On-surface chemistry: (cyclo)dehydrogenation of PAH catalysed by coinage metal surfaces (Phys. Chem. Chem. Phys. 2017)

New nanoarchitectures can be built from polycyclic aromatic hydrocarbons (PAH) by exploiting the catalytic properties of some metal surfaces. Actually, this bottom-up approach allows the formation of nanostructures with different dimensionality from the same precursor as a consequence of the diffusion of the PAH on the surface. Thus, by selecting…

Continue reading

New method to synthesize graphene by using C60 as carbon source (Carbon 2017)

In this work, we describe a new protocol to grow high-quality graphene by physical vapour deposition (PVD) using C60 molecules evaporated in ultra high vacuum conditions (UHV) on Cu foils substrates. The quality of the resulting graphene layer has been assessed by the combination of complementary surface characterization techniques. Additionally,…

Continue reading

Unveiling the structural and electronic properties of epitaxial graphene superstructures on Pt(111): the role of the pinning points

Graphene growth on metal surfaces is one of the most promising routes towards scalable production of high-quality graphene suitable for industrial applications. Conventionally, the growth of graphene is carried out on weakly interacting surfaces – typically Cu foils – where the substrate plays a double role: first, as a catalyst;…

Continue reading

Sequential formation of N-doped nanohelicenes, nanographenes and nanodomes by surface-assisted chemical (cyclo)dehydrogenation of heteroaromatics

The use of appropriately functionalized molecular building blocks to form novel nano-architectures with tailored structure and electronic properties has recently been brought under the spotlight. Recently, the ESISNA group has developed an effective way of exploiting on-surface chemistry to grow different nanostructures in sequential steps from the same molecular precursor. We have used different activation temperatures to…

Continue reading

An atomistic view of the the enantiomeric recognition of PAHs on single crystal metal surfaces

Recently published in Chemistry, a European Journal. Vacuum deposition of a planarized PAH, as C60H30 , on a single-crystal surface, as Pt(111), leads to surface induced chirality caused by the different landing side of the molecule, as depicted by in-situ STM images. We show that the surface discriminate the landing…

Continue reading