REALM starts THINLAS Proof of Concept Project PDC-133326-I00, funded by the Spanish Ministry of Science and Innovation MICIN/AEI/10.13039/501100011033 and by the European Union NextGeneration/PRTR.

“Valorisation of CaNbGa garnets as thin disk elements in high power, high-rate, ultrashort pulsed laser oscillators (THINLAS)” project has been granted for the period 01/12/2022 to 30/11/2024.

This Project aims the extension of thin disk laser (TDL) technology, based on Yb doped YAG single crystals, to modelocked operation by using disordered single crystal Ca3(NbGa)5O12 garnets (CNGG) doped with Yb (or Tm, Ho, and Tm+Ho for emission in the λ≈ 2 µm region), to provide laser pulse durations in the femtosecond (1 fs= 10-15 s) time scale with large pulse peak powers. This is based on the large Yb3+ bandwidth in previously developed CNGG crystals, typically FWHM= 23.5 nm (or 221 cm-1), along with an optical absorption three times more efficient than in YAG, which promises thinner disks with better cooling. The productivity of laser material processing and monitoring in various fields will be greatly improved by a laser module with the characteristics described above. Just to mention some few examples: In photovoltaic silicon cell processing for CO2-free energy harvesting, surface texture free of chemical wastes will be possible. Polymeric soft transparent materials, extensively used in biomedical health care, can be welded and mechanically processed with λ≈ 2 µm laser equipment. LIDAR systems incorporating increased high power lasers and repetition rates will have longer penetration depths and better spatial resolution. Overall, the development of high power–high repletion rate lasers with ultrashort pulse duration will provide new tools for improving the wellness of the population through routes that are compatible with a sustainable and green manufacturing.