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Correlated states in twisted bilayer graphene

Two graphene layers rotated
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Correlated states in twisted bilayer graphene

Rotation angle ~ 12
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Correlated states in twisted bilayer graphene

4 holes/moiré unit cell
(flat bands empty)

Conductance, G (mS)
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4 electrons/moiré unit cell
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Correlated insulating states:
SR — 2 electrons/holes moiré unit cell
' (flat bands half-filled)
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Correlated states in twisted bilayer graphene

Correlated states at all commensurate fillings
& many superconducting domes
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Correlated states in twisted bilayer graphene

LDOS (nS)
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Bandwidth ~10 meV

Kerelsky, Pasupathy, Dean et al, Nature 572, 95-100 (2019)




Correlated states in twisted bilayer graphene

STM experiments
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A symmetry breaking state at CNP?

STM experiments Symmetries in each valley
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A symmetry breaking state at CNP?

STM experiments
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A symmetry breaking state at CNP?

STM experiments
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Nematic state?
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A symmetry breaking state at CNP?

STM experiments Nematic state?
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A symmetry breaking state at the CNP?
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Correlated states in twisted bilayer graphene

Nature of insulating and superconducting states?

Are the modifications of the DOS at CNP due to a symmetry
breaking state? Which symmetry is broken?

Is the observed lack of symmetry at the CNP (C3, C2zT) due
to electronic ordering or the coupling to the substrate/

lattice strain?

Are other bands beyond the flat bands affected by the
correlated states?

More experiments needed




Optical conductivity to study the state at CNP

Changes in the optical conductivity due to correlated states
(nematic or other kind) introduced phenomenologically.

Focus on changes due to modification of the band structure
(possible incoherent states or scatering rate effects

not included)

Basov et al, RMP 83,471 (2011)
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Models to study twisted bilayer graphene

Tight binding models
for pz-carbon orbitals
(~11000 atoms per
unit cell)

Continuum model
(starts from continuum
description of each
graphene layer and
couples them)

Tight-binding Model with
effective orbitals for the Moiré
unit cell (not carbon pz
orbitals) centered at symmetry
points of the Moiré unit cell
which mimic the bands from




Models to study twisted bilayer graphene

Tight binding models
for pz-carbon orbitals
(~11000 atoms per
unit cell)

Continuum model
(starts from continuum
description of each
graphene layer and

couples them)

Tight-binding Model with
effective orbitals for the Moiré
unit cell (not carbon pz
orbitals) centered at symmetry
points of the Moiré unit cell
which mimic the bands from

Only flat bands included
(2 orbitals per spin & valley)

A few bands beyond flat bands
included (4, 5,6, 8,10 bands per
Spin & valley)

10 band model Focus on single valley

Po, Zhou, Senthil, Vishwanath,
PRB 99, 195455 (2019)




Effective 10 band model for twisted bilayer graphene

Unrelaxed model

Fitting to “unrelaxed” band structure from
continum model but with V,,/V,;=0.82
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Effective 10 band model for twisted bilayer graphene
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Effective 10 band model for twisted bilayer graphene

Relaxed model
a) Total  AA. AA, DW AB/BA
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The triangular p+,p- orbitals are the ones which
contribute the most to the flat bands and the
ones expected to be more affected by the
correlated state

Carr, Kaxiras et al, arXiv:1901.03420




Nematic correlated state in the 10 band model for TBG

STM experiments i
P Nematic state?
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Nematic correlated state in the 10 band model for TBG

STM experiments Brea k|ng Of CZZT Symmetry?
1.5 ‘ el
Flat bands | "t
_ filled '
CD 0o
= / Charge } v
> / neutrality = F‘ |
.e . _ngx .-
> 0 foh |l
kS | ',
© II : ': 'f. ‘ I‘.
-100 i '4 | o
OCzT-ng == Z (Ti)rﬁ_,,. — Ti,rT—,'r) = Z (T_Jir_’kT_|_,k — Ti,kT_,k) y
r k

C,T symmetry breaking introduced as
an onsite term for p+ and p- orbitals

Choi et al, Nature Physics arXiv:1901.02997




Band structure, DOS & Drude weight: Non-correlated state
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Band structure, DOS & Drude weight: Non-correlated state
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Band structure, DOS & Drude weight: Nematic state

a=0.1 meV
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Band structure, DOS & Drude weight: Nematic state

Unrelaxed model
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Band structure, DOS & Drude weight

Unrelaxed model
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Band structure, DOS & Drude weight: Nematic state

a=0.40 meV Unrelaxed model
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New Dirac points
between the flat bands
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Band structure, DOS & Drude weight: Nematic state

a=0.70 meV Unrelaxed model
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Nematic state: 1st take-home message

* Effect of nematicity in the band structure close to CNP beyond
displacing Dirac points

o Small Fermi pockets, finite

density of states & Drude weight
It may appear

o New Dirac points




Band structure, DOS & Drude weight: Nematic state

Relaxed tight binding model

Fermi pockets at CNP starting with very small nematicity.
No extra new Dirac points in the range of nematic parameters studied




Nematic state: Anisotropy in the optical conductivity

C; symmetry
Ox1x1 = Ox2x2 = Ox3x3
Oxx =Oyy

Y1l X2




Nematic state: Anisotropy in the optical conductivity

C, breaking of the symmetry
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Nematic state: Anisotropy in the Drude weight

With C3 symmetry

Anisotropy=(Dy;y;/Dy;x1-1)

Dxx = Dyy
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Nematic state: Anisotropy in the Drude weight

With C3 symmetry

X1 Dxx = Dyy

Y, X; Anisotropy=(Dy;y1/Dy1y1-1)
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Nematic state: Anisotropy in the Drude weight
X2

X,X; Anisotropy=(Dy,y,/Dy1x1-1)
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The relation between the sign of the XX Drude anisotropy and the nematicity
depends on the underlying band structure




X,X; Anisotropy=(Dy,y,/Dy1y;-1)
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Nematic state: 2nd take-home message

The sign of the XY, XX, YY anisotropy of the Drude weight in the
nematic state depends on the underlying TBG band structure

Opposite sign of X, X, and Y,Y, anisotropy seems to be a robust
feature

X,X; Anisotropy=(Dy,y,/Dy1x1-1) Y,Y, Anisotro |c\3(¥=( Dy,v,/Dy1y1-1)




Interband transitions
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Interband transitions

Focus on interband transitions
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Interband transitions in the nematic state

Energy
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Interband transitions in the nematic state

Unrelaxed model
X, In the nematic state
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Interband transitions in the nematic state
Unrelaxed model

In the nematic state
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Interband transitions in the nematic state
Unrelaxed model

In this nematic state
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Interband transitions in the nematic state

In this nematic state

Transitions affected by the nematic state
not restricted to those involving the flat bands
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Optical conductivity in the C,, T broken symmetry state

Unrelaxed model

Flat bands non correlated state

Flat bands C2zT Broken symmetry
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Optical conductivity in the C,, T broken symmetry state

Unrelaxed model
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Summary

Small Fermi pockets and new Dirac points
may appear in the presence of nematicity.
The original Dirac points may be away from
charge neutrality.
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The sign of the anisotropy of the Drude weight
depends on the underlying band structure. We
find opposite sign for the Drude anisotropy along
the XX and YY directions.
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