Electronic correlations in iron superconductors: status, consequences and opportunities E. Bascones

Materials Science Factory

Instituto de Ciencia de Materiales de Madrid (ICMM)

Consejo Superior de Investigaciones Científicas

ICr

In 2008 it starts the iron age

could not be explained by the electron-phonon mechanism

Kamihara et al , JACS 130, 3296 (2008) (Hosono's group)

Iron superconductors: High-Tc superconductivity, magnetism and nematicity

In many systems the superconductivity also appears if the magnetic phase is suppressed by pressure (a few Gpa)

Similarity with the phase diagram of other non-conventional superconductors

Cuprates

 T^{\star}

SC

Holes

Fullerides 70 Pseudogap 60 T_{N} Temperature [K] 50 40 T_N 30 AFI (π,π) 20 i-AFM SC 10 SC+AFI AFM SC 0 770 780 790 740 750 760 800 810 730 Electrons volume per C_{60}^{3-} [Å³] 15 CeRhIn₅ CeRhIn₅ b)

CSIC

icmm

In our way to understand high-Tc superconductors

- Which is the origin of the high-Tc superconductivity?
- Can we find new materials with higher Tc?
- Are the physics of iron superconductors and other non-conventional superconductors, especially cuprates, related?

In our way to understand high-Tc superconductors

- Which is the origin of the high-Tc superconductivity?
- Can we find new materials with higher Tc?
- Are the physics of iron superconductors and other non-conventional superconductors, especially cuprates, related?

Key issues:

- □ Correlations in iron superconductors
- Interplay between the spin and orbital degrees of freedom

In our way to understand high-Tc superconductors

 Superconductivity believed to be linked to electronic correlations (maybe magnetic degree of freedom)

□ Model containing only electrons

- Independent-particle description of solids: band theory.
 - Electrons move in a periodic potential.
 - Electronic states: bands in momentum space, filled following Fermi-Dirac statistics
 - Fermi surface
 - Description via **ab-initio calculations**. Successful in a large number of materials

- Independent-particle description of solids: band theory.
 - Electrons move in a periodic potential.
 - Electronic states: bands in momentum space, filled following Fermi-Dirac statistics
 - Fermi surface
 - Description via **ab-initio calculations**. Successful in a large number of materials

Electrons interact: the Fermi sea can be unstable: magnetic ordering, charge ordering ...

Weak coupling description of electron interactions

Strong correlations:

Deviations from ab-initio calculations

- Enhanced mass
- Insulating instead of metallic behavior ...

• Local electrons. Mott insulators.

Atomic lattice with a single orbital per site and average occupancy 1 (half filling)

• Local electrons. Mott insulators.

Atomic lattice with a single orbital per site and average occupancy 1 (half filling)

Repulsion can drive the system into an insulating state

But away from half-filling the system is always metallic

icmm

CSIC

• Mott insulator in <u>single orbital systems</u>. The local electrons behave as local spins.

• Mott insulator in <u>single orbital systems</u>. The local electrons behave as local spins.

Strong coupling (local) description of the effects of the electron interactions

icmm

CSIC

Undoped cuprates: Mott insulators

Doping a Mott insulator in 2D: high-Tc superconductivity in cuprates

(superconductivity has been found in models with strong or weak correlations)

High-Tc from very strong interactions (local electrons)

Superconductivity emerging from a Mott insulator in twisted bilayer graphene?

Cao et al, Nature 556, 43 (2018) Cao et al, Nature 556, 80 (2018)

The talk seen \sim 4000 times in youtube

Is there Mott physics in iron superconductors?

Phase diagram of early discovered iron based superconductors

Iron Pnictides FeAs systems)

E. Bascones leni@icmm.csic.es

Cuprates

Local moments or Fermi surface instability in iron superconductors

Experimentally the system is metallic but with sizable correlations The mass of electrons is enhanced m*~3 with respect to ab-initio

Local moments or Fermi surface instability in iron superconductors

Experimentally the system is metallic but with **sizable correlations** The mass of electrons is enhanced m*~3 with respect to ab-initio),

Approaches to explain magnetism, superconductivity and nematicity

Weakly correlated models (Electronic bands, Fermi surface instability)

Strongly correlated models (Interactions between local electrons/spins)

Hole pockets $Q_{Y}=(0,\pi)$ $Q_{Y}=(0,\pi)$ $Q_{X}=(\pi,0)$ $Q_{X}=(\pi,0)$ $Q_{X}=(\pi,0)$

 $H_{J_1-J_2} = \frac{J_1}{|S|^2} \sum_{\langle i,j \rangle} \vec{S}_i \vec{S}_j + \frac{J_2}{|S|^2} \sum_{\langle \langle i,j \rangle \rangle} \vec{S}_i \vec{S}_j.$

Not clear which limit works better

Iron superconductors: Multi-orbital character. Hund coupling

Cuprates: Single-orbital system. Cu lattice. d⁹. Undoped: 1 electron in 1 orbital

Iron superconductors: Multi-orbital system. Fe lattice. d⁶. Undoped: 6electrons in 5orbitals

icmm

CSIC

Correlations in multi-orbital systems. Hund metals

Correlations diagram for a system with 6 electrons in 5 orbitals (like iron superconductors)

Correlations in iron superconductors: Hund's physics

Review: Bascones, Valenzuela, Calderón, Comptes Rendus Physique 17, 36 (2016)

Correlations in iron superconductors: Hund's physics

Difficulty to reveal the underlying physics or intermediate interactions required for high-Tc superconductivity?

Review: Bascones, Valenzuela, Calderón, Comptes Rendus Physique 17, 36 (2016)

Superconductivity and magnetism in quasi-1d BaFe₂S₃

Same electronic filling per Fe as in undoped iron superconductors

Takahashi et al, Nat. Mat. 14, 1008 (2015) Yamauchi et al, PRL 115, 246402 (2015)

Superconductivity and magnetism in quasi-1d BaFe₂S₃

- Is this system a Mott insulator?
- Which is the role of pressure?

Strength of correlations in quasi-1d BaFe₂S₃

Undoped compounds

CSIC

The role of pressure in quasi-1d BaFe₂S₃

Undoped compounds

(orbitals with larger weight at the Fermi level extremely correlated)

Correlations and electronic filling in iron superconductors

Correlations and electronic filling in iron superconductors

The connection between cuprates & iron superconductors

icmm

CSIC

J.M. Pizarro et al, PRB 95, 075115 (2017)

icmm

CSIC

Summary: Electronic correlations in iron superconductors

Status

Review: E.B. et al, Comptes Rendus Physique 17, 36 (2016)

Interesting effect of Pressure in BaFe₂S₃

J.M. Pizarro & E:B: arXiv:1803.00282

Opportunities

Search for high-Tc superconductivity in chromium pnictides & chalcogenides

If they are found to be AF apply pressure to suppress AF

J.M. Pizarro et al, PRB 95, 075115 (2017)

Collaborators & Acknowledgments

ICMM-CSIC

J.M. Pizarro

M. J. Calderón

M.C. Muñoz

J. Liu @Shadong

B. Valenzuela L. Fanfarillo (Trieste)

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

Strength of correlations in quasi-1d BaFe₂S₃

Undoped compounds

Strength of correlations in quasi-1d BaFe₂S₃

Quasiparticle weight (inverse mass enhancement): measurement of correlations

icmm

CSIC

J.M. Pizarro & E:B: arXiv:1803.00282

Chromium pnictides and chalcogenides

Strength of correlations in quasi-1d BaFe₂S₃

Quasiparticle weight (inverse mass enhancement): measurement of correlations

icmm

CSIC

Iron superconductors: High-Tc superconductivity, magnetism and nematicity

Different materials present different phase diagrams

FeSe

Sun et al, Nat Commun. 7, 12146 (2016)

Watson et al, PRB 92, 121108 (2015)

