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ANDERSON LOCALIzATION Of LIghT

A little disorder is just right
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T his year marks the fiftieth anniversary 
of Philip Anderson’s seminal work 
suggesting that when a certain 

critical amount of disorder is added to an 
otherwise periodic semiconducting crystal, 
the interference of multiply scattered 
electrons can cause them to come to an 
effective standstill and their wavefunctions 
to become strongly localized1. Such 
behaviour, known as Anderson localization, 
is an inherently wave-like phenomenon, 
and its signatures have been observed 
in many different contexts, including 
sound waves2 and even matter waves3. 
But achieving Anderson localization of 
light in three dimensions4 has proved 
elusive and often controversial. Probing 
the exponential spatial localization of light 
necessary for a definitive demonstration 
of Anderson localization is particularly 
challenging, and such experimental 
investigations are scarce. On page 794 of 
this issue5, Conti and Fratalocchi attempt to 
circumvent such difficulties by performing 
massively parallel numerical calculations 
of the effect of disorder on the optical 
fields within an archetypal example of a 3D 
photonic crystal, the inverted opal. Their 
results suggest that the key to realizing 3D 
Anderson localization of light is to ensure 
that the amount of disorder introduced in 
such a system is not too little, and not too 
much, but just right.

Electrons and photons are analogous 
in most important respects when it comes 
to their propagation through a medium. 
In mathematical terms, the Schrödinger 
equation is for electrons in a quantum 
well what the wave equation is for light in 
a dielectric structure. The wave equation 
can be cast in a form similar to the 
Schrödinger equation by separating the 
dielectric function into its spatial average 
and fluctuation components4. The potential 
term in the Schrödinger equation is then 

represented by the (frequency-scaled) 
fluctuations in dielectric function (εfluctω2/c2) 
whereas its eigenvalues come out as the 
(frequency-scaled) average dielectric 
function (ε0ω2/c2). For most optical systems, 
the dielectric function is real and positive 
at all points in space. This means that 
fluctuations in the dielectric function are 
usually much smaller than its average. 
Consequently, the size of the potential 
wells corresponding to these fluctuations is 
usually much smaller than the energy states 
of the system, which, in turn, means that no 
bound states can arise.

The upshot of all this is that it is 
impossible to trap light in the same way 
as one might trap a conventional particle. 
Unlike electrons, whose electrostatic 
nature can be used to create trapping 
potentials with walls much larger than 
their kinetic energy (regardless of order 
or periodicity), photons can only be 
localized through interference, which often 
involves order. This is one reason that, in 
the absence of periodicity, 3D localization 
has been so elusive6. Yet it was through an 
understanding of this fact that the very idea 

of the photonic crystal4, which provides 
a powerful platform for exploring such 
phenomena7, was prompted.

Like a semiconducting crystal, a 
photonic crystal can have an energy gap 
within which propagation is forbidden. 
Moreover, the introduction of impurities 
and other defects into the crystal’s structure 
can generate spatially localized states 
within this gap. Owing to the way in which 
photonic crystals are grown, the occurrence 
of some disorder is unavoidable. But 
although researchers usually do their best to 
minimize this, in the context of producing 
and studying localization effects, disorder 
is indispensable.

When a pulse of light passes through a 
photonic crystal without scattering, it will 
generally emerge from the crystal in much 
the same shape (but for some broadening 
of the pulse owing to dispersion). But if 
the pulse encounters defects in the crystal’s 
structure, they will cause its photons to 
scatter, much like the steel balls in a pinball 
machine. This can cause a transition 
on the propagation of light through the 
crystal from a predominantly ballistic 

As with most things in life, some disorder can cause unexpected new phenomena. But when 
it comes to disorder-induced Anderson localization of light in a photonic crystal, simulations 
suggest that moderation may be the best policy.
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Figure 1 Transition from Bloch-mode lasing to Anderson lasing with increasing disorder in a photonic crystal.  
a, When a laser gain medium is injected into the voids of a perfect (or nearly perfect) photonic crystal, it undergoes 
lasing from states at the edge of the bandgap that extend throughout the crystal. b, With increasing disorder, 
however, increased scattering and narrowing of the bandgap extinguishes these modes. Instead, lasing occurs 
from ‘Anderson states’ — localized states further into the bandgap that correspond to spatially localized modes 
within the crystal.
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to a diffusive regime. In this regime, the 
photons entering the crystal as a short pulse 
will leave as a drawn-out exponential. The 
duration of this exponential (characteristic 
time) is directly linked to the diffusion 
constant. But localization can change it and 
bring about a critical slowing of photons 
because they dwell for longer times in these 
localized states.

From their simulations, Conti and 
Fratalocchi find that, for moderate amounts 
of disorder above a certain value, the decay 
strongly deviates from a single exponential 
and the distribution of characteristic times 
of the emerging light splits into separate 
components with two different time 
constants. The first component results from 
the expected delays induced by scattering. 
The second component corresponds to a 
more pronounced critical slowing down 
of photons arising from the population of 
localized states. But perhaps surprisingly, 
they find that this critical component only 
arises within a certain range of disorder, 
with the localization length reaching a 
minimum at some optimal value and then 
increasing once more with increasing 
disorder. This happens because as well as 
generating localized states in a crystal’s 
bandgap, disorder also causes the gap 
to get smaller. Eventually the localized 
states, merging with the extended states 
either side of the ever-shrinking gap, close 
it, at which point the system reverts to 
full disorder and ceases to localize. This 
trade off between the need to generate 
enough disorder but not too much, and 
the difficulty in finding and measuring a 

magnitude, such as of localization length, 
that constitutes a faithful signature of the 
phenomenon, provides another explanation 
for why Anderson localization has been so 
difficult to realize experimentally.

The authors also investigate the 
implications of such phenomena for lasing. 
Laser action from states at the edge of a 
photonic crystal’s bandgap can be induced 
by introducing an appropriate medium 
into the crystal’s structure and exciting 
it with sufficiently intense pump light. 
This arises from the fact that states at the 
band edge correspond to stationary waves 
that concentrate electromagnetic field, 
which promotes population inversion 
and, eventually, so-called Bloch-mode 
lasing. Conti and Fratalocchi find that as 
the disorder in such a system increases, 
narrowing of the bandgap extinguishes 
lasing from the edge states, which can then 
only occur via localized states further into 
the gap — in a peculiar form of random 
lasing that they refer to as Anderson lasing 
(see Fig. 1). This behaviour is not only 
intriguing from a fundamental point of 
view, but it can be the basis of new types of 
lasers. Although making a laser based on 
Anderson localization might seem much 
easier than one based on photonic crystal 
modes, it is unclear whether the precise 
degree of disorder needed to induce it 
would be any easier to achieve than the 
high degree of perfection required to make 
ordinary lasers. 

Although the insights that the authors 
obtain are likely to be relevant to many 
different photonic crystal systems, 

certain limitations of their model should 
be mentioned. The system modelled 
is a silicon inverted opal. The type of 
disorder considered is that introduced by 
a distribution of sizes with no topological 
disorder. That is, each air sphere has a 
random size with a Gaussian distribution, 
but each is centred on the sites of the 
lattice of the opal, and to make findings 
independent of a particular configuration 
of spheres, all magnitudes are obtained 
by averaging over many realizations. This 
assumption limits which structures this 
can be generalized for, because different 
distributions of sizes may yield different 
results. Furthermore, it is well known 
that in this particular system many other 
defects are present, such as, for instance, 
dislocations and stacking faults.

Such issues notwithstanding, the results 
of Conti and Fratalocchi’s simulations 
should certainly cause a stir in the field, 
and hopefully stimulate new ideas in the 
design of systems to test present theories 
of optical localization. At the very least, 
it should enable researchers to better 
determine if it is even possible to realize 
and measure true Anderson localization in 
currently available 3D photonic crystals.
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