Graphene edges are known to present localized electronic states that depend on the exact atomic configuration of the graphene border. It has been predicted that zigzag-ended and chiral-ended graphene nanostructures develop spatially and spectrally localized edge states around the Fermi level. However, experimental evidence remains scarce as atomic-scale investigations of such graphene terminations and their related electronic states are very challenging. Graphene epitaxially grown on metal substrates is one of the most promising candidates for obtaining a scalable methodology for high-quality production. In this work we present a combined experimental and theoretical study on graphene stripes showing strong metallic edge states. By means of scanning tunneling microscopy, we demonstrate the use of vicinal Pt(111) as a template for the growth of graphene stripes presenting strong sublattice localized electronic states at room temperature.
Full text in this link: