Insights into the Synthesis Parameters Effects on the Structural, Morphological, and Magnetic Properties of Copper Oxide Nanoparticles

The present study aims at the integration of the “oxalic conversion” route into “green chemistry” for the synthesis of copper oxide nanoparticles (CuO-NPs) with controllable structural, morphological, and magnetic properties. Two oxalate-containing precursors (H2C2O4.2H2O and (NH4)2C2O4.H2O) and different volume ratios of a mixed water/glycerol solvent were tested. First, the copper oxalates were synthesized and then subjected to thermal decomposition in air at 400 °C to produce the CuO powders. The purity of the samples was confirmed by X-ray powder diffraction (XRPD), and the crystallite sizes were calculated using the Scherrer method. The transmission electron microscopy (TEM) images revealed oval-shaped CuO-NPs, and the scanning electron microscopy (SEM) showed that morphological features of copper oxalate precursors and their corresponding oxides were affected by the glycerol (V/V) ratio as well as the type of C2O42- starting material. The magnetic properties of CuO-NPs were determined by measuring the temperature-dependent magnetization and the hysteresis curves at 5 and 300 K. The obtained results indicate the simultaneous coexistence of dominant antiferromagnetic and weak ferromagnetic behavior.

F. Mbarek, I. Chérif, A. Chérif, J. M. Alonso, I. Morales, P. de la Presa, S. Ammar, «Insights into the Synthesis Parameters Effects on the Structural, Morphological, and Magnetic Properties of Copper Oxide Nanoparticles,» Materials 16, 3426 (2023)

Esta entrada fue publicada en HRTEM, Publications. Guarda el enlace permanente.