Electronic correlations in Hund metals

E. Bascones

Instituto de Ciencia de Materiales de Madrid

Laura Fanfarillo ICMM-CSIC

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

Outline

- □ Introduction:
 - * Mott physics and Quasiparticle weight: basic notions
 - * Iron superconductors as Hund metals
 - * The role of Hund's coupling in correlations. Hund vs Mott
- Correlations in Multi-orbital systems
 - * Quasiparticle weigth vs interactions, filling and number of orbitals
 - * Charge and spin fluctuations
 - * Simple understanding of correlations in Hund metals

G Summary

Metals and Insulators in band theory. Independent electrons

Metallicity in clean systems Bands crossing the Fermi level (finite DOS)

4.0 3.0 Fig: Calderón et al, PRB, 80, 094531 (2009) 2.0 1.0 Insulating behaviour 0.0 -1.0 in clean systems -2.0-3.0**Bands below** -4.0-5.0Fermi level filled -6.0-7.0М Х Fig: Hess & Serene, PRB 59, 15167 (1999)

E. Bascones Ieni@icmm.csic.es

Metals and Insulators in band theory. Independent electrons

Spin degeneracy: Each band can hold 2 electrons per unit cell

Failure of independent electron picture. Mott insulators

Electron counting La₂CuO₄: 2 La (57x2)+Cu (29) + 4 O (4x8) =175 electrons

Metallic behavior expected

Fig: Pickett, RMP 61, 433 (1989)

Failure of independent electron picture. Mott insulators

Electron counting La₂CuO₄: 2 La (57x2)+Cu (29) + 4 O (4x8) =175 electrons Metallic behavior expected but Insulating behavior is found

Fig: Pickett, RMP 61, 433 (1989)

Mott insulator:

Insulating behavior due to electron-electron interactions Breakdown of independent electron picture

Mott insulators. The single-orbital Hubbard model at half-filling

$$H = \sum_{i,j,'} t c^{\dagger}_{i,\dots,\sigma} c_{j,\dots,\sigma} + h.c. + U \sum_{j,\dots,\uparrow} n_{j,\dots,\uparrow} n_{j,\dots,\uparrow} n_{j,\dots,\downarrow}$$

Intra-orbital repulsion

Atomic lattice with a single orbital per site and average occupancy 1 (half filling)

Mott insulators. The Hubbard model at half-filling

$$H = \sum_{i,j,'} t c^{\dagger}_{i,..,\sigma} c_{j,-\sigma} + h.c. + U \sum_{j,} n_{j,..,\uparrow} n_{j,..,\uparrow} n_{j,..,\downarrow}$$

Intra-orbital repulsion

Atomic lattice with a single orbital per site and average occupancy 1 (half filling)

But away from half-filling the system is always metallic

The quasiparticle weight in the single-orbital Hubbard model

Z: a way to quantify the correlations

 $0 \le Z \le 1$

Simple description: Heavy electron

 $Z^{-1} \propto m^*/m$

- Z=1 Single-particle picture
- Z=0 There are no quasiparticles Breakdown of single-particle picture

Charge and spin fluctuations in the single-orbital Hubbard model

Localization

 $n = \langle n \rangle + \delta n$ $C_{T} = \langle n^{2} \rangle - \langle n \rangle^{2} \langle \delta n \rangle^{2} \rangle$

$$C_{S} = -$$

C_s larger when atoms are spin polarized even if there is no long range order

High-Tc superconductors cuprates are doped Mott insulators

Fig: Nature 464,183 (2010)

Iron superconductors: metallic when "undoped"

Fig: Nature 464,183 (2010)

Iron superconductors: metallic when "undoped"

Fig: Nature 464,183 (2010)

Iron superconductors: metallic when "undoped"

Multi-orbital system: 6 electrons in 5 orbitals

- Correlated metal m*/m ~ 3 (Z ~0.33)
- Far from a Mott transition U/W < 1
 (U interorbital repulsion, W bandwidth)
- Hund's coupling plays a key role in the correlations

Iron superconductors as Hund metals

Fig: Nature 464,183 (2010)

Correlations in Hund metals and iron superconductors: Hund vs Mott

Iron superconductors as Hund metals

- Correlations driven by Hund J_H weakly dependent on U,
- Not in proximity to a Mott insulator
- Properties essentially different to a doped Mott insulator

Haule & Kotliar NJP 11,025021 (2009)

fraction

ICMM

CSIC

Iron superconductors as doped Mott insulators

Multi-orbital systems

Kamihara et al, JACS, 130, 3296 (2008).

Vildosola et al, PRB 78, 064518 (2008)

ICMM CSIC

Fe

As

Hubbard-Kanamori Hamiltonian for multi-orbital systems

$$\begin{split} H &= \sum_{i,j,\gamma,\beta,\sigma} t_{i,j}^{\gamma,\beta} c_{i,\gamma,\sigma}^{\dagger} c_{j,\beta,\sigma} + h.c. + U \sum_{j,\gamma} n_{j,\gamma,\uparrow} n_{j,\gamma,\downarrow} \\ \text{Intra-orbital} \\ &+ \left(U' - \frac{J_{\scriptscriptstyle \rm H}}{2} \right) \sum_{j,\gamma>\beta,\sigma,\tilde{\sigma}} n_{j,\gamma,\sigma} n_{j,\beta,\tilde{\sigma}} - 2J_{\scriptscriptstyle \rm H} \sum_{j,\gamma>\beta} \vec{S}_{j,\gamma} \vec{S}_{j,\beta} \\ &+ J' \sum_{j,\gamma\neq\beta} c_{j,\gamma,\uparrow}^{\dagger} c_{j,\gamma,\downarrow}^{\dagger} c_{j,\beta,\downarrow} c_{j,\beta,\uparrow} + \sum_{j,\gamma,\sigma} \epsilon_{\gamma} n_{j,\gamma,\sigma} . \\ &+ J' \sum_{j,\gamma\neq\beta} c_{j,\gamma,\uparrow}^{\dagger} c_{j,\gamma,\downarrow}^{\dagger} c_{j,\beta,\downarrow} c_{j,\beta,\uparrow} + \sum_{j,\gamma,\sigma} \epsilon_{\gamma} n_{j,\gamma,\sigma} . \\ &\text{Two interaction parameters: U, } J_{\rm H} \end{split}$$

Hubbard-Kanamori Hamiltonian: Interaction terms

Hubbard-Kanamori Hamiltonian: Interaction terms

Hubbard-Kanamori Hamiltonian: Interaction terms

$$U'=U-2J_H$$

Mott transition in multi-orbital systems at Zero Hund

Effective kinetic energy larger due to orbital degeneracy

Mott transition in multi-orbital systems at Finite Hund

De'Medici PRB 83, 205112 (2011)

Mott transition in multi-orbital systems at Finite Hund

Examples:

- * iron superconductors 6 electrons in 5 orbitals
- * ruthenates 4 electrons in 3 orbitals
- * SrCrO₃ 2 electrons in 3 orbitals

Hund's coupling and bad metallicity

3 orbital system

DMFT

n=1 electron or 1 hole

- J_H promotes metallicity
- Uc increases
- Quasiparticle weight increases

De'Medici et al PRL 107, 255701 (2011)

n=half-filling

J_H promotes insulating behavior

Uc increases

Z decreases

Hund's coupling and bad metallicity

Hund metals and spin freezing

J=0 J=0.05U 0.8 J=0.10U J=0.15U J=0.20U 0.6 J=0.25U N 0.4 0.2 0 2 6 8 10 0 4 U/D

DMFT

Iron superconductors **DMFT** 3.0 а $J_{Hund} = 0$ $\chi_{loc} \left(10^{-3} emu/mol
ight)$ • $J_{Hund} = 0.35$ $J_{Hund} = 0.4$ V $I_{Hund} = 0.7$ 0.0L Haule & Kotliar 100 200 300 T(K)NJP 11,025021 (2009)

n ≠ 1 electron ,1 hole, half-filling

3 orbital system

J_H promotes bad metallic

Behavior (correlated metal)

Large Uc but small Z

De'Medici et al PRL 107, 255701 (2011)

Hund metals and spin freezing

3 orbital system DMFT

n ≠ 1 electron ,1 hole, half-filling

J_H promotes bad metallic

Behavior (correlated metal)

Large Uc but small Z

De'Medici et al PRL 107, 255701 (2011)

Hund metals

- Correlations driven by Hund J_H weakly dependent on U,
- Not in proximity to a Mott insulator

- Properties essentially different to a doped Mott insulator (wide Hubbard bands)

Doping dependence in Hund metals

Correlations in Hund metals: Hund vs Mott

Hundness as oppossed to Mottness

- Correlations driven by Hund J_H weakly dependent on U,
- Not in proximity to a Mott insulator
- Properties essentially different to a doped Mott insulator

Haule & Kotliar NJP 11,025021 (2009) Georges et al, Ann. Rev. Cond. Matt. Phys. 4,137 (2013)

، الم

Hund metals as doped Mott insulators

Correlations controlled by the **proximity in doping** to a Mott insulating state

Werner et al PRL 101, 166405 (2008) Ishida & Liebsch, PRB 81, 054513 (2010)

Summary

□ Single-orbital Hubbard model:

- * Mott transition at half-filling U>>t (U/W ~1.5)
- * Away from half-filling or for U<U_c: correlated metal. Suppression of Quasiparticle weight Z and Charge fluctuations & enhancement of spin fluctuations

Multi-orbital Hubbard-Kanamori Hamiltonian:

- * Mott transition at all integer filling. U_c depends on J_H and filling n
- * J_{H} promotes metallic behavior for n=1 electron or 1 hole. Z and U_{c} increase.
- * $\rm J_{H}$ promotes insulating behavior at half-filling. Z and $\rm U_{c}~$ decrease.
- * J_H promotes bad metallic behavior for n≠1 electron, 1 hole, half-filling. Hund metal
 U_c non-monotonic, but increases at large J_H
 Z small. Coherent-incoherent crossover with temperature. Spin freezing
 Dependence on doping. Hund vs Mott ?

The model: Degenerate orbitals with density-density interactions

□ Multi-orbital systems with N orbitals (N=2-5) and n electrons (half-filling n=N)

Equivalent orbitals: No crystal field splitting or hybridization between orbitals Hopping to 1st nearest neighbors equal for all the orbitals Non-interacting bandwidth W (2D but generic results)

 $U'=U-2J_H \longrightarrow U, J_H$ two interaction parameters max $J_H/U=1/3$

□ Hamilonian solved with Slave Spin Technique: Z, Charge & Spin fluctuations

6 electrons in 5 orbitals, as in "undoped" iron superconductors (or 4 electrons in 5 orbitals)

Particle-hole symmetry with respect to half-filling

Quasiparticle weight, colour plot

3 electrones en 4 orbitales, x=0.75

3 electrones en 5 orbitales, x=0.60

6 electrons in 5 orbitals,

L. Fanfarillo, EB arXiv:1501.04607

0.3

6 electrons in 5 orbitals,

The quasiparticle weight as a function of doping

E. Bascones leni@icmm.csic.es

The quasiparticle weight as a function of doping

6 electrons in 5 orbitals,

Spin fluctuations

- Single-orbital: Suppression of Z concomitant with the enhancement of spin fluctuations

Charge fluctuations

- Single-orbital: Suppression of Z concomitant with the suppression of charge fluctuations

Mott physics, small Z — Localization

Charge fluctuations

- Single-orbital: Suppression of Z concomitant with the suppression of charge fluctuations

Mott physics, small Z -----> Localization

- Multi-orbital: Suppression of Z due to Hund's coupling is not always accompanied by the suppression of charge fluctuations

Hund correlations

Not always localization, sometimes increases itinerancy

Hund correlations not equal to Mott correlations

Charge fluctuations

Itinerancy

Weaker suppression of charge fluctuations for a given Z, as compared to a single-orbital system or small Hund's coupling

 ^{.8} Different dependence
 ^{.6} of charge fluctuations
 ^{.4} and quasiparticle weight Z on interactions

N orbitals

n electrons

Atomic gap: E(n+1)+E(n-1)- 2E(n) vs Kinetic Energy

2 spin polarized atoms

Hopping processes

Spin parallel hopping to an empty orbital

$$E^{\uparrow\uparrow} = U - 3J_H$$

Spin anti-parallel hopping to an empty orbital

$$E^{inter\uparrow\downarrow} = U + (n-3)J_H$$

Spin anti-parallel hopping to an occupied orbital

$$E^{intra\uparrow\downarrow} = U + (n-1)J_H$$

Hopping processes

Spin parallel hopping to an empty orbital

$$E^{\uparrow\uparrow} = U - 3J_H$$

Responsible for the Mott transition away from half-filling

Spin anti-parallel hopping to an empty orbital

$$E^{inter\uparrow\downarrow} = U + (n-3)J_H$$

 $E^{intra\uparrow\downarrow} = U + (n-1)J_H$

Responsible for the Mott transition at half-filling

ICMM

CSIC

Summary: Strong influence of Hund's coupling on electronic correlations

Hund metal with small Qp weight Z: strong correlations

Suppression of Qp weight connected to half-filling Mott insulator

Enhancement of spin fluctuations (atoms polarized)

Behavior understood in terms of which hopping processes are promoted or suppressed by Hund's coupling

Revisit oxides and other materials

Charge fluctuations do not follow the behavior expected in Mott systems

Correlated metals. The quasiparticle weight (Fermi liquid description)

 \Box Write the electron $C^{\dagger}_{k\sigma}$ in terms of the excitations of the interacting system $a^{\dagger}_{k\sigma}$ Same charge, momentum & spin

$$c^{\dagger}_{\mathbf{k}\sigma} = \sqrt{Z_{\mathbf{k}}}a^{\dagger}_{\mathbf{k}\sigma} + \sum_{\mathbf{k}_{4}+\mathbf{k}_{3}=\mathbf{k}_{2}+\mathbf{k}}A(\mathbf{k}_{4}\sigma_{4}, \mathbf{k}_{3}\sigma_{3}; \mathbf{k}_{2}\sigma_{2}, \mathbf{k}\sigma)a^{\dagger}_{\mathbf{k}_{4}\sigma_{4}}a^{\dagger}_{\mathbf{k}_{3}\sigma_{3}}a_{\mathbf{k}_{2}\sigma_{2}} + \dots$$
higher order
higher order
decay processes

of $C^{\dagger}_{k\sigma} | \Psi *_{g} >$ makes sense if Z_{k} is finite

$$Z_{k} = |\langle \Psi *_{g} | a_{k\sigma} c^{\dagger}_{k\sigma} | \Psi *_{g} \rangle|^{2} > 0$$

Overlap between the elementary excitations of the interacting and non-interacting system

Quasiparticle weight

A way to quantify the correlations

See Coleman's book

E. Bascones leni@icmm.csic.es

The quasiparticle weight as a function of doping

Charge correlations in Hund metals

Spin fluctuations in Hund metals

The spin fluctuations are larger in the metal. U enhances the tendency to localization.

Spin fluctuations in Hund metals

Atomic moments are formed in the

$$H = U \sum_{m} \hat{n}_{m\uparrow} \hat{n}_{m\downarrow} + U' \sum_{m \neq m'} \hat{n}_{m\uparrow} \hat{n}_{m'\downarrow} + (U' - J_{_{H}}) \sum_{m < m', \sigma} \hat{n}_{m\sigma} \hat{n}_{m'\sigma}$$

$$n_{m\sigma} = d^{\dagger}_{m\sigma} d_{m\sigma}$$

$$Physical states$$

$$d_{i\sigma} \qquad \qquad Auxiliary fermion \qquad f_{i\sigma} \qquad |n_{i\sigma}^{d} = 1\rangle \Leftrightarrow |n_{i\sigma}^{f} = 1, \quad S_{i\sigma}^{z} = +1/2\rangle,$$

$$Pseudospin variable \quad S_{i\sigma} \qquad |n_{i\sigma}^{d} = 0\rangle \Leftrightarrow |n_{i\sigma}^{f} = 0, \quad S_{i\sigma}^{z} = -1/2\rangle.$$

Unphysical states

Constraint

$$\begin{array}{ccc} |n_{i\sigma}^{f}=0, \ S_{i\sigma}^{z}=+1/2\rangle \\ |n_{i\sigma}^{f}=1, \ S_{i\sigma}^{z}=-1/2\rangle \end{array} \longrightarrow f_{i\sigma}^{\dagger}f_{i\sigma}=S_{i\sigma}^{z}+\frac{1}{2} \end{array}$$

de Medici et al, PRB 72, 205124 (2005) Hassan & de Medici, PRB 81, 035106 (2010)

$$d_{i\sigma} = f_{i\sigma}O_{i\sigma}, \quad d_{i\sigma}^{\dagger} = f_{i\sigma}^{\dagger}O_{i\sigma}^{\dagger}$$
 For non-

For non- diagonal operators

$$O_{i\sigma} = \begin{pmatrix} 0 & c_{i\sigma} \\ 1 & 0 \end{pmatrix} \longrightarrow c = \frac{1}{\sqrt{n(1-n)}} - 1.$$

$$H_0 = -\sum_m t_m \sum_{\langle ij \rangle,\sigma} O^{\dagger}_{im\sigma} O_{jm\sigma} (f^{\dagger}_{im\sigma} f_{jm\sigma} + h.c) + \sum_{i,m\sigma} (\epsilon_m - \mu) f^{\dagger}_{im\sigma} f_{im\sigma}$$

$$\frac{U}{2} \sum_{i} \left(\sum_{m,\sigma} S_{im\sigma}^z \right)^2 + \frac{U'}{2} \sum_{i} (\sum_{m,\sigma} S_{im\sigma}^z)^2 + J \sum_{i,m} (\sum_{\sigma} S_{im\sigma}^z)^2 - \frac{J}{2} \sum_{i,\sigma} (\sum_{m} S_{im\sigma}^$$

$$H_{int}[\{\vec{S}_{im\sigma}\}]$$

de Medici et al, PRB 72, 205124 (2005) Hassan & de Medici, PRB 81, 035106 (2010)

- Constraint treated on average with static and site independent Lagrange multiplier λ_m . Spin variables and auxiliary fermions are decoupled

$$H_{eff}^{f} = -\sum_{m} t_{m}^{eff} \sum_{\langle ij \rangle,\sigma} (f_{im\sigma}^{\dagger} f_{jm\sigma} + h.c.) + \sum_{i,m\sigma} (\epsilon_{m} - \mu - \lambda_{m}) f_{im\sigma}^{\dagger} f_{im\sigma}$$

$$H_{eff}^{S} = -\sum_{m} J_{m}^{eff} \sum_{\langle ij \rangle, \sigma} O^{\dagger}_{im\sigma} O_{jm\sigma}$$

$$+\sum_{i,m\sigma}\lambda_m(S^z_{im\sigma}+\frac{1}{2})+H_{int}[\{\vec{S}_{im\sigma}\}]$$

$$t_{m}^{eff} = t_{m} < O^{\dagger}_{im\sigma}O_{jm\sigma} > J_{m}^{eff} = t_{m} \langle f_{im\sigma}^{\dagger}f_{jm\sigma} + f_{jm\sigma}^{\dagger}f_{im\sigma} \rangle$$

de Medici et al, PRB 72, 205124 (2005) Hassan & de Medici, PRB 81, 035106 (2010)

- Spin hamiltonian treated at a single site mean field level

$$H_{eff}^{f} = \sum_{\mathbf{k},m\sigma} (Z_{m}\epsilon_{\mathbf{k}m} + \epsilon_{m} - \mu - \lambda_{m}) f_{\mathbf{k}m\sigma}^{\dagger} f_{\mathbf{k}m\sigma}$$

$$H_s = \sum_{m\sigma} h_m \operatorname{O}_{m\sigma}^{\dagger} + \sum_{m\sigma} \lambda_m (S_{m\sigma}^z + \frac{1}{2}) + H_{int} [\vec{S}_{m\sigma}]$$

$$h_m \equiv <0_{\rm im\sigma} > \frac{1}{\mathcal{N}} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}m} \langle f_{\mathbf{k}m\sigma}^{\dagger} f_{\mathbf{k}m\sigma} \rangle$$

$$Z_m = <0^{\dagger}_{im\sigma} >^2$$

- Solve self-consistently both coupled equations to calculate $\lambda_m,\,h_m,\,Z_m$

de Medici et al, PRB 72, 205124 (2005) Hassan & de Medici, PRB 81, 035106 (2010)