alternated in the direction of the wavevector difference. When
three beams are made to interfere, two wavevector differences
can be defined that produce two such interference patterns. The
net result is two ‘crossed’ sets of parallel slabs that give rise
to a 2D pattern. If four non-collinear beams are considered
a 3D pattern is created. The period of the structure and its
symmetry (lattice) are dictated by the laser wavelength, the
relative phases, and incidence directions of the interfering
beams, whereas the shape of the repeated feature in the lattice
(basis) results from the beams’ polarizations [21]. Exposed
but undeveloped films are amenable to further processing by
laser scanning to draw new structures for WG fabrication [22].
Simplified versions of this technique are being developed
where not four but two laser beams are made to interfere. The
interference of two beams yields a one-dimensional stack of
layers, but if this process is repeated, after the polymer film is
rotated, a 3D lattice can be created [23]. This greatly simplifies
the method because the experimental set-up involves many
fewer parameters while the time remains more or less the same.
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Figure 11. Holographic interference permits the use of different
configurations to produce PBG structures of any dimensionality by
interference of the appropriate laser beams. One-, two- and
three-dimensional examples are provided. The spherical shape in the
bottom example is a magnified view of the structure obtained.

These methods have opened the field to new ones where
the photosensitive polymer is scanned with a CW laser
rather than exposed with a laser shot. This is called direct
laser writing and although it is a much slower method it
has the advantage that it can produce any structure, be it
periodic or not, meaning that defects can be integrated at
the time of writing. Layer by layer structures can thus be
fabricated. Femtosecond laser pulses are tightly focused inside
the liquid resin, which is transparent to pulses below the
two-photon absorption threshold power density. The pulse
intensity is adjusted so that the light power density at the
focal spot of the laser beam exceeds the threshold. Strong
absorption in this highly spatially localized region results in
photopolymerization of the resin. By scanning the coordinates
of the focal spot, pre-designed patterns can be recorded
in the liquid resin. Laser irradiation renders the exposed
regions insoluble, while unexposed regions are dissolved and
removed during the post-processing stages [24]. Using these
same methods interesting topologies have been written [25],
imitating previous attempts [26] to grow spiral structures that
hold great promise for practical applications [27] and the
highly appreciated wood pile structure [28].

Robot manipulation is a recently developed method that
allows the arrangement of nano- and microscopic objects with

Figure 12. Vertical sedimentation method. A flat substrate is
immersed in a vial containing the colloid and the solvent is allowed
to evaporate.

a precision of nanometres, and has allowed the assembly
of diamond opals [29]. The wood pile structure, that has
revealed itself as one of the best suited to sustain a complete
PBG, is amenable to construction by this method. Recently
this has been demonstrated by stacking grids with the use of
a nanorobot [30]. The grids were previously fabricated by
lithography as wires held by a frame and they were stacked
criss-crossed to form a 3D crystal. Crystals for infrared
wavelengths of 3–4.5 µm of four to twenty layers (five periods)
including one with a controlled defect were integrated at
predefined positions marked on a chip with accuracy better
than 50 nm. Microspheres are used to slot into holes defined in
the frames to ensure correct alignment.

4. Self-assembly methods

Artificial opals have gained a position as photonic crystals
(PCs) as inexpensive alternatives to other more sophisticated
PC fabrication approaches. Methods for opal preparation are
usually based on the natural tendency of microscopic colloidal
particles of silica, polystyrene (PS) or polymethylmetacrylate
(PMMA) to self-assemble in an ordered face-centred cubic
(fcc) structure. However, the main problem found in the
preparation of artificial opals is the unavoidable presence of
some sort of disorder generated by both the polydispersity
of the microspheres used and the inherent stacking defects
developed during the growing process. Many efforts have
been devoted to improve the quality of the opaline samples in
the last few years, by using different methods of preparation,
such as sedimentation [31], electrophoresis [32], confinement
in special cells [33], vertical deposition [34] or some others
introducing small modifications of these methods [35, 36].

The most widely used assembly method, vertical
sedimentation, basically consists in submerging a flat substrate
(e.g. glass or silicon) in a diluted colloidal suspension and
allowing the solvent to evaporate (see figure 12). The meniscus
that forms in the contact line between air, liquid and substrate
sweeps down the substrate and deposits the spheres in a
crystalline arrangement. Alternatively, spinning techniques
can be applied for rapid fabrication of moderate quality but
in large scale [37]. In this case a substrate is set to rotate
at a controlled velocity and a controlled amount of colloid
is dropped and allowed to spread. The concentration and
spinning velocity allow one to determine the thickness of the
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Figure 13. Crystal structure model of an artificial opal. The different
facets shown are exemplified with actual SEM images from real
samples.

resulting opals. The resulting crystal structures are fcc close-
packed arrangements, as shown in figure 13.

These optical systems are ideal references for studying
the intrinsic properties of a PC, such as the density of states
inside the crystal [38] and gap formation [39], or to confirm
theoretical predictions. An additional advantage is that their
optical properties can be modified continuously in a controlled
way, allowing the preparation of more sophisticated systems.
One of the most usual methods is void infiltration with different
materials. If a high RI material is used in the infiltration, the
PC obtained may exhibit full photonic band gaps (PBGs) in the
near infrared and visible range [40].

Semiconductors of such technological impact as silicon
and germanium can be synthesized by chemical vapour
deposition (CVD) [41, 42]. Here the sample is placed in
a cell where the precursor gas is condensed with liquid
nitrogen. Disilane (Si2H6) and germane (GeH4) can be used as
precursors for Si and Ge, respectively. Once the precursor gas
is condensed, the cell is isolated and placed in a furnace at the
selected decomposition temperature. Under these conditions
both semiconductors grow amorphously and they can be
crystallized by a later annealing. Two parameters govern the
growth of the semiconductor: the precursor gas pressure and
the reaction temperature. Decomposition temperature plays a
very important role in two aspects: growth velocity and the
presence of undesired particles. It has also been observed that
high temperatures induce the growth of undesired particles. In
the case of Si the precursor gas decomposition temperature
selected was 375 ◦C while for Ge it was set at 270 ◦C. Lower
temperatures result in very slow synthesis rates while higher
ones allowed little degree of control. The growth takes place
conformally (by creating a nanometre thin layer of material
that covers all the surfaces of the template) and the result is
a composite that can be further processed. In particular, the
initial backbone can be removed, leading to what has been
dubbed inverse opals, an example of which is depicted in
figure 14.

The power of this method is that it allows not only growing
these and other materials on silica but either on the other [43].
A further degree of freedom will be provided by the selectivity
of different solvents that can be used to remove some of the
materials.

Figure 14. Typical aspect of an inverse opal where cleaved edges
show (100) facets. Windows connecting the templating spheres can
be clearly seen.

Recent work has shown that ‘band engineering’ can be
achieved by multilayer infiltration with different materials or
by obtaining new inverse structures through morphological
changes of the material filling the voids [44]. Silica and
PS spheres containing metallic or magnetic cores can be
prepared [45, 46] allowing one to couple the metallic and/or
magnetic properties, respectively, with the photonic ones.
Using patterned surfaces as substrates, the fabrication of
prisms [47] and microfibres [48] made of PC has been possible.
Another possibility is the introduction of controlled defects in
colloidal crystals by the use of two-photon polymerization [22]
or laser micro-annealing [49]. By combining spheres of
two different sizes, ordered superlattices [50] or structures
containing planar defects [51] have recently been obtained.

5. Optical properties and applications

The optical properties of PCs are entirely determined and can
be fully accounted for by their photonic band structure. In
practical terms the bands can be used to interpret and predict
the optical properties by using a few simple rules. Light
coming from outside a PC will in principle travel through
the PC if there are states belonging to the PC that preserve
the energy and (parallel) momentum. The difference from
ordinary dielectrics is that now not all energies are allowed
to propagate through the crystal but only those that belong
to a photonic band, meaning that light whose energy lies
in photonic gaps will be reflected by the PC. This was in
the core of the initial proposal of the concept of PC by
Yablonvitch [52]. The refraction in the boundaries of the PC
is also entirely determined by the band structure, but now
moment conservation takes on a new form to include the
periodicity of the crystal. Thus the (parallel) wavevector of
the incoming and refracted beams must differ by a reciprocal
lattice vector that may or may not happen to be zero. When it is
not we usually talk of diffraction rather than refraction, but we
must bear in mind that the process involved is fundamentally
the same. This gives us a hint that all processes in a PC and,
in particular, the build up of a band structure, can be viewed as
(coherent) multiple scattering.
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Figure 15. Typical reflectance (grey) of a finite PC (an opal in this
case) and transmittance (brown) and reflectance (green) when a
defect is inserted in the middle of such structure. Transmittance and
reflectance are easily recognized for having a minimum and a
maximum, respectively, in the energy of the gap.

Let us first analyse reflectance and transmittance. These
are the easiest processes. By looking at the band structure
(e.g. figure 6) we see that for the low energies the PC behaves
simply as a homogeneous medium with an RI given by the
slope of the first photonic band which can be estimated
by taking the average of the composing materials weighted
by filling fraction (relative volume of each component).
Therefore, for the energies spanned by this band, transmission
is mediated by its photonic states. In these circumstances
all the light is transmitted and the reflectance is zero (see
figure 15).

Since for low energies (long wavelengths) the medium is
homogeneous and isotropic, IFSs are just spheres, refraction
happens as in ordinary dielectrics and Snell’s law is derived
from (parallel) momentum conservation. As the edge of the BZ
is approached the IFSs start to distort because the smaller slope
of the bands requires larger wavevector increments to achieve
the same increments in energy. Thus, lobes start to develop
and the initially spherical IFSs become warped and twisted
and are called monsters. In these circumstances refraction is
anomalous in the sense that Snell’s law may be viewed to
happen with a negative RI (see figure 16). The superprism
effect [53], all-angle negative refraction [54], high group
velocity dispersion [55] or the improvement of nonlinear optics
effects are all applications derived from the physics happening
when bands are distorted (basically) by the proximity of Bragg
planes.

When finally the edge of the BZ is reached the band splits
and a gap is formed where no states exist; therefore light
impinging on the crystal is reflected and the transmission drops
to zero: standing waves form the gap edges and a Bragg peak
appears in the reflectance spectrum (see figure 15).

The occurrence of the gap can also be viewed as the
fulfilment of the Bragg law condition that can be stated as
kout = kin − G or, in other words, the tip of the wavevector kin

(and kout) lies on the Bragg plane associated with the reciprocal
lattice vector G [12]. Bearing this in mind it is easy to foresee
that if the direction of incident light is changed the wavevector
at which the gap will open will also change (the BZ cannot

Figure 16. In homogeneous media, IFSs are spherical, ω = c|k|/n,
and the propagation direction (green, arrow from the IFS) and
wavevector (blue, arrow pointing from the origin to the ISF) are
collinear. But in PCs these surfaces may become very anisotropic.
Conservation of the parallel component of the wavevector leads to
very peculiar refraction effects since the propagation is no longer
collinear with the wavevector.

be round) and so will (in principle) the gap spectral position.
The relationship between the wavelength and incidence angle
is known as Bragg’s law.

This, for a bare opal, is depicted in figure 17: a summary
of spectral positions as the incidence angle (or the parallel
momentum) is changed by tilting the incoming beam towards
non-equivalent directions on the surface. This is done by
rotating the sample around two perpendicular axes contained
in the sample surface [56]. Here we can appreciate how the
position of the Bragg peak (experimental data) follows the gap
between the third and fourth bands which, for this system,
bound the first gap. The two panels represent tilting in the two
main directions: from L towards W and towards U (or K which
is equivalent). Experimental results shown in the right panel
present an avoided crossing behaviour [57, 58] taking place at
the W point in reciprocal space where the incident wavevector
fulfils simultaneously the Bragg condition for the {111}, {111̄}
and {200} families of planes, and strong mode coupling takes
place. If the centre frequency of these peaks is compared with
calculated bands (see figure 17) a good agreement is found.
Similar experiments (left panel in figure 17) carried out when
the rotation axis is parallel to the growth direction may be
compared with calculated bands along the � LU direction
as would be expected due to the three-fold symmetry of the
hexagonal facet of the BZ.

The occurrence of this gap can be taken advantage of in
order to develop applications based in the (structural) colour
of PCs. Thus infiltration of colloidal crystals with polymers
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Figure 17. Experimental reflectance peaks (obtained at two sample
positions separated by a rotation of 60◦ with respect to its normal)
and theoretical (lines) bands when scanning the � LW region in
reciprocal space. Knots and crosses represent data obtained by
rotating the sample by 60◦ through its normal.

Figure 18. This diagram presents a simplified outline of the coupling
between photonic and electronic band structure for the inhibition of
spontaneous emission and laser action. Band to band recombination
(provided by the electronic part of the device) is prevented because a
photonic band gap at that energy is provided by the PC part. A defect
state in the gap might open a channel for recombination.

or other organic compounds is a suitable method for the
fabrication of photonic inks [59] or sensors [60], for instance.
But the most sought for evidence in the field was spontaneous
emission inhibition, and this was only recently found both in
two dimensions [61] and three dimensions [62] by measuring
photoluminescence emission rates in the presence/absence of a
PBG. This phenomenon relies on matching the energy of the
emission to that of a photonic band gap so that the emitted
energy corresponds to a forbidden state. This is schematically
depicted in figure 18.

The braking of the crystal translation symmetry produces
defects that place states in these gaps. These states, unlike
the crystal ones, are not extended (propagating) but localized,
and they can be regarded as the result of confinement
of electromagnetic radiation by the PC at non-propagating
energies. This localization of the EM field by defects in a
photonic superlattice was at the heart of the initial proposal of
the PBG from the point of view of the localization of light [63].
A simple example of such features is presented in figure 15
where a planar defect is introduced in an opal giving rise to

Figure 19. Diagram of a multi-quantum well electrically pumped
laser. This laser is based on a 2D PC lithographically etched into a
multi-quantum well where one or various holes are left undone to
create a cavity in which the EM field is localized.

a minimum in reflectance (or a maximum in transmittance) in
the centre of the Bragg’s peak.

A point defect in the middle of the crystal can be viewed
as a cavity where EM energy is stored. This very concept was
exploited when 2D systems with a defect in the centre were
stretched in the third direction to build fibres called photonic
crystal fibres in which the defect constitutes the core through
which the light travels and the surrounding PC constitutes the
cladding [64].

If the cavity is near enough the boundary of the PC it
may be charged and discharged by pumping light from the
exterior. The inverse of the rate at which such cavity ‘leaks’ its
energy is known as the quality factor, and it can be regarded as
the number of oscillations a harmonic EM field suffers before
escaping the cavity and, spectroscopically, it can be described
as the ratio centre-to-width of the associated spectral feature.

This is a means to store energy and to guide it along
paths drawn in the PC by a series of defects. The former
can lead to the concept of a PC laser [65] whereas the
latter is being extensively used for waveguiding. Typically
a PBG laser is based on the coupling of an electronic part
(capable of producing light through recombination of electron–
hole pairs) with a photonic one (capable of inhibiting the
spontaneous emission through a PBG). If a channel is provided
for emission it is possible to balance gain and losses to produce
amplification and laser action. Usually 2D PCs are employed,
with confinement in the vertical direction being provided by
total internal reflection and a single or a few missing holes
acting as the defect concentrating energy. Optical pumping
was initially employed but electrical pumping is also possible
and has already been realized [66]. Of course, in this case
a full PBG is employed since otherwise recombination could
proceed by emission along directions not blocked by the partial
gap. A model of such a structure is depicted in figure 19 where
a multi-quantum well is lithographically drilled in periodic
fashion to define a 2D PC in which a hole or a few holes are
left filled to define a cavity. This cavity acts as a lasing centre
in which the EM field is enhanced by virtue of the PBG.

If multiple point defects are chained together a coupling
between their associated states may occur as molecular orbitals
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Figure 20. A drop filter can be implemented by placing designed
defects near a waveguide such that only resonant light can be coupled
out of the guide and extracted. This can be done by tuning the size of
the defect.

are built from atomic orbitals. This of course leads to a band of
states within the PBG than can serve to channel light through
a PC. An example is provided in figure 20, where a drop filter
is implemented based on this principle. Here a waveguide (one
missing row of holes) couples to smaller (or larger) holes which
act as defects that trap light and extract it out of the system [17].

We have so far accounted for the optical behaviour up to
the energy of the first pseudogap in our model system: opals.
If energy is further increased beyond the high-energy side of
this gap, transmission resets in approaching unity again, and
the reflectivity drops to zero because incoming light couples
to the third and fourth bands. In actual finite systems this is
not exactly true because reflection on the ends of the crystal
build up Fabry–Perot oscillations that appear as evenly spaced
ripples in the actual spectra (see figure 15). When the crystal
is very thick (several tens of layers) the ripples disappear and
only the peak is visible.

While the optical response of these opal-based PC is
well known and easily understood in the low-frequency
region where first-order Bragg diffraction (produced by the
{111} family of planes) takes place, for higher frequencies
the situation becomes more complex. The appearance of
bands arising from wavevectors originally not parallel to
the �L direction, but folded back into the first Brillouin
zone by translational symmetry (recall figures 5 and 6),
not only fills what would be a ‘second-order’ L gap with
states but introduces anticrossings between bands of the same
symmetry [9]. Higher-order Bragg diffractions by the {111}
planes are also expected. This complicates the band structure,
making the comparison between experimental spectra and
calculated bands non-trivial. The above can be appreciated
in figure 21, where transmission and reflection spectra at
normal incidence are plotted together with the calculated band
structure. Firstly we must notice that now, at variance with
the previous case, the reflectivity (transmittance) never reaches
values close to unity (zero) because many scattering processes
are involved that carry energy away that never reaches the
detector. This is related to the fact that higher-order diffractions
are not associated with gaps as was the case in the first order,
because bands are folded back that fill that gap. Nevertheless,
most features in the reflectance spectrum find correspondence
in the transmittance one.
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Figure 21. Band structure calculated along the �L direction in
reciprocal space for an artificial opal. Reflection (centre panel) and
transmission (right panel) measured at normal incidence can be
compared with the bands. The arrows point at the peaks originating
in anticrossings.

It can be observed that reflection peaks/transmission dips
may be associated with perturbations (such as gaps and
avoided crossings) found in those bands reminiscent of the
free photon behaviour for wavevectors parallel to the �L
direction6. For regions where these perturbations are absent,
the crystal presents a low reflectance and high transmittance.
This represents a first approach to the understanding of the
optical properties of photonic crystals in this utterly interesting,
though not yet fully explored, spectral region [67]. Finally,
we must take into account the fact that light is being scattered
out of the normal direction, as is evidenced by the optical
diffraction results presented below. Due to the geometry of the
experiment, this light will not be detected, and will certainly
affect the experimental spectra. By examining the correlation
between reflectance and transmittance with the bands it can be
seen that some features correspond to gaps open in the bands,
some to diffractions out of the direction of the detector, and
some to anticrossings in the bands (marked with arrows in
figure 21).

PCs are, by definition, periodic; therefore their Fourier
transforms must be also periodic. The diffraction pattern can
be regarded as the Fourier transform of the periodic array
present in the PC, so that diffraction can be used to obtain
reciprocal lattice of a given structure as has been done for years
in x-ray diffraction techniques. This allows one, in particular,
to orientate the crystal for probing the optical properties of
the crystal along high-symmetry directions in angle resolved
experiments.

Diffraction, however, can only be seen as one more
expression of the interaction of external light with the PBG
structure of the crystal and it can be fully accounted for
by it [68]. In particular the onset of diffraction is clearly
given by the appearance of the first band not corresponding
to forward/backward propagation. This is a typical case where
a band is folded back with a non-collinear reciprocal lattice

6 Small discrepancies can be attributed to the fact that the calculation of
the bands was made assuming that the dielectric function is constant, which
may prove a wrong assumption. But the most widely used and public access
package, MPB, developed at MIT, only allows the use of constant dielectric
functions.
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Figure 22. Diffraction patterns generated by opals made of (a), (b)
505 nm and (c), (d) 695 nm PS microspheres. The first two pictures
are taken on the sample while the latter include both the sample
(inset) and the diffraction pattern projected on a screen. Notice that
the diffraction pattern shown in the sample in (d) is rotated 30◦
respect to the spots projected on the screen.

vector and that is the reason why it is not linear: ω does not
tend to zero as the (reduced) wavevector k tends to �. In
fact the analysis in figure 6 indicates that the green band in
the left panel originates from the dispersion relation ω = ck ′
with k′ such that k = k′ − G(100) lies in the first BZ and
in the direction �L (that spanned in the panel). We see that,
in addition to producing a feature in reflectance, it marks the
beginning of a drop in transmission (see figure 21) just because
light in transmission experiments fails to reach the detector as
it is being diffracted elsewhere. This is shown in figure 22,
where we can appreciate how for energies below the mentioned
band all light that impinges on the sample travels in a straight
line and produces a bright spot in the centre of the diffraction
pattern. However, for energies above the edge of that band
(1.07 in a/λ units) the onset of diffraction is evidenced by the
spots in hexagonal arrangement revealing the symmetry of the
crystal.

In summary, this merely highlights the fact that all optical
phenomena occurring in PCs can be regarded as the interaction
of light with the photonic states and accounted for in terms of
PBG structure, and diffraction is only one example.

These scattering processes leading to phenomena of
transmission, refection and diffraction in general can be
illustrated by analysing them in the negligible contrast
approximation (nearly free electrons in solid state physics)
where periodicity is assumed that brings a reciprocal lattice
about while, contrast being so low, a homogeneous medium
can still be assumed. In these circumstances energy and
momentum conservation reduce to (i) incoming and outgoing
wavevectors lying on the same circle (ω = c|k|) and (ii) their
tips pointing to equivalent places in the repeated BZ tiling of
the reciprocal space (differing by one reciprocal lattice vector:
segments joining any two BZ centres). Therefore, the opening
of the first pseudogap (L) is brought about by the build up
of a stationary state as a result of incoming and outgoing
wavevectors being opposite and their (equal) magnitude half

Figure 23. Those bands that fold back into the first BZ give rise to
gaps in the centre and edge of the BZ when the Bragg condition is
satisfied. In that case the incoming and out going wavevectors are
opposite and equal in magnitude: they describe a process of
reflection.

a reciprocal lattice vector. Thus the incoming field can couple
to the outgoing one in a process of reflection and a Bragg peak
forms in the spectrum. This is depicted in the upper panel of
figure 23. If the energy is higher (lower panel in figure 23)
or lower no outgoing wavevector can be found that complies
with both conditions and the incoming field can only propagate
forwards. This very argument can be extended to higher orders
simply by enlarging the incoming, outgoing and reciprocal
lattice vectors to account for higher gaps.

As was mentioned earlier, other bands in the PBG diagram
(like the green band in figure 6) can be seen as originating from
the dispersion relation for wavevectors lying on lines that can
be translated by one reciprocal lattice vector to coincide with
the line �L as analysed in the previous paragraph. Of course,
since the line does pass through the origin the smallest energy
can be readily appreciated to be greater than zero and given
by this distance from the line to the origin. The wavevector
at which this minimum occurs is perpendicular to the �L
direction under consideration, meaning that, in general, this
minimum can occur anywhere in the �L panel in the dispersion
diagram of the PBG structure, not necessarily in the centre or
edge because the folding reciprocal lattice vector needs not be
perpendicular to �L. See figure 24, upper panel. Again along
this line we can find points where energy and momentum are
conserved, giving rise to scattering processes, and others where
light can only propagate. This is shown in figure 24, where the
lower panel illustrates the opening of the gap at the edge of the
BZ while the upper panel shows a propagating state since no
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Figure 24. Bands originating from wavevectors that fold back into
the first BZ through reciprocal lattice vectors (G(111̄) in this case)
non-collinear with the direction under analysis [111] give rise to
bands that do not go to zero energy and have a minimum not in the
origin. Gaps in the centre and edge of the BZ open when the Bragg
condition is held. In this case the incoming and outgoing
wavevectors need not be opposite, and correspond to a diffraction.

scattering processes are possible: no reciprocal lattice vector
can map the tip of k′

in into the circle. This analysis can be
extended to all other directions possible in order to complete
all the bands in an altogether similar procedure.

Some of the processes where scattering takes place open
gaps in the edge while others open the gaps in the centre
of the BZ. However, while a given scattering process may
open a gap in the centre or edge, other bands and gaps can
populate that energy range, compete for scattering strength,
and share the intensity. For that reason reflectance peaks,
for instance, will decrease in intensity as we scan higher and
higher in energy. This means that the higher the energy the
more widespread the scattered rays will be. It becomes clear
that as we reach higher and higher in energy more processes
are involved and the interpretation of the bands can hardly be
done otherwise than numerically; however, the fundamental
phenomenon is basically as simple as in the case of the Bragg
peak. An analysis incorporating the magnitudes of the Fourier
components of the states involved in the process of scattering
and the magnitudes of the couplings may become useful in
trying to fully understand all these phenomena.

To summarize, photonic band gap materials have shown
to hold the key to many demands of the future photonics
technology. In their understanding, most of the notions
can be borrowed from solid state physics, which helps in
explaining observed phenomena and in predicting new ones.

From the early days when the concept was first proposed
numerous applications have been demonstrated and many
fabrication techniques tested. Foremost among the approaches
to PCs, colloidal systems lend themselves to be used as natural
starting points for the purpose of creating and using photonic
crystals and casting light on many facts. A broad range of
techniques and different sources of knowledge contribute to
the interdisciplinary nature of the subject as a host of materials
properties are involved that spring from their architectural
scale.
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