Research field

Condensed Matter Physics intents to describe and predict new emergent phenomena in complex quantum materials. These are often of reduced dimensionality which enhances quantum and correlation effects. In this context, especially two-dimensional van der Waals materials have attracted much attention due to their easy experimental tunability. I have been working on these Dirac and related Moiré systems from the very beginning. My research topics include unconventional superconductors, magnetic and topological order, nanophotonics with strong light-matter interaction and plasmonics.

Contact

Instituto de Ciencia de Materiales de Madrid

Sor Juana Inés de la Cruz, 3

28049 Madrid, Spain

Email:   tobias.stauber at csic.es

Phone:  +34 91 334 90 55

 

 

Long-years expertise

  • Graphene and twisted van der Waals heterostructures.
  • Correlated and topological systems.
  • Nanophotonics and plasmonics.

Education

  • 1998 Diploma in Physics. University of Göttingen, Germany.
  • 2002 PhD in Theoretical Physics. University of Heidelberg, Germany.
  • 2003-2007 Postdoc at the ICMM-CSIC. Madrid,  Spain.
  • 2008-2010 Ciência07 Research Assistant Professor. University of Minho, Portugal.
  • 2010-2014 Ramón y Cajal Assistant Professor. University Autónoma de Madrid, Spain.
  • since 2014 Tenured Researcher at the ICMM-CSIC. Madrid,  Spain.

Research stays

  • since 2016 Honorary Professor at the Universidad Autónoma de Madrid, Spain.
  • 2019 Research stay at Aspen Center for Physics, USA.
  • 2020 Salvador de Madariaga Fellow at the University of Regensburg, Germany.
  • 2021/22 Hired Professor at the University of Augsburg, Germany.

Recent publications

  • Sai Swaroop Sunku, Dorri Halbertal, Tobias Stauber, Shaowen Chen, Alexander S. McLeod, Andrey Rikhter, Michael E. Berkowitz, Chiu Fan Bowen Lo, Derick E. Gonzalez-Acevedo, James C. Hone, Cory R. Dean, Michael M. Fogler, D. N. Basov: Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nature Communications 12,1641 (2021).
  • T. Stauber, T. Low, and G. Gómez-Santos: Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. Nano Letters 20, 8711–8718 (2020). Highlighted as Cover Image of Nano Letters Issue 12.
  • A. Bahamon, G. Gómez-Santos, and T. Stauber: Emergent magnetic texture in driven twisted bilayer graphene. Nanoscale 12, 15383-15392 (2020).
  • J. González and T. Stauber: Time-reversal versus chiral symmetry breaking in twisted bilayer graphene. Phys. Rev. B 102, 081118(R) (2020). Highlighted as Editors’ Suggestion.
  • J. González and T. Stauber: Marginal Fermi liquid in twisted bilayer graphene. Phys. Rev. Lett. 124, 186801 (2020). Highlighted as Cover Image of PRL Issue 18. CSIC-press release and spread by ~15 media outlets.
  • J. González and T. Stauber. Kohn-Luttinger superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 122, 026801 (2019) CSIC-press release and spread by ~15 media outlets.
  • S. Sunku, G. X. Ni, B. Y. Jiang, H. Yoo, A. Sternbach, A. S. McLeod, T. Stauber, L. Xiong, T. Taniguchi, K. Watanabe, P. Kim, M. M. Fogler, and D. N. Basov: Quantum Photonic Crystal for Nano-Light. Science 362, 1153 (2018).
  • T. Stauber, T. Low, and G. Gómez-Santos: Chiral response in twisted bilayer graphene. Phys. Rev. Lett. 120, 046801 (2018).
  • T. Stauber, P. Parida, M. Trushin, M. V. Ulybyshev, D .L. Boyda, and J. Schliemann: Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response. Phys. Rev, Lett. 118, 266801 (2017).
  • T. Stauber and H. Kohler: Quasi-flat plasmonic bands in twisted bilayer graphene. Nano Letters 16, 6844-6849 (2016).