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Dirac cones, GK = 4π/(3α) is the magnitude of the wavevector Γ–K  
of graphene, α = 0.246 nm is the lattice constant of graphene and  
ħ =  h/(2π ) is the reduced Planck constant, the lower of the hybri-
dized states is pushed to and crosses zero energy. A mathe matical  
derivation of the magic-angle condition6 gives the first magic angle, 
θ = / ≈ . °w ħv G3 ( ) 1 1magic

(1)
0 K . In Fig. 1c we show an ab initio tight- 

binding calculation16 of the band structure for θ =  1.08°. The flat bands 
(coloured blue) have a bandwidth of 12 meV for the E >   0 branch and 
2 meV for the E <   0 branch (where E is the band energy). From a 
band-theory point of view, the flat bands should have localized wave-
function profiles in real space. In Fig. 1h we show the local density of 
states calculated for the flat bands. The wavefunctions are indeed highly 
concentrated in the regions with AA stacking, whereas small but non-
zero amplitudes on the AB and BA regions connect the AA regions and 
endow the bands with weak dispersion6,15,18. A brief discussion about 
the topological structure of the bands near the first magic angle is given 
in Methods and Extended Data Fig. 1.

For the experiment, we fabricated high-quality encapsulated TBG 
devices with the twist angle controlled to an accuracy of about 0.1°–0.2° 
using a previously developed ‘tear and stack’ technique13,17,22. We meas-
ured four devices with twist angles near the first magic angle 
θ ≈ . °.1 1magic

(1)  In Fig. 2a we show the low-temperature two-probe  
conductance of device D1 as a function of carrier density n. For  
n ≈   ±  ns =  ±  2.7 ×   1012 cm− 2 (four electrons per moiré unit cell for 
θ =  1.08°), the conductance is zero over a wide range of densities. Here, 
ns refers to the density that is required to fill the mini Brillouin zone, 
accounting for spin and valley degeneracies (see Methods). These 
insulating states have been explained previously as hybridization- 
induced bandgaps above and below the lowest-energy superlattice 
bands, and are hereafter referred to as ‘superlattice gaps’13. The thermal 
activation gaps are measured to be about 40 meV (see Methods)13,17. 
The twist angle can be estimated from the density that is required to 
reach the superlattice gaps, which we find to be θ =  1.1° ±   0.1° for all 
of the devices reported here.

Another pair of insulating states occurs for a narrower density range, 
near half the superlattice density: n ≈   ±  ns/2 =  ±  1.4 ×   1012 cm− 2 (two 
electrons per moiré unit cell). These insulating states have a much 
smaller energy scale. This behaviour is markedly different from all 
other zero-field insulating behaviours reported previously, which 
occur at integer multiples of ±  ns (refs 13, 17). We refer to the states that 
occur near ±  ns/2 as ‘half-filling insulating states’. They are observed 
at roughly the same density for all four devices (Fig. 2a, inset). In  
Fig. 2b–d we show the conductance of the half-filling states in device 
D1 at different  temperatures. Above 4 K, the system behaves as a metal, 
exhibiting decreasing conductance with increasing temperature.  
A metal– insulator transition occurs at around 4 K. The conductance 
drops substantially from 4 K to 0.3 K, with the minimum value decreasing  
by 1.5 orders of magnitude. An Arrhenius fit yields a thermal acti-
vation gap of about 0.3 meV for the half-filling states, two orders of 
magnitude smaller than those of the superlattice gaps. At the lowest 
temperatures, the system can be limited by conduction through charge 
puddles, resulting in deviation from the Arrhenius fit.

To confirm the existence of the half-filling states, we performed 
capacitance measurements on device D2 using an a.c. low- temperature 
capacitance bridge (Extended Data Fig. 2)23. The real and imaginary 
components of the a.c. measurement provide information about the 
change in capacitance and the loss tangent of the device, respectively. 
The latter signal is tied to the dissipation in the device due to its 
 resistance23. Device D2 exhibits a reduction in capacitance and strong 
enhancement of dissipation at ±  ns/2 (Fig. 3a), in agreement with an 
insulating phase that results from the suppression of the density of 
states. The insulating state at −  ns/2 is weaker and visible only in the 
dissipation data. The observation of capacitance reduction (that is, 
suppression of density of states) for only the n-side half-filling state in 
this device may be due to an asymmetric band structure or the quality 
of the device. The reduction (enhancement) in capacitance (dissipa-
tion) vanishes when the device is warmed up from 0.3 K to about 2 K, 
consistent with the behaviour observed in transport measurements.
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Figure 1 | Electronic band structure of twisted bilayer graphene (TBG). 
a, Schematic of the TBG devices. The TBG is encapsulated in hexagonal 
boron nitride flakes with thicknesses of about 10–30 nm. The devices are 
fabricated on SiO2/Si substrates. The conductance is measured with a 
voltage bias of 100 µ V while varying the local bottom gate voltage Vg.  
‘S’ and ‘D’ are the source and drain contacts, respectively. b, The moiré 
pattern as seen in TBG. The moiré wavelength is λ =  a/[2sin(θ/2)], where 
a =  0.246 nm is the lattice constant of graphene and θ is the twist angle.  
c, The band energy E of magic-angle (θ =  1.08°) TBG calculated using an 
ab initio tight-binding method. The bands shown in blue are the flat bands 
that we study. d, The mini Brillouin zone is constructed from the 
difference between the two K (or K′ ) wavevectors for the two layers. 

Hybridization occurs between Dirac cones within each valley, whereas 
intervalley processes are strongly suppressed. Ks, ′K s, Ms and Γ s denote 
points in the mini Brillouin zone. e–g, Illustration of the effect of interlayer 
hybridization for w =  0 (e), θ≪w ħv k2 0  (f) and 2w ≈   ħv0kθ (g); 
v0 =  106 m s− 1 is the Fermi velocity of graphene. h, Normalized local 
density of states (LDOS) calculated for the flat bands with E >   0 at 
θ =  1.08°. The electron density is strongly concentrated at the regions with 
AA stacking order, whereas it is mostly depleted at AB- and BA-stacked 
regions. See Extended Data Fig. 6 for the density of states versus energy at 
the same twist angle. i, Top view of a simplified model of the stacking 
order.
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
darker-shaded regions denote half-filling states at ±  ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.
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Dirac cones, GK = 4π/(3α) is the magnitude of the wavevector Γ–K  
of graphene, α = 0.246 nm is the lattice constant of graphene and  
ħ =  h/(2π ) is the reduced Planck constant, the lower of the hybri-
dized states is pushed to and crosses zero energy. A mathe matical  
derivation of the magic-angle condition6 gives the first magic angle, 
θ = / ≈ . °w ħv G3 ( ) 1 1magic

(1)
0 K . In Fig. 1c we show an ab initio tight- 

binding calculation16 of the band structure for θ =  1.08°. The flat bands 
(coloured blue) have a bandwidth of 12 meV for the E >   0 branch and 
2 meV for the E <   0 branch (where E is the band energy). From a 
band-theory point of view, the flat bands should have localized wave-
function profiles in real space. In Fig. 1h we show the local density of 
states calculated for the flat bands. The wavefunctions are indeed highly 
concentrated in the regions with AA stacking, whereas small but non-
zero amplitudes on the AB and BA regions connect the AA regions and 
endow the bands with weak dispersion6,15,18. A brief discussion about 
the topological structure of the bands near the first magic angle is given 
in Methods and Extended Data Fig. 1.

For the experiment, we fabricated high-quality encapsulated TBG 
devices with the twist angle controlled to an accuracy of about 0.1°–0.2° 
using a previously developed ‘tear and stack’ technique13,17,22. We meas-
ured four devices with twist angles near the first magic angle 
θ ≈ . °.1 1magic

(1)  In Fig. 2a we show the low-temperature two-probe  
conductance of device D1 as a function of carrier density n. For  
n ≈   ±  ns =  ±  2.7 ×   1012 cm− 2 (four electrons per moiré unit cell for 
θ =  1.08°), the conductance is zero over a wide range of densities. Here, 
ns refers to the density that is required to fill the mini Brillouin zone, 
accounting for spin and valley degeneracies (see Methods). These 
insulating states have been explained previously as hybridization- 
induced bandgaps above and below the lowest-energy superlattice 
bands, and are hereafter referred to as ‘superlattice gaps’13. The thermal 
activation gaps are measured to be about 40 meV (see Methods)13,17. 
The twist angle can be estimated from the density that is required to 
reach the superlattice gaps, which we find to be θ =  1.1° ±   0.1° for all 
of the devices reported here.

Another pair of insulating states occurs for a narrower density range, 
near half the superlattice density: n ≈   ±  ns/2 =  ±  1.4 ×   1012 cm− 2 (two 
electrons per moiré unit cell). These insulating states have a much 
smaller energy scale. This behaviour is markedly different from all 
other zero-field insulating behaviours reported previously, which 
occur at integer multiples of ±  ns (refs 13, 17). We refer to the states that 
occur near ±  ns/2 as ‘half-filling insulating states’. They are observed 
at roughly the same density for all four devices (Fig. 2a, inset). In  
Fig. 2b–d we show the conductance of the half-filling states in device 
D1 at different  temperatures. Above 4 K, the system behaves as a metal, 
exhibiting decreasing conductance with increasing temperature.  
A metal– insulator transition occurs at around 4 K. The conductance 
drops substantially from 4 K to 0.3 K, with the minimum value decreasing  
by 1.5 orders of magnitude. An Arrhenius fit yields a thermal acti-
vation gap of about 0.3 meV for the half-filling states, two orders of 
magnitude smaller than those of the superlattice gaps. At the lowest 
temperatures, the system can be limited by conduction through charge 
puddles, resulting in deviation from the Arrhenius fit.

To confirm the existence of the half-filling states, we performed 
capacitance measurements on device D2 using an a.c. low- temperature 
capacitance bridge (Extended Data Fig. 2)23. The real and imaginary 
components of the a.c. measurement provide information about the 
change in capacitance and the loss tangent of the device, respectively. 
The latter signal is tied to the dissipation in the device due to its 
 resistance23. Device D2 exhibits a reduction in capacitance and strong 
enhancement of dissipation at ±  ns/2 (Fig. 3a), in agreement with an 
insulating phase that results from the suppression of the density of 
states. The insulating state at −  ns/2 is weaker and visible only in the 
dissipation data. The observation of capacitance reduction (that is, 
suppression of density of states) for only the n-side half-filling state in 
this device may be due to an asymmetric band structure or the quality 
of the device. The reduction (enhancement) in capacitance (dissipa-
tion) vanishes when the device is warmed up from 0.3 K to about 2 K, 
consistent with the behaviour observed in transport measurements.
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Figure 1 | Electronic band structure of twisted bilayer graphene (TBG). 
a, Schematic of the TBG devices. The TBG is encapsulated in hexagonal 
boron nitride flakes with thicknesses of about 10–30 nm. The devices are 
fabricated on SiO2/Si substrates. The conductance is measured with a 
voltage bias of 100 µ V while varying the local bottom gate voltage Vg.  
‘S’ and ‘D’ are the source and drain contacts, respectively. b, The moiré 
pattern as seen in TBG. The moiré wavelength is λ =  a/[2sin(θ/2)], where 
a =  0.246 nm is the lattice constant of graphene and θ is the twist angle.  
c, The band energy E of magic-angle (θ =  1.08°) TBG calculated using an 
ab initio tight-binding method. The bands shown in blue are the flat bands 
that we study. d, The mini Brillouin zone is constructed from the 
difference between the two K (or K′ ) wavevectors for the two layers. 

Hybridization occurs between Dirac cones within each valley, whereas 
intervalley processes are strongly suppressed. Ks, ′K s, Ms and Γ s denote 
points in the mini Brillouin zone. e–g, Illustration of the effect of interlayer 
hybridization for w =  0 (e), θ≪w ħv k2 0  (f) and 2w ≈   ħv0kθ (g); 
v0 =  106 m s− 1 is the Fermi velocity of graphene. h, Normalized local 
density of states (LDOS) calculated for the flat bands with E >   0 at 
θ =  1.08°. The electron density is strongly concentrated at the regions with 
AA stacking order, whereas it is mostly depleted at AB- and BA-stacked 
regions. See Extended Data Fig. 6 for the density of states versus energy at 
the same twist angle. i, Top view of a simplified model of the stacking 
order.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Symmetries	in	each	valley		

•  C3	symmetry	

•  C2zT	
•  M2Y	
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	A	symmetry	breaking	state	at	CNP?	

STM	experiments	

Charge		
neutrality	
	point	

Flat	bands		
filled	

Breaking	of	C2zT	symmetry?	

Choi	et	al,	Nature	Physics	(2019)		
arXiv:1901.02997		
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Nematic	state?	

Mean	field	state	which	breaks		
C3	symmetry	of	a	given	valley	

Choi	et	al,	Nature	Physics	(2019)		
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	A	symmetry	breaking	state	at	CNP?	

STM	experiments	 Nematic	state?	

Jiang,	Andrei	et	al,	Nature	(2019)	
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Modifications	of	the	band	structure	whenthe	chemical	potential	is	in	the	
flat	bands	also	seen	by	Xie,	Yazdani,	Bernevig	et	al		Nature	572,	101	(2019)		
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	A	symmetry	breaking	state	at	the	CNP?	

Lu,	Efetov,	et	al	arXiv:	1903.06513	

Activated	behavior		
at	CNP->		gap	
	

C2zT	broken?	
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	Correlated	states	in	twisted	bilayer	graphene	

•  Nature	of	insulating	and	superconducting	states?		

•  Are	the	modifications	of	the	DOS	at	CNP	due	to	a	symmetry	
breaking	state?	Which	symmetry	is	broken?	

•  Is	the	observed	lack	of	symmetry	at	the	CNP	(C3,	C2zT)	due	
to	electronic	ordering	or	the	coupling	to	the	substrate/
lattice	strain?		

•  Are	other	bands	beyond	the	flat	bands	affected	by	the	
correlated	states?	

More	experiments	needed	
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	Optical	conductivity	to	study	the	state	at	CNP	

Changes	in	the	optical	conductivity	due	to	correlated	states		
(nematic	or	other	kind)	introduced	phenomenologically.	

	
Focus	on	changes	due	to	modification	of	the	band	structure		

(possible	incoherent	states	or	scatering	rate	effects		
not	included)		

Basov	et	al,	RMP	83,	471	(2011)		
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	Models	to	study	twisted	bilayer	graphene	

Tight	binding	models	
for	pz-carbon	orbitals	
(~11000	atoms	per	
unit	cell)	
	

Continuum	model	
(starts	from	continuum	
description	of	each		
graphene	layer	and		
couples	them)	

Tight-binding	 Model	 with	
effective	orbitals	for	the	Moiré	
unit	 cell	 (not	 carbon	 pz	
orbitals)	centered	at	symmetry	
points	 of	 the	 Moiré	 unit	 cell	
which	mimic	the	bands	from		
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	Models	to	study	twisted	bilayer	graphene	

Tight	binding	models	
for	pz-carbon	orbitals	
(~11000	atoms	per	
unit	cell)	
	

Continuum	model	
(starts	from	continuum	
description	of	each		
graphene	layer	and		
couples	them)	

Tight-binding	 Model	 with	
effective	orbitals	for	the	Moiré	
unit	 cell	 (not	 carbon	 pz	
orbitals)	centered	at	symmetry	
points	 of	 the	 Moiré	 unit	 cell	
which	mimic	the	bands	from		

Only	flat	bands	included	
(2	orbitals	per	spin	&	valley)	
	

A	few	bands	beyond	flat	bands	
included	(4,	5,6,	8,10	bands	per	
Spin	&	valley)	

10	band	model	 Focus	on	single	valley	
Po,	Zhou,	Senthil,	Vishwanath,		
PRB	99,	195455	(2019)	
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	Effective	10	band	model	for	twisted	bilayer	graphene	

Po,	Zhou,	Senthil,	Vishwanath,		
PRB	99,	195455	(2019)	

Fitting	to	“unrelaxed”	band	structure	from	
continum	model	but	with	VAA/VAB=0.82	

1.05º	

Fitting	to	relaxed	band	structure	

Carr,	Kaxiras	et	al,	arXiv:1901.03420	

0.90º	

Unrelaxed	model	 Relaxed	model	



	Effective	10	band	model	for	twisted	bilayer	graphene	

		

Po,	Zhou,	Senthil,	Vishwanath,	PRB	99,	195455	(2019)	

leni@icmm.csic.es	

AA	Centers		
(moiré	unit	cell	center):	

Triangular	lattice		

AA	

AA	AA	

AA	

AA	AA	

AB/BA	Points	:	
Hexagonal	lattice		

SP	Points	:	
Kagome	lattice		

AA	
AB	

AB	

AB	
BA	

BA	BA	 SP	
SP	
SP	SP	

SP	

SP	
SP	
SP	

SP	

SP	

SP	

SP	

3	orbitals:		
pz,	p+	&	p-	
	

3	orbitals:		
1	s	orbital	per	site,		

4	orbitals:		
2	orbitals	per	site		

(p+	&	p-)			
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	Effective	10	band	model	for	twisted	bilayer	graphene	

The	triangular	p+,p-	orbitals	are	the	ones	which	
contribute	the	most	to	the	flat	bands	and	the		
ones	expected	to	be	more	affected	by	the		
correlated	state			

Relaxed	model	

Carr,	Kaxiras	et	al,	arXiv:1901.03420	
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	Nematic	correlated	state	in	the	10	band	model	for	TBG	

STM	experiments	

Charge		
neutrality	
	point	

Flat	bands		
filled	

Choi,	Nadja-Perge	et	al,	Nature	Physics	(2019)	arXiv:1901.02997		

Nematic	state?	

C3	symmetry	breaking	introduced	in	
	the	mixing	of	p+	and	p-	orbitals	
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	Nematic	correlated	state	in	the	10	band	model	for	TBG	

STM	experiments	

Charge		
neutrality	
	point	

Flat	bands		
filled	

Choi	et	al,	Nature	Physics	arXiv:1901.02997		

Breaking	of	C2zT	symmetry?	

C2T	symmetry	breaking	introduced	as	
	an	onsite	term	for	p+	and	p-	orbitals	
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Band	structure,	DOS	&	Drude	weight:	Non-correlated	state	

Flat	bands	

Vanishing	density	of	states	@	CNP	

Dirac	points	at	K	and	K’	Van	Hove	singularities	(M	and	M’	points)	

K K

C3	symmetry	

K

K’	 K’	

K’	

M’	

M’	

M’	

M	

M	

M	

Γ

DOS	of	the		
flat	bands	
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Band	structure,	DOS	&	Drude	weight:	Non-correlated	state	

Vanishing	density	of	states	@	CNP	

Dirac	points	at	K	and	K’	Van	Hove	singularities	(M	and	M’	points)	

K K

C3	symmetry	

K

K’	 K’	

K’	

M’	

M’	

M’	

M	

M	

M	

Γ

DOS	of	the		
flat	bands	

CNP	

Non-correlated	state	

CNP	 Upper	flat		
band	filled	

Lower	flat		
band	empty	



		leni@icmm.csic.es	

Band	structure,	DOS	&	Drude	weight:	Nematic	state	

α=0.1	meV	
K

K’	

K’	

K’	

K

K

Dirac	points	still	present		
but	away	from	K,	K’		

Unrelaxed	model	

Vanishing	Drude	at	CNP	
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Band	structure,	DOS	&	Drude	weight:	Nematic	state	

α=0.25	meV	

Chemical	potential	of	
undoped	system	(CNP)		

Dirac	points	not	at	the	CNP	

Small	Fermi	pockets	

Small	but	finite		
density	of	states	@CNP	

Unrelaxed	model	
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Band	structure,	DOS	&	Drude	weight:	Nematic	state	

α=0.25	meV	

Chemical	potential	of	
undoped	system	(CNP)		

Dirac	points	not	at	the	CNP	

Small	Fermi	pockets	

Unrelaxed	model	
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Band	structure,	DOS	&	Drude	weight:	Nematic	state	

α=0.40	meV	

New	Dirac	points		
between	the	flat	bands		
For	α>0.3	meV		

Original	
Dirac	points	

Dirac	points	of	the	other	valley	related	by	inversion		

Unrelaxed	model	
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Band	structure,	DOS	&	Drude	weight:	Nematic	state	

α=0.70	meV	
Original	Dirac	points	

Pair	of	new	Dirac	points	

Two	new	pairs	of	Dirac	points	

Many	Dirac	points	close	to	CNP	and	several	Fermi	pockets	

Unrelaxed	model	
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Nematic	state:	1st	take-home	message	

•  Effect	of	nematicity	in	the	band	structure	close	to	CNP	beyond		
displacing	Dirac	points	

o  Small	Fermi	pockets,	finite		
density	of	states		&	Drude	weight	

o  New	Dirac	points	

It	may	appear	{	
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Band	structure,	DOS	&	Drude	weight:	Nematic	state	

Relaxed	tight	binding	model	

•  Fermi	pockets	at	CNP	starting	with	very	small	nematicity.	
•  No	extra	new	Dirac	points	in	the	range	of	nematic	parameters	studied	
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Nematic	state:	Anisotropy	in	the	optical	conductivity	

C3	symmetry	

σx1x1	=	σx2x2	=	σx3x3	

σxx	=	σyy	

X1	

Y1	 X2	

Y2	

X3	 Y3	
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Nematic	state:	Anisotropy	in	the	optical	conductivity	

C3	breaking	of	the	symmetry	

σx1x1	=	σx2x2	=	σx3x3	

σxx	=	σyy	

X1	

Y1	

Inequivalent	
direction	

X2	

Y2	

X3	 Y3	
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Nematic	state:	Anisotropy	in	the	Drude	weight	
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X1	

Y1	

Dxx	=	Dyy	
With	C3	symmetry	Anisotropy=(DY1Y1/DX1X1-1)	

CNP	 Electron	doped	Hole	doped	

Relaxed	model	
(The	sign	of	the	nematicity	and		

the	sign	of	the	anisotropy	directly	related)	

CNP	

Focus	on	small	region		
of	doping	close	to	CNP	



		leni@icmm.csic.es	

Nematic	state:	Anisotropy	in	the	Drude	weight	
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Y1	

Dxx	=	Dyy	
With	C3	symmetry	Y1X1	Anisotropy=(DY1Y1/DX1X1-1)	

CNP	 Electron	doped	Hole	doped	

Relaxed	model	
(The	sign	of	the	nematicity	and		

the	sign	of	the	anisotropy	directly	related)	

Unrelaxed	model	
(The	sign	of	the	nematicity	and	the	sign		
of	the	anisotropy	NOT	directly	related)	
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Nematic	state:	Anisotropy	in	the	Drude	weight	

X1	

X2X1	Anisotropy=(DX2X2/DX1X1-1)	
X2	
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The	relation	between	the	sign	of	the	XX	Drude	anisotropy	and	the	nematicity		
depends	on	the	underlying	band	structure	

Relaxed	model	 Unrelaxed	model	
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Nematic	state:	Anisotropy	in	the	Drude	weight	

X1	

X2X1	Anisotropy=(DX2X2/DX1X1-1)	
X2	

Y2Y1	Anisotropy=(DY2Y2/DY1Y1-1)	
Y1	

Y2	
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Opposite	sign	of	the	Drude	anisotropy	in	XX	and	YY	directions	(also	true	in	relaxed	model)	

Unrelaxed	model	
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Nematic	state:	2nd	take-home	message	

X1	

X2X1	Anisotropy=(DX2X2/DX1X1-1)	
X2	

Y2Y1	Anisotropy=(DY2Y2/DY1Y1-1)	
Y1	

Y2	

The	sign	of	the	XY,	XX,	YY	anisotropy	of	the	Drude	weight	in	the	
nematic	state	depends	on		the	underlying	TBG	band	structure	

Opposite	sign	of	X2X1	and	Y2Y1	anisotropy	seems	to	be	a	robust	
feature	
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Interband	transitions	
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Interband	transitions	

Also	follow	changes	in	frequency		
of	these	transitions	with	doping	

Focus	on	interband	transitions	

Only	the	interband	transitions	are	plotted	
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Interband	transitions	in	the	nematic	state	

Only	the	interband	transitions	are	plotted	
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Interband	transitions	in	the	nematic	state	
Unrelaxed	model	

X1	

X2	

X3	

With	C3	symmetry	

σx1x1	=	σx2x2	=	σx3x3	

In	the	nematic	state	

σx1x1	≠	σx2x2	=	σx3x3	

αC3=0.7	meV	

Only	the	interband	transitions	are	plotted	
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Interband	transitions	in	the	nematic	state	

With	C3	symmetry	

σx1x1	=	σx2x2	=	σx3x3	

σxx	=	σyy	

X1	

X2	

X3	

In	the	nematic	state	
σx1x1	≠	σx2x2	=	σx3x3	

Y1	

Y2	 Y3	

σxx		≠	σyy	

αC3=0.7	meV	

Only	the	interband	transitions	are	plotted	

Unrelaxed	model	
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Interband	transitions	in	the	nematic	state	

In	this	nematic	state	
σx1x1	≠	σx2x2	=	σx3x3	

σxx		≠	σyy	

αC3=0.7	meV	

Unrelaxed	model	

Only	the	interband	transitions	are	plotted	

These	transitions	can	be		
studied	as	a	function		
of	doping	
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Interband	transitions	in	the	nematic	state	

In	this	nematic	state	

αC3=0.7	meV	

Transitions	affected	by	the	nematic	state	
not	restricted	to	those	involving	the	flat	bands	

Only	the	interband	transitions	are	plotted	
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Optical	conductivity	in	the	C2zT	broken	symmetry	state	

Flat	bands	non	correlated	state	 Flat	bands	C2zT	Broken	symmetry	

Unrelaxed	model	
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Optical	conductivity	in	the	C2zT	broken	symmetry	state	

Flat	bands	C2zT	Broken	symmetry	

Unrelaxed	model	
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Summary	
Small	Fermi	pockets	and	new	Dirac	points	
may	appear	in	the	presence	of	nematicity.	
The	original	Dirac	points	may	be	away	from	
charge	neutrality.		
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The	sign	of	the	anisotropy	of	the	Drude	weight		
depends	on	the	underlying	band	structure.	We	
find	opposite	sign	for	the	Drude	anisotropy	along	
the	XX	and	YY	directions.	

Optical	conductivity	may	help	identifying	the	nature	of	the	correlated	state		


