Decoupling epitaxial graphene from metals by electrochemical oxidation

The catalytic role of metallic substrates is a perfect starting point for growing high quality graphene layers by thermal decomposition of aromatics. However, metallic substrates quench the outstanding properties that make graphene the most promising material for future applications. Thus, protocols to transfer graphene to different technologically relevant substrates are…

Continue reading

An atomic-scale look to graphene edge states

Graphene edges are known to present localized electronic states that depend on the exact atomic configuration of the graphene border. It has been predicted that zigzag-ended and chiral-ended graphene nanostructures develop spatially and spectrally localized edge states around the Fermi level. However, experimental evidence remains scarce as atomic-scale investigations of…

Continue reading

On-surface chemistry: (cyclo)dehydrogenation of PAH catalysed by coinage metal surfaces

New nanoarchitectures can be built from polycyclic aromatic hydrocarbons (PAH) by exploiting the catalytic properties of some metal surfaces. Actually, this bottom-up approach allows the formation of nanostructures with different dimensionality from the same precursor as a consequence of the diffusion of the PAH on the surface. Thus, by selecting…

Continue reading

New method to synthesize graphene by using C60 as carbon source

In this work, we describe a new protocol to grow high-quality graphene by physical vapour deposition (PVD) using C60 molecules evaporated in ultra high vacuum conditions (UHV) on Cu foils substrates. The quality of the resulting graphene layer has been assessed by the combination of complementary surface characterization techniques. Additionally,…

Continue reading

Characterization of thin film growth and processing by in-situ time-resolved GISAXS

The increase in hard X-ray brightness in third generation synchrotron sources together with the development of fast two-dimensional X-ray detectors has enabled to perform time-resolved X-ray scattering experiments in the millisecond regime. Thus, the evolution of the thin film morphology at the nanoscale can be continuously monitored employing Grazing Incidence…

Continue reading

Unveiling the structural and electronic properties of epitaxial graphene superstructures on Pt(111): the role of the pinning points

Graphene growth on metal surfaces is one of the most promising routes towards scalable production of high-quality graphene suitable for industrial applications. Conventionally, the growth of graphene is carried out on weakly interacting surfaces – typically Cu foils – where the substrate plays a double role: first, as a catalyst;…

Continue reading